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Abstract
The impact of fuel consumption on merchant ships is categorized in both economic and environmental ways in terms of 
sustainable blue growth. Apart from the economic benefits of reducing fuel consumption, attention should be paid to related 
environmental concerns with ship fuels. As a result of global regulations and agreements concerning mitigating greenhouse 
gases on board, such as the International Maritime Organization and Paris Agreement, ships have to take a step to reduce 
fuel consumption to adopt these regulations. The present study aims to determine optimal speed diversity depending on 
ships' cargo amounts and wind-sea states to reduce fuel consumption. Within this context, one-year voyage data from two 
model sister Ro–Ro cargo ships were used, including daily ship speed, daily fuel consumption, ballast water consumption, 
total ship cargo consumption, sea state, and wind state. The genetic algorithm method was used to determine the optimal 
diversity rate. In conclusion, after speed optimization, optimum speed result values are calculated between 16.59 and 17.29 
knots; thus, approximately 18% of exhaust gas emissions were also reduced.

Keywords Shipping emissions · Impact category · Genetic algorithm · Speed optimization · Fuel consumption · Blue 
growth

1 Introduction

Blue growth, which is a long-term strategy to support the 
sustainable development of the blue economy, focuses on the 
growth of marine renewable energies, blue biotechnologies, 
coastal tourism, seabed mining and aquaculture alongside 
shipbuilding, bunker, fisheries, maritime transportation etc. 
[1–6]. The blue economy also aims to optimize the benefits 
of sustainable marine environment development [1, 4]. The 
impact of maritime transportation, regarded as one of the 
industries with high potential in terms of the blue growth 
strategy, is categorized as both economic and environmental 
on the blue growth [7, 8].

Although the maritime trade volume decreased by 3.8% in 
2020 to a total of 10.6 billion metric tons due to the COVID-
19 pandemic, worldwide seaborne trade volume represents 
80% of the total world merchandise trade [9]. Therefore, 
maritime transportation is getting more profitable as a result 

of globalization. However, the economic activities under the 
blue growth agenda bring out environmental impacts. Green-
house gases (GHG) increasing in the atmosphere with the 
effect of emissions from ships trigger global warming [10]. 
An average of 50 million tons of gas is emitted into the 
atmosphere annually, 16.2% of which is due to transporta-
tion. Maritime transport also constitutes 1.7% of the total 
emissions [11]. According to a study by International Mari-
time Organization (IMO) in 2020, total shipping emitted 
1,056 million tonnes of  CO2 in 2018, accounting for about 
2.89% of the total global anthropogenic  CO2 emissions for 
that year [12]. In addition, it has been revealed that inland 
water transport is one of the 5 sectors that cause the most 
pollution and that emissions from ships contain the most 
serious 64 air pollutants. Thus, emissions from ships pose 
devastating risks to the blue growth strategy [13]. In this 
context, one of the main issues to be focused on in order to 
prevent climate change is emissions offsetting from ships. In 
this way, it will contribute to the blue growth strategy [14]. 
The focus has been on fuel efficiency, which is important in 
reducing the environmental footprint of ship-borne air pol-
lution, besides alternative fuels to reduce emissions from 
ships, and international regulations on the subject have been 
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implemented, such as Paris Agreement, IMO 2020 Sulphur 
Regulation and  NOx Technical Code 2008.

In 2021 Paris Agreement entered into force with its 196 
signatory countries in United Nations. The main purpose 
of this agreement is to reduce global emissions, especially 
in the logistics and power sectors, which maintain nearly 
70% of total global emissions [15]. In addition, the IMO 
2020 sulphur emission regulation has already entered into 
force. Before the IMO 2020 Sulphur regulation, in the main 
engines of the ships, except for Emission Control Areas 
(ECA) regions, the maximum sulphur content was 3.5% 
fuel, while this value was reduced to 0.5% after regulation. 
In ECA regions, the maximum sulphur content of the fuel 
has been reduced to 0.1%. With the legislation of IMO 2020 
Sulphur regulation, there has been no change in the  NOx 
limit values originating from ship fuels. The maximum  NOx 
values specified in the  NOx Technical Code 2008, which 
entered into force in 2008, continue to be used. Table 1 
shows the  NOx categories (Tier) according to the shipbuild-
ing years and the maximum  NOx emission values that the 
ships in these categories will give to the atmosphere accord-
ing to their turnover.

As it can be seen in Table 1, the allowed  NOx values 
for ships built on or after January 1, 2000 vary between 
9.8–17.0 (g/kWh), while the allowed  NOx values for ships 
built on or after January 1, 2016 are vary between 2.0 and 
3.4 (g/kWh).

In light of the aforementioned regulations and agree-
ments, reducing ship-sourced greenhouse gas emissions is 
important for the environmental objectives of blue growth. 
As a matter of fact, an average of 1.5 °C increase in seasonal 
temperatures is expected in 2030 in global warming caused 
by greenhouse gases. To get ahead of that increase, maritime 
transport activities should be reduced by 8.6%. To prevent a 
temperature increase of 2 °C, it needs to reduce its maritime 
transport activities by 24.2% [18]. However, maritime trans-
portation, which accounts for 90% of the international trade 
and supply of cargo, has no alternative compared to other 
modes of transport [9]. For this reason, it is not possible to 
expect a contraction in the aforementioned sector in order 
to reduce gas emissions. Therefore, reducing emissions with 

an alternative fuel or speed optimization would be a more 
appropriate strategy.

This paper aims to determine optimal speed values of 
model ships depending on ships' cargo amounts and wind-
sea states in order to reduce fuel consumption and exhaust 
gas emissions. In this way, it is aimed to contribute to the 
efforts to reduce the carbon footprint of ships. Two sister 
Ro–Ro cargo ships in liner shipping service were used as 
model ships to determine optimum speed, depending on var-
ied cargo amounts. Different parameters, including sea and 
wind state forces, ship daily average speed, daily total fuel 
consumption, daily ballast water amount and daily cargo 
amount, were used in the study. These data that affect ship 
speed were gathered from shipping company one-year docu-
ments named daily fuel oil statements and weekly ship sta-
bility reports. The model presented in this paper is defined 
as the genetic algorithms (GA) method, which is used to 
optimize different ship speeds depending on varied cargo 
amounts by using the one-year data of model sister ships. 
This study will contribute to the research on connected and 
automated ships, energy savings and environmental impacts 
of ships.

The main topic of this paper is organized as follows. After 
the introduction and literature review sections, the subject 
and data set are mentioned in the third section. Also, speed 
optimization factors are mentioned in Sect. 3. The method of 
the study, model components, and mathematical model are 
summarized in Sect. 4. In Sect. 5, the computational results 
of the optimization method are discussed. Finally, the con-
clusion and outlook of the study are mentioned in Sect. 6.

2  Summary of previous work

Studies in the field of ship optimum speed can be divided 
into optimum speed works of liner and tramp shipping. 
Many studies about ship optimum speed are also combined 
with route optimizations by using various optimization algo-
rithms and mathematical models. Although existing many 
optimum speed studies related to tramp and liner shipping 
exist, speed optimizations related to cargo amount in liner 
shipping are restricted.

Norstad et al. [19] present a model for tramp shipping 
using Tramp Ship Routing and Scheduling Problem with 
Speed Optimization (TSRSPSO). They consider allocating 
cargo to fleet ships and optimizing ship routes and speed 
in order to reach the best results. Gelareh and Meng [20] 
and Qi and Song [21] work on route optimization in liner 
containership using the methods of Mixed Integer Program-
ming (MIP) and Stochastic Optimization, respectively. Du 
et al. [22] solve the slow steaming and Berth Allocation 
Problem (BAP) with optimization on liner containership. 
They present that mitigating emissions and fuel consumption 

Table 1    NOx limit values of ships according to IMO  NOx Technical 
Code [17]

Tier Ship construction 
date on or after

Total weighted cycle emission limit (g/
kWh)
n = engine's rated speed (rpm)

n < 130 n = 130–1999 n ≥ 2000

I 1 January 2000 17.0 45·n(−0.2) 9.8
II 1 January 2011 14.4 44·n(−0.23) 7.7
III 1 January 2016 3.4 9·n(−0.2) 2.0
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can be reached with correct berth allocation. Using regres-
sion analysis, Kontovas and Psaraftis [23] also work on slow 
steaming in liner containerships. They conclude that slow 
steaming is the most advantageous way at high fuel prices 
and low freight demand.

Several papers focus on speed and route optimization 
on container ships. Wang and Meng [24] make calibration 
work on container ships by using old fuel consumption and 
speed data from three container ships at five different routes. 
They solve that speed increasing depending on the ship's 
main engine power is an important factor of fuel consump-
tion, considering that consumption is a cubic function of 
speed. They also find out that ship voyage routes are also 
remarkable for determining speed regression. Kim et al. [25] 
do similar studies about container ships' routes and speed 
optimization. They also consider port durations and gas 
emissions in their study and reveal that speed optimization 
reduces both fuel consumption and gas emissions. Wijaya-
ningrum and Mahmudy [26] work on route optimization in 
liner shipping by using GA and conclude that optimization 
results by GA are more successful than randomly selected 
results. Zhen et al. [27] focus on speed and route optimiza-
tion on container ships and find out that sailing speed in the 
ECA will be reduced while the speed outside the ECA will 
be increased to satisfy the time window requirements of the 
ports. Psaraftis [28] discusses speed optimization and speed 
reduction depending on GHG and bunker levy on a transpa-
cific container ship and concludes that the speed limit option 
shows a number of disadvantages as an instrument to reduce 
GHG emissions, at least for the bunker levy option. Ma et al. 
[29] study ship route and speed optimization in order to 
mitigate sailing cost and time considering ECA regulations 
and weather conditions. Results show that optimizing both 
ship speed and route reduces sailing cost and time. Ships 
can avoid potential increases in low sulphur fuel oil (LSFO) 
prices using ship speed and route optimization. Tran [30] 
searched for an energy efficiency model on bulk carriers in 
order to reduce fuel consumption while increasing engine 
power. He used Simulink/MATLAB to maintain a model 
with parameters, including wind and sea conditions, cargo 
mass, vessel travel distance, and ship daily data. The results 
of that paper show that the model is acceptable, and a reduc-
tion of  CO2 emission occurred. Yang et al. [31] determine 
the optimum ship speed on a tanker between two fixed ports 
considering ocean currents. They find out that an oil product 
tanker can save 2,20% of bunker fuel during a 280-h voy-
age with speed optimization. Tzortsis and Sakalis [32] make 
speed optimization on container fleets, identifying the prob-
lem as a dynamic optimization problem. They use a full-time 
horizon to gain small-time regions for forecasting weather 
conditions. They conclude that nearly 2% of fuel consump-
tion savings can be achieved. Zhou et al. [33] worked on fuel 
consumption estimation on a tanker ship using noon report 

data and weather-sea conditions. They compared the results 
by using four machine learning algorithms and found that 
the accuracy rate was acceptable.

Several papers also focus on speed and bunker optimi-
zation in liner shipping. Aydın et al. [34] work on speed 
optimization by considering port durations, auxiliary engine 
fuel consumption, bunker prices, and late arrival penalty of 
the next port entrance. They use a dynamic programming 
model and find out that increasing ship speed is advanta-
geous for not paying port penalties in some cases. Yao et al. 
[35] solve speed optimization related to bunkering on liner 
containerships. They use an empirical model and conclude 
that determining the bunkering port, bunkering price, bunker 
amount, and the speed of sailing to the bunkering port is 
remarkable for reducing bunker cost. Similarly, Kim et al. 
[36] solve the best bunkering port by algorithms. They also 
consider  CO2 emissions and penalty costs.

Mao et al. [37] investigate one-year container ship data. 
They use weather conditions and ship main engine speed to 
find out the effects of speed optimization. According to the 
results by regression analysis, without considering weather 
conditions determining ship speed with only main engine 
speed reveals weak results. They conclude that weather con-
ditions have a remarkable impact on determining ship speed. 
Li et al. [38] study the model 4250 TEU container ship in 
their paper about speed optimization. They calculate speed 
optimizations with or without voluntary speed loss and the 
main engine fuel consumption, the ship operating costs, and 
greenhouse gas emissions under the two conditions. Optimi-
zation results show that voluntary speed loss is remarkably 
different from without voluntary speed loss. After optimiz-
ing speed with voluntary speed loss, main engine fuel con-
sumption reduces, so ship operating costs do.

As seen, speed optimization studies mainly focus on a 
containership and are also related to route optimization. 
However, works about ship speed optimization depending 
on net cargo amounts and weather conditions (hull resist-
ance) and determining speed values on Ro–Ro cargo ships 
are restricted. Therefore, this paper has contributed to the 
existing literature with speed optimization according to dif-
ferent cargo amounts and weather conditions to reduce fuel 
consumption and gas emissions.

3  Speed optimization depending on cargo 
amount

It is possible to reduce fuel consumption by speed optimi-
zation on Ro–Ro cargo ships under liner shipping service. 
Thus, both economic and environmental profits could be 
maintained. Two sister Ro–Ro cargo ships' one-year sailing 
data were used to provide speed optimization in this work. 
Sailing data, including cargo amounts (frequently carried by 
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ships in both weight and percentage values) and three kinds 
of weather conditions that frequently occurred at sailing 
periods were used to determine speed optimization depend-
ing on cargo amount. Table 2 includes an overview of the 
model ships' technical data.

As seen in Table 2, Model ship 1 and Model ship 2 have 
similar engine and cargo characteristics. However, build 
dates are different. Figure 1 gives the sailing legs of model 
ships.

Figure 1 indicates that model ships frequently sail on 
Pendik-Trieste and Pendik-Toulon legs and sometimes on 
the Mersin-Trieste leg. According to Monthly Fuel Oil State-
ment Reports (FOS), given by company records, the Pen-
dik-Toulon course is 1370 miles, while the Toulon-Pendik 

course is 1369 miles. Pendik-Trieste and Trieste-Pendik 
courses are 1181 miles and 1191 miles, respectively.

Besides, FOS monthly reports showed that model ships 
completed both the Pendik-Trieste-Pendik course (123,86 h) 
and the Pendik-Toulon-Pendik course (143.02 h) with 19.15 
knots average speed and 2.37 ton/hour average fuel con-
sumption for a whole year.

Factors affecting ship fuel consumption should be inves-
tigated to determine speed optimization and reach opti-
mal sailing speed results depending on cargo amount and 
weather conditions. However, other independent variables 
such as safety concerns at severe weather conditions, cargo 
types, environmental effects (emissions), bunker price, port 
duration, and auxiliaries' fuel consumption and bunker price 
are neglected and will be thought of used in future studies.

3.1  Factors affecting ship fuel consumption 
and ship speed

There are several factors that affect ship fuel consumption. 
Foremost among them, ship displacement (total ship and 
ballast amount weight) and ship speed are the main factors 
[41]. Moreover, depending on previous studies, ship resist-
ance (ship hull form and trim, hull resistance), main engine 
power, and propeller pitch are other factors considering ship 
fuel consumption [42, 43].

Among the mentioned factors, ship speed is the main fac-
tor in ship fuel consumption [44]. Even little changes in ship 

Table 2  Model ships' technical data [39]

Model ship 1 Model ship 2

Main engine MAK 9M43C MAK 9M43C
Main engine power 2 × 8400 KW 2 × 8400 KW
Main engine speed 500 rpm 500 rpm
Length overall 193 m 193 m
Lane meter 3735 LM 3735 LM
Trailer capacity 240 pcs 240 pcs
Ship maximum speed 21.5 knots 21.5 knots
Flag Turkish Turkish
Build date 2008 2009

Fig. 1  Model ships' sailing legs [40]
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speed affect energy efficiency on board [45]. Beşikçi et al. 
[46] indicated that 10% of ship speed reduction makes 27% 
of less fuel consumption. For this reason, slow steaming is 
a remarkable fact for shipping companies to resist increas-
ing petrol prices and comply with environmental regulations 
coming into force by IMO [45].

Longer sailing duration and, thereby, longer delivery time 
is the main negative side of slow steaming [47]. For this 
reason, in order to achieve less fuel consumption on board 
determining a ship's optimum speed is better choice for ship-
ping companies. As a matter of fact, focusing on the factors 
affecting ship speed is needed for ship speed optimization.

Ship fuel consumption comprises a cubic function of 
ship speed, not a linear function [48, 49]. There are techni-
cal, physical, economic, and strategic factors affecting ship 
speed. The main factors among these will be investigated in 
subheadings.

3.1.1  Ship displacement and cargo amount

Ship displacement is a ship's total deadweight and light-
weight, including weights of fuel oil and lubricating oil. 
Lightship weight is constant, and in liner shipping, fuel and 
lubricating oil amounts are nearly at the same levels at each 
timetable. Therefore, in the ship displacement category, 
cargo amount is the main factor affecting ship displace-
ment, that is to say, affecting ship speed [41]. In the case of 
a ship being fully laden, half laden, or less laden, ship fuel 
consumption and ship speed can change. If the ship is fully 
laden, the ship's fuel consumption will increase to maintain 
the ship speed steady. If other factors affecting ship speed 
are constant, at the same engine load, ship speed changes 
inverse proportion depending on ship cargo amount. Con-
sequently, the cargo amount of a ship should be considered 
highly whenever to determine the ship's optimum speed [48].

3.1.2  Ballast amount

Although sailing with more cargo and less ballast is appro-
priate in the economic aspect for shipping companies, ships 
have to sail with ballast at the service of less-laden, half-
laden, and even full-laden situations for ship stability. The 
ballast amount on board directly affects ship speed and fuel 
consumption. Perakis and Papadakis [50, 51] found two ship 
speed values in their study about speed optimization. The 
first ship's speed was arrival speed at full laden between 
two ports. The second speed was the ship's departure speed 
with no ballast. Wang and Xu [52] conducted a similar study 
about ship speed optimization, and they also determined two 
different ship speeds. After setting the optimum ballast for 
ship stability, additional ballast water makes extra weight for 
a ship. So, the reduction will occur at ship speed value. The 

ballast water amount is a remarkable factor in determining 
ship speed optimization.

3.1.3  Hull resistance

Hull resistance is the combination of still water resistance 
and added resistance due to waves and wind resistance [53]. 
Still water resistance emerges from a ship's own weight 
and its character of buoyancy. Still water resistance is seen, 
especially during the sailing period and causes little speed 
changes. Long ships having aft and fore fuel tanks, espe-
cially tankers, are more likely to speed changes depend-
ing on still water resistance [54]. These resistances affect 
ship speed in a negative aspect. One year after the dry dock 
period, ship resistances could increase by nearly 12%, and at 
the end of 5 years, these resistances could reach up to 40% 
[55]. Keel fouling is another resistance for ship resistance. 
Beşikçi et al. [56] stated that on board anti-fouling systems 
could increase ship speed by up to 40%.

Besides mentioned resistances, added resistances (wind 
and sea resistance) have instant and highly changes in ship 
speed. Added resistance is a function of wave height, direc-
tion, and force of waves and wind. Waves coming from the 
fore side reduce ship speed, whereas waves coming from the 
aft side increase ship speed depending on direction of winds 
and currents. According to the Beaufort wind scale and sea 
state scale [57, 58], at 5 scale and higher scales, signifi-
cant waves and wind forces occur. Perera and Mo [59] state 
that ship speed is affected positively or negatively depend-
ing on wind direction under high wind conditions. Bassam 
et al. [60] worked on the simulation study of wind and sea 
states' effect on ship speed and submitted that at 5 and 8 
Beaufort scales, ship speed decreased by 6.1% and 34.4%, 
respectively. So, determining ship speed is fairly difficult 
under variable and heavy weather conditions [61]. On the 
other hand, a ship's propeller can move outside the water in 
heavy weather conditions, allowing air to move around the 
propeller. Because of this ventilation effect, ship resistance 
increases while ship speed reduces [62].

Therefore, captains on board and shipping companies 
should take necessary measures to reduce the performance 
loss of the ship. The sailing plan depending on weather con-
ditions should be prepared, and the optimum speed should 
be found. In this way, both fuel consumption and ship crew 
risk factors can be decreased [63]. Speed optimization 
depending on weather (sea-wind states) conditions makes a 
3% reduction in fuel consumption on board [64].

3.1.4  Other factors

Ship propeller and seawater depth are other factors affect-
ing ship speed. The propeller is the main item facing sea 
resistance. Ship speed is affected more by ships having a 
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controllable pitch propeller (CPP). In CPP, propeller blade 
angles should move synchronically with bridge and engine 
control room commands. A reduction in fuel consumption 
on board is obtained to ensure proper propeller/pitch optimi-
zation regarding bridge and engine control room commands 
[49, 65]. Based on the impact of water on ship speed, if the 
other factors affecting ship speed stay constant, ship speed 
decreases in shallow waters compared to deep waters [65]. In 
other words, this effect is called the squat effect. In shallow 
waters, draught increases because of hydrodynamic impacts 
between the hull and the sea bottom. So, the water amount 
that the propeller can absorb decreases, and back resistance 
increases. Ship speed also decreases depending on increas-
ing resistance [66].

3.1.5  Assumptions and limitations

In this study, some factors, including still water resistance, 
vertical forces, keel fouling resistance, propeller/pitch opti-
mization, and seawater depth, were neglected while deter-
mining optimal ship speed depending on different cargo 
amounts. As a result of determining and measuring still 
water resistance and vertical forces needing more specific 
work and data, these variables were neglected. In addition, 
because the dataset of this work involves a one-year period, 
the keel fouling effect on ship speed was also neglected. Fur-
thermore, the model sister ships had similar dry dock dates 
in the past, and propeller/pitch optimization was carried out 
on these ships. So, pitch optimization is another neglected 
factor. Lastly, model ships sail under liner shipping service, 
so the sailing route is nearly the same at each timetable. 
That is why the seawater depth factor was also neglected 
in this work.

On the other hand, related to hull resistance, daily sailing 
data, including the direction of waves and wind angle that 
positively affects the ship, are subtracted from the dataset. 
Wind and sea states' daily data, which only affects resistance 
to ship, is considered.

Finally, some lack of daily sailing data, the days when the 
main engine had breakdowns, and the days' data of volun-
tary speed reduction (passage sail, fuel savings, etc.), which 
affect work's reliability, are subtracted from the data set.

4  Genetic algorithm (GA) model and speed 
optimization

The GA model and its adaptation to speed optimization are 
formally defined in this section. The GA is used to solve a 
problem by using evolutionary theory. Using GA, obtain-
ing an optimal solution is not certain; however, acceptable 
results are certainly obtained [67, 68].

Optimization by GA is done by imitating biological 
evolution. In GA, a cloud is comprised of genes, and it is 
called a chromosome. Chromosomes can also be defined as 
individuals or solutions. The population is another cloud 
that is comprised of a large number of chromosomes. GA 
applications are unlimited and used everywhere. However, 
getting a solution process is usually long, and achievement 
depends on problem coding [69]. GA progress is shown 
in Fig. 2.

As seen in Fig. 2, firstly, all solutions necessary for 
solving the problem are coded in series. The initial popula-
tion is created by random selection. Then, the fitness val-
ues of the initial population are calculated for each series. 
These fitness values determine the quality of the solution. 
If solution quality is good, in other words, the fitness value 
reaches the necessary iteration number, the optimum solu-
tion is reached. But if the necessary iteration value is not 
reached, crossover and mutation processes are performed, 
respectively. When the necessary population number is 
reached, the iteration process ends. Thereby, optimal series 
are selected and reach the solution [70].

The support vector machine (SVM) was used to deter-
mine the fitness function in this work. SVM applicate the 
reasoning principle to make a good generalization level 
and minimize risks. Obtaining meaningful information 
from the database and reaching correct information are 
important matters that depend on the achievement of 
algorithm generalization. In other words, the reality of 
results coming from data depends on the performance of 
algorithm generalization. At this point, SVM ensures the 
performance of algorithm generalization [71].

Some of the factors that affect ship speed and also some 
input data from the ship sailing records, including ship 
daily fuel consumption, ship daily average speed, wind 
and sea states, and ship cargo amounts, were used in the 
concerned GA method in order to find ship optimum speed 
values depending on cargo amounts.

Fig. 2  Genetic algorithm process [70]
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4.1  Support vector machine (SVM)

In this paper, SVM was used to model fuel consumption 
through previous sailing data of model ships. Support Vector 
machine, one of the promising algorithms for classification, 
regression and outlier determination, was firstly used in 1995 
by Vladir Vapnik, Berhard Boser, and Isabelle Guyon. SVM, 
which is based on the working principle of supersize learning, 
uses optimization techniques in order to minimize the fault 
(epsilon) between real system output and real value. The opti-
mization problem gives rise to finding the maximum margin 
splitting the hyperplane, as rightly sorting as many training 
points as possible [72]. SVM's geometric target is to produce 
support vectors that maximize between the borders in Fig. 3.

The f(x) function, enough distance to hyper planes can be 
written as follows in equilibrium (1):

For linear regression support vector regression (SVR) was 
used. The aim of SVR is to obtain a function ƒ(x) that has 

(1)

y = f (x) = ⟨w, x⟩ + b =

M�

j=1

wjxj + b, y, b ∈ R, x,w ∈ RM

(2)f (x) =

[
w

b

]T[
x

1

]
= wTx + b x,w ∈ RM+1

at most ε deviation from the actual target value yi for all 
the training data. Mentioned linear function f is presented 
in Eq. 1. A training data is a combination of input-target 
pairs, {(× 1, y1), …, (xi, yi)} ⊂ X × R. In case of a function 
ƒ(x) is hyperplane, the size of ε is margin, the symbol < ∙, 
∙ > is the dot product in X, b ϵ R and w ϵ X. The hyper-
plane has small margin in which the SVR has to find it [72]. 
In linear regression, features of linear function are shown 
below;x =

(
x1,… , xD

)
∈ RD to make predictions y of the 

target value t ∈ R , y is the prediction, w is the weights and b 
is the bias (or intercept).

For multi-dimensional data, this function can be expanded 
as seen in equilibrium (2). The next stage ||w|| (the magni-
tude of normal vector) system becomes the minimization of 
function as seen in equilibrium (3).

The mentioned technique is the most basic support vec-
tor regression technique and was used in this paper as linear 
support vector regression.

4.2  Model components

In this part of the study, factors that affect ship speed were 
specifically determined depending on the dataset. Consid-
ering the reliability of the study, the direction of waves and 
wind angle that affect ships in a positive way are subtracted 
from the dataset. Structure of fitness function is shown in 
Fig. 4.

Fitness function is a sample of Supper Vector Regressor 
which has 6 inputs and 1 output. Regressor uses L1 soft-
margin minimization by quadratic programming, linear Ker-
nel type. Model uses ship speed, ballast, cargo amount, sea 
state, wind state and daily fuel consumption as inputs and 
predicts fuel consumption.

Firstly, fixed values of three conditions of wind and sea 
states that model ships frequently sailed were determined 
as follows:

• Condition 1 (sea state: 2, wind state: 3): weather condi-
tions affect hull resistance lightly.

(3)minw
1

2
w2

Fig. 3  Geometric demonstration of SVM [72]

Fig. 4  Structure of fitness 
function
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• Condition 2 (sea state: 5, wind state: 5): weather condi-
tions affect hull resistance reasonably.

• Condition 3 (sea state: 7, wind state: 8): weather condi-
tions affect hull resistance remarkably.

Secondly, in order to find out the optimum ship speed 
depending on cargo amount, cargo amounts and percent-
ages were determined according to the ship stability manual. 
The maximum cargo amount that ship can safely portage is 
7114.5 tons. With reference to the frequency of model ships' 
sailing records, five different cargo amounts and percentages 
were determined as follows: below 33% cargo rate (1000 
tons), 33% cargo rate (2372 tons), 66% cargo rate (4743 
tons) and above 66% cargo rate (5900 tons) and fully cargo 
rate (7114.5 tons).

Finally, vessel speed range of the model in GA struc-
ture was determined between 16.5 and 21.5 knots because 
of model ships are in liner shipping service and prevent-
ing ships from out of service. Besides, some daily sailing 
data, the days when the main engine had breakdowns, and 
the days' data of voluntary speed reduction (passage sail, 
fuel savings, etc.) are subtracted from the dataset because of 
improper distribution. One of the other factors affecting ship 
speed, the ballast amount scale, was determined according 
to the ship stability manual from 1056.0 tons to 4053.4 tons.

A GA structure was made in this optimization, and this 
optimization is a minimization problem. Chromosomes were 
encoded as the binary mode, and the tournament selection 
was used among selection methods. In addition, the predic-
tion value of this model was determined by SVM as the 
objective function. Finally, the quadratic calculation was 
used to solve the problem of the model. The results values 
of model components arising from MATLAB calculation 
are shown in Table 3.

The mu (M) value is defined as the mean of the normal 
distribution, specified as a scalar value or an array of scalar 
values.

Μ va lues  o f  mode l  =  [2730 .15254237289 , 
4 6 7 3 . 1 5 2 5 4 2 3 7 2 8 9 ,  1 9 . 1 8 0 0 8 4 7 4 5 7 6 2 8 , 
2.74576271186441, 3.74576271186441].

Sigma (σ) value plots the singular values of 
the frequency response of  a   dynamic system 

model sys. sigma automatically determines frequencies 
to plot based on system dynamics.

Σ  va l u e s  o f  m o d e l  =  [ 3 2 8 . 0 0 2 1 8 2 5 3 1 7 9 1 
1278.29217348987 1.03861223629041 1.6339686921122 
1.81723204882631].

In Fig. 5, the speed optimization study depending on 
parameters is seen. Firstly, the dataset was divided into 
two equal parts randomly: training data and test data. If the 
test success rate value is not higher than the intended rate 
value, training data and test data are selected randomly 
from the start, and GA has applied again. If the test suc-
cess rate value reaches the intended value, in other words, 
results are compromised with real data, SVM that provides 
fitness function is confirmed. After that, parameters from 
the dataset are optimized with GA to obtain the best fit 
results. GA model is run by using MATLAB for 5 different 
cargo amounts under three different weather conditions 
(sea and wind states). Finally, output results show opti-
mum ship speeds at the lowest fuel consumption depend-
ing on weather conditions and cargo amounts.

5  Computational results

In this part, in order to determine the targeted optimum 
speed, the GA model was run by using MATLAB for three 
different weather conditions. The model was run 30 times 
for more efficient distribution. In regard of no remark-
able changes on optimization results after 30 run times 
of model in MATLAB, model run was left off at 30th 
iteration.

5.1  Weather condition 1

Within this framework, Fig. 6 provides optimum speed val-
ues for each cargo amount in weather condition 1 (sea state: 
2, wind state: 3).

As seen in Fig. 6 for weather condition 1, optimum speed 
values at different cargo amounts are close and approxi-
mately around 17 knots. During speed optimization, fuel 
consumption was reduced to the optimum level at MATLAB 
run. Figure 7a, b show the iteration of the GA model and 
drop graphs of fuel consumption at the lowest and highest 
cargo status for weather condition 1.

Figure 7a, b indicate that during speed optimization by 
GA model, after the third iteration, fuel consumption values 
drop from 2.1 to 1.48 tons/h and from 2.2 to 1.87 tons/h at 
cargo status < 33% and 100% respectively. For more detailed 
information, Table 5 summarizes average speed and fuel 
consumption values for each cargo status at weather condi-
tion 1.

Table 3  Result values of model components

Computational results Values

Cn (chromosome number) 50
Gn (gene number in chromosome) 60
MR (mutation rate) 0.767
CR (crossover rate) 0.75
Max. In (max. iteration number) 20
No of OBs (number of observations) 118
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5.2  Weather condition 2

Figure 8 summarizes optimum speed values for each cargo 
amount in weather condition 2 (sea state: 5, wind state: 5).

Figure 8 indicates that the optimum speed values graph is 
almost the same with the weather condition 1 graph (Fig. 6). 
The speed values are around 17 knots. Iteration of the GA 
model and fuel consumption drop graphs at the lowest and 
highest cargo status for weather condition 2 are shown in 
Fig. 9a, b.

Figure 9a, b indicate an overview of the resulting GA 
model iterations at different cargo statuses. After the 10th 
iteration, fuel consumption reduces from 1.64 to 1.56 tons/h 
at cargo status < 33%. However, after the third iteration fuel 
consumption drops from 2.3 to 1.95 tons/h at 100% cargo 
status.

The difference in iteration sequence between the differ-
ent cargo states indicates the occurrence of optimization in 
which repeat period. However, it does not have a meaning 
depending on optimization quality.

5.3  Weather condition 3

Ship speed values after 30 times GA model run on MAT-
LAB are shown in Fig. 10. The values have similarities with 
the values in both weather condition 1 and weather condition 
2. The average speed value is around 17 knots.

Iteration of the GA model and changes of fuel consump-
tion graphs at the lowest and highest cargo statuses for 
weather condition 3 are shown in Fig. 11a, b.

When the cargo status is lower than 33% cargo capacity, 
after the 17th iteration fuel consumption reduces from 2.00 

Fig. 5  Genetic algorithm pro-
cess of the study

Fig. 6  Optimum speeds at dif-
ferent cargo status for weather 
condition 1
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Fig. 7  GA iteration and fuel consumption graphs at weather condition 1

Fig. 8  Optimum speeds at dif-
ferent cargo status for weather 
condition 2

Fig. 9  GA iteration and fuel consumption graphs at weather condition 2
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to 1.55 tons/h (Fig. 11a). On the other hand, at 100% cargo 
status after 5th fuel consumption drops from 2.25 to 1.95 
tons/h (Fig. 11b).

Model ships' 236 days of data is shown in Table 4 in order 
to compare with optimization results.

According to model ships' data, as shown in Table 4, on 
average, model ships sailed with three different cargo rates 
at 236 days' period of total sailing data. Ships sailed with the 

highest rate of cargo (66–100%) within 142 days, whereas 
the sailing period with the lowest rate of cargo (< 33%) 
is just 16 days. In addition to this, the average wind and 
sea states of a total of 236 days sailing period are 4 and 3, 
respectively.

For a more detailed explanation of speed optimization, 
the results for all weather conditions were summarized in 
Table 5.

As seen in Table 5, optimum speed values at all cargo 
statuses for each weather condition are in the same range, 
between 16.59 and 17.29 kn. On the other side, there is a 
correlation between fuel consumption and cargo status. Fuel 
consumption rises whenever freight increases. The lowest 
fuel consumption at all weather conditions occurs at the 
lowest cargo rate (< 33%, 1000 tons), while the highest fuel 
consumption occurs at the highest cargo rate (100%, 7114.5 
tons). Besides, it is already known that cargo amount is 
directly proportional to fuel consumption [41, 48].

Fig. 10  Optimum speeds at dif-
ferent cargo statuses for weather 
condition 3

Fig. 11  GA iteration and fuel consumption graphs at weather condition 3

Table 4  Model ships' 236 days of data

Cargo status Sailing 
period 
(days)

Average 
speed 
(kn)

Average fuel 
consumption 
(tons/h)Rate (%) Amount (tons)

< 33 < 2372 16 19.14 2.24
33–66 2372–4743 78 19.28 2.33
66–100 4743–7114.5 142 19.09 2.40
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When viewed from the hull resistance respect, heavier 
weather conditions cause more fuel consumption. When 
the cargo status is constant, fuel consumption increases dis-
tinctly, especially in weather condition 2 in comparison with 
weather condition 1. In 1000 tons of cargo (< 33%) status, 
fuel consumption is 1.48 tons/h at weather condition 1, while 
fuel consumption is 1.56 tons/h at weather condition 2. But 
then exceptional cases exist. When the cargo amounts are 
2372 tons and 7114.5 tons in weather condition 2, fuel con-
sumptions are 0.01 tons/h lower than the values in weather 
condition 3. Computational results show that at the same 
cargo status, passing from weather condition 1 to 2 gives rise 
to more fuel consumption than from weather condition 2 to 
3. Even in some cargo statuses, fuel consumption reduces 
too little while passing from weather condition 2 to 3. This 
situation does not support the idea that wind and sea states 
affect ship speed negatively and increase fuel consumption 
[61, 62, 64].

It is known that the ballast amount on board is one of the 
other factors affecting ship speed [73]. Within this frame-
work, ballast amounts on board were used in the GA model 
in order find out the optimum ballast amount depending on 
weather conditions and cargo status. However, GA model 
findings show that the ballast amount for all cargo and 
weather conditions varies between 1118.0 and 1354.0 tons. 
These values are close and do not have an obvious effect on 
ship speed.

As a whole, speed optimization results indicate that there 
are no significant speed changes depending on cargo status 
in three different weather conditions. All values are close 
to each other. The root cause of this situation is that model 
ships are under the liner shipping service; further, independ-
ent cargo status ships have to maintain their speed in order 
to prevent any delay in the voyage table. Moreover, when-
ever cargo amount increases, ships' engine load increases. 
Engine load makes the frictional loads higher, so ship speed 
decreases. Furthermore, as the ship's cargo increases and the 
weather conditions worsen, fuel consumption rises in order 

to maintain ship service speed. This finding supports the 
related works in the literature [19, 20, 23, 24, 41].

5.4  The impact of speed optimization on exhaust 
gas emissions

As a result of speed optimization, the ships now have the 
lowest fuel usage. Thus, hazardous gas emissions from 
ships are decreased as well. The quantity of hazardous gas 
emissions caused by ship fuels is known to be calculated by 
multiplying the amount of fuel consumed and the emission 
factors of the corresponding gas [74–76].

It is relatively rare for the load amounts and weather con-
ditions determined in the study to be identical in the data set. 
Therefore, rather than focusing on specific load and weather 
circumstances, the effect of reducing harmful gas emissions 
to the environment by determining the optimum speeds has 
been analyzed from a broad perspective. In this regard, the 
total fuel consumption of model ships at two different navi-
gation points was first computed using their average fuel 
consumption and average speed for all cargo-weather con-
ditions. Then, based on the average of the optimal speeds 
determined by the study and the associated average fuel 
consumptions, the total fuel usage for two distinct naviga-
tion points was estimated. Table 6 shows the overall fuel 
consumptions based on two different voyage points where 
the model ships operate.

Table 6 represents the comparison of the values obtained 
as a result of speed optimization and the values in the data 
set (before speed optimization) for two different voyage 
points on which model ships operate. The Pendik-Trieste-
Pendik (PEN-TRI-PEN) line is 2372 miles long, while the 
Pendik-Toulon-Pendik (PEN-TOU-PEN) line is 2739 miles 
long. The optimal speeds determined by these two route 
lengths and the average speeds in the data set were com-
pared, and the voyage durations and total fuel consumption 
were calculated. In both cases, strait crossings and manoeu-
vring periods are not calculated and are not added to fuel 

Table 5  Speed and fuel consumption values at all weather conditions

Cargo status Weather condition 1 
Sea state: 2
Wind state:3

Weather condition 2 
Sea state: 5
Wind state:5

Weather condition 3 
Sea state: 7
Wind state: 8

Rate (%) Amount (tons) Speed (kn) Fuel consumption 
(tons/h)

Speed (kn) Fuel consumption 
(tons/h)

Speed (kn) Fuel con-
sumption 
(tons/h)

< 33 1000 17.10 1.48 17.13 1.56 17.10 1.59
33 2372 17.18 1.55 16.59 1.66 17.29 1.65
66 4743 17.04 1.70 17.06 1.78 17.18 1.79
> 66 5900 17.00 1.77 17.09 1.85 17.00 1.87
100 7114.5 17.00 1.87 17.19 1.96 17.00 1.95
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consumption and voyage duration. While the average opti-
mal speed for two voyage points is 17.06 knots, the aver-
age speed from the dataset is 19.15 knots. The overall cost 
for the PEN-TRI-PEN line is 240.52 tonnes, with an hourly 
expenditure of 1.73 tonnes coming from the average opti-
mum speeds reached. Compared to the former speed aver-
age, this result is 53.02 tonnes less than the fuel consump-
tion (293.54 tonnes). On the other hand, the PEN-TOU-PEN 
line consumes a total of 277.75 tonnes of fuel during the 
voyage as a result of fuel consumption based on optimum 
speeds, compared to 338.95 tonnes prior to determining the 
optimum speed. As a result, because the optimum speed of 
the PEN-TOU-PEN line is calculated, fuel consumption is 
decreased by an average of 61.20 tonnes.

Using the difference in total fuel consumption between 
the two voyage points before and after optimum speeds are 
determined, it is possible to find optimum speeds that result 
in less hazardous gas emissions. The amount of harmful gas 
emissions resulting from the total amount of fuel consumed 
during the voyage is determined by the amount of fuel con-
sumed and the corresponding gas emission factor [74–76].

Above is the equation for this calculation. The following 
are the symbols used in this equation:

Et : amount of emission produced, Fc : total fuel consump-
tion, Ef  : emission factor.

As a result of speed optimization, 53.02 tonnes less 
fuel was consumed during the PEN-TRI-PEN voyage, and 
61.20 tonnes less fuel was consumed during the PEN-TOU-
PEN voyage. The emission quantities resulting from these 
changes in fuel consumption are as follows:

5.4.1  CO2 emission

Since model ships utilize HFO as fuel, the emission fac-
tor (Ef) for  CO2 is 3.11440 tonnes of  CO2/ton of fuel [77, 
78]. The fuel consumption (Fc) for the PEN-TRI-PEN voy-
age is 53.02 tonnes, whereas the PEN-TOU-PEN voyage is 
61.20 tonnes. When the relevant values are replaced in the 
formula:

(4)Et = Fc × Ef

The lower  CO2 amount emitted into the atmosphere with 
the determination of speed optimization for the PEN-TRI-
PEN voyage is:

The lower  CO2 amount emitted into the atmosphere with 
the determination of speed optimization for the PEN-TOU-
PEN voyage is:

5.4.2  NOx emission

In calculating the amount of  NOx emissions, the  NOx factor 
is determined based on the engine's speed. The main engines 
of the model ships operate at 500 rpm. Ships with a main 
engine speed between 200 and 1000 rpm emit around 70 kg 
of  NOx per ton [16, 79]. According to the calculation, the 
emission factor ( Ef  ) for  NOx is thus 70 kg/ton of fuel. The 
lower  NOx amount emitted into the atmosphere with the 
determination of speed optimization for the PEN-TRI-PEN 
voyage is:

The lower  NOx amount emitted into the atmosphere with 
the determination of speed optimization for the PEN-TOU-
PEN voyage is:

5.4.3  SOx emission

During the voyage, model ships used HFO fuel with a sul-
phur level of 3.5%. Multiplying the sulphur ratio with the 
coefficient value “20” gives the sulphur emission factor [16, 
80]. When the relevant values are replaced in the formula, 
the  SOx emission factor is calculated as follows:

Et = 53.02 × 3.11440 = 165.12 tonnes of CO2,

Et = 61.20 × 3.11440 = 190.60 tonnes of CO2.

Et = 53.02 × 70 = 3711.40 kgNOx,

Et = 61.20 × 70 = 4284.00 kg NOx.

Ef = 3.5(%) × 20 kg/ton = 70 kg∕ton.

Table 6  A comparison of the 
values obtained as a result of 
speed optimization and the data 
set values

Voyage legs Average 
speed (kn)

Average con-
sumption (t/h)

Average con-
sumption (ton)

Duration (h)

Values obtained as a result of speed optimization
Pendik-Trieste-Pendik (2372 miles) 17.06 1.73 240.52 139.03
Pendik-Toulon-Pendik (2739 miles) 17.06 1.73 277.75 160.55
Values obtained before speed optimization
Pendik-Trieste-Pendik (2372 miles) 19.15 2.37 293.54 123.86
Pendik-Toulon- Pendik (2739 miles) 19.15 2.37 338.95 143.02
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The lower  SOx amount emitted into the atmosphere with 
the determination of speed optimization for the PEN-TRI-
PEN voyage is:

The lower  SOx amount emitted into the atmosphere with 
the determination of speed optimization for the PEN-TOU-
PEN voyage is:

Table 7 displays the harmful gas emission levels com-
puted based on fuel consumption as a consequence of deter-
mining speed optimization.

As shown in Table 7, speed optimization results in a 
53.02-ton reduction in voyage-based fuel consumption on 
the Pendik-Trieste-Pendik line and a 61.20-ton reduction 
on the Pendik-Toulon-Pendik line. On the Pendik-Trieste-
Pendik line, the speed optimization reduced  CO2 emissions 
by 165.12 tonnes and  NOx and  SOx emissions by 3.71 tonnes 
and 3.7114 tonnes, respectively. Depending on the speed 
optimization,  CO2 emissions on the Pendik-Toulon-Pendik 
line are lowered by 190.60 tonnes, and  NOx and  SOx emis-
sions are reduced by 4.28 tonnes per hour. According to the 
data obtained, based on one-time fuel consumption, speed 
optimization reduces fuel consumption and, consequently, 
the amount of harmful gas emissions emitted to the atmos-
phere. Studies on speed optimization and the reduction of 
harmful gas emissions are currently being published in the 
literature [22, 36]. In this context, the study's findings are 
consistent with the literature.

6  Conclusions

The present study aims to determine speed optimization 
depending on ships' cargo amounts and wind-sea states 
to reduce fuel consumption and of course GHG emis-
sions. We presented an analysis of two models of Ro–Ro 
cargo sister ships' previous data related to fuel consump-
tion, including daily fuel consumption, daily average ship 
speed, sea and wind states, ballast water amount, and cargo 
amount. Some factors including still water resistance, 

Et = 53.02 × 70 = 3711.40 kg SOx.

Et = 61.20 × 70 = 4284.00 kg SOx.

vertical forces, keel fouling resistance, propeller/pitch 
optimization, and seawater depth, were neglected and 
speed limitation was determined since the model ships 
are under liner shipping service. Based on the model ships' 
stability manual and previous voyage timetables, five dif-
ferent cargo levels and three different weather conditions 
that model ships frequently sailed were determined. Opti-
mum speed values resulting in low fuel consumption were 
determined for different cargo levels and weather condi-
tions. Almost the same speed values were found for each 
cargo level, even in different weather conditions. Fuel con-
sumption rises depending on severe weather conditions 
and higher cargo levels in which ship speed stays constant. 
This situation can be explained by the fact that model ships 
are under liner shipping service, and in liner shipping, 
ships have to maintain the service speed in order to avoid 
any delay on voyage timetables.

Apart from well-known conclusions, this study found 
optimum speed values (16.59–17.29 kn) for each cargo 
level depending on weather conditions for Ro–Ro cargo 
ships working in round-trip service. However, independ-
ent of voluntary speed reduction and positive wind and sea 
states, this study shed light on determining optimum speed 
values of Ro–Ro cargo fleets that are in round trip service. 
In addition, depending on speed optimization and reduc-
tion of total voyage fuel consumption, a nearly 18% of 
reduction in exhaust gas emission in mass sourcing from 
the ship's main engine occurred.

Future research can be carried out to analyse more com-
plex speed optimization on the whole fleet, adding other 
factors, including pitch/rpm settings, hull fouling and fuel 
consumption values at the port period. On the other hand, 
exhaust gas emissions beyond sourcing from ships' main 
engines, such as auxiliary engines and boilers and different 
fuel types, can be considered in future studies for improv-
ing and expanding the other studies.

Data availability Data are available on request due to privacy or other 
restrictions.

Table 7  Changes in fuel 
consumption and harmful gas 
emissions resulting from speed 
optimization

Pendik-Trieste-Pendik line Pendik-Toulon-Pendik line

Fuel consumption change (ton) Emission amount 
change (ton)

Fuel consumption change (ton) Emission 
amount change 
(ton)

− 53.02 CO2 − 165.12 − 61.20 CO2 − 190.60
NOx − 3.7114 NOx − 4.284
SOx − 3.7114 SOx − 4.284
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