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Mutual correlation between segments of DNA or protein sequences can be detected

by Smith-Waterman local alignments. We present a statistical analysis of align-

ment of such sequences, based on a recent scaling theory. A new �delity measure

is introduced and shown to capture the signi�cance of the local alignment, i.e., the

extent to which the correlated subsequences are correctly identi�ed. It is demon-

strated how the �delity may be optimized in the space of penalty parameters using

only the alignment score data of a single sequence pair.

1 Introduction

Sequence alignment has become an indispensable tool in molecular biology 1.
A number of di�erent algorithms are available to date, and their variety and
complexity continues to grow 2. For a given application, however, a suitable
type of algorithm and optimal scoring parameters are still chosen mostly on
an empirical basis 3;4;5. The practical problems in the application of alignment
algorithms re
ect a number of poorly understood conceptual issues: Given
sequences with mutual correlations, how can the �delity of an alignment |
i.e., the correlations correctly captured | be quanti�ed? How can the scoring
parameters be chosen to produce high-�delity alignments? Are the results
statistically and biologically signi�cant?

In a series of recent publications6;7;8;9, we have developed a statistical scal-
ing theory of gapped alignment aimed at addressing these issues. This theory
describes the dependence of alignment data on the inter-sequence correlations
and on the scoring parameters used. The entire parameter dependence of align-
ments is contained in a number of characteristic scales. For Smith-Waterman
alignments 10, the most important scales are the typical length t0 of mutually
uncorrelated subsequences locally aligned, and the minimum length tc of mu-
tually correlated subsequences detectable by alignment. Expressed in terms
of these characteristic scales, the alignment statistics acquires universal prop-
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erties independent of the scoring parameters. Hence, optimizing alignments
reduces to optimizing the values of the characteristic scales.

In this paper, we study the statistics of Smith-Waterman alignments for
piecewise correlated sequences. We de�ne a suitable �delity function weighing
appropriately aligned pairs of correlated elements against false positives. The
parameter dependence of the �delity is found to be captured by the scaling
theory of alignment. High-�delity alignments are obtained if the characteristic
scales t0 and tc are of the same order of magnitude and are jointly optimized.
For a given sequence pair, we show how this optimization can be obtained
directly from the score data, leading to the central result of this paper: a
simple procedure for optimizing the �delity of Smith-Waterman alignments.

2 The Smith-Waterman Algorithm

We study local alignments of pairs of Markov sequences Q = fQig and Q0 =
fQ0jg with an approximately equal number of elements � N=2. Each element
Qi or Q

0
j is chosen with equal probability from a set of c di�erent letters, in-

dependently of the other elements of the same sequence. There may, however,
be inter-sequence correlations in pairs (Qi; Q

0
j). We here take c = 4, as is

appropriate for nucleotide sequences, although the results can be easily gen-
eralized to arbitrary values of c. An alignment is de�ned as an ordered set
of pairings (Qi; Q

0
j) and of gaps (Qi;�) and (�; Q0j) involving the elements of

two contiguous subsequences fQi1 ; : : : ; Qi2g and fQ0j1 ; : : : ; Q0j2g; see Fig. 1(a).
We de�ne the length of an alignment as the total number of aligned elements
of both sequences, L � i2 � i1 + j2 � j1.

A given alignment is conveniently represented 11 as a directed path on a
two-dimensional grid as shown in Fig. 1(b). Using the rotated coordinates
r � i� j and t � i+ j, this path is described by a single-valued function r(t)
measuring the \displacement" of the path from the diagonal of the alignment
grid. The length L of the alignment equals the projected length of its path
onto the diagonal.

Each alignment is assigned a score S, maximization of which de�nes the
optimal alignment for a given scoring function. The simplest class of linear
scoring functions is of the form S = �+N+ + ��N� + �gNg , where N+ is the
total number of matches (Qi = Q0j), N� the number of mismatches (Qi 6= Q0j),
Ng the number of gaps, and �+, ��, �g are the associated scoring parameters.
Since an overall multiplication of the score does not change the alignment
result, we can use the normalized scoring function

S = � L+
p
c� 1N+ � 1p

c� 1
N� � 
Ng (1)
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Figure 1: (a) One possible local alignment of two nucleotide sequences Q and Q0.

The aligned subsequences are shown in boldface, with 4 pairings (three matches, one

mismatch) and one gap. The alignment contains a total of L = 9 elements. (b)

Unique representation of the alignment in (a) as directed path r(t) (the thick line)

on a two-dimensional alignment grid. Each vertical (horizontal) bond of the path

corresponds to a gap in sequence Q (Q0). L is the projected length onto the t axis.

with L = 2N++2N�+Ng denoting again the alignment length de�ned above.
This form of the scoring function contains the two natural scoring parameters:
the score gain � per aligned element, and the gap cost 
. The parameter �
controls the length L of the optimal alignment; while changing 
 a�ects its
number of gaps, i.e., the mean square displacement of the optimal alignment
path from the diagonal of the alignment grid. (Borrowing notions from physics
and chemistry, we can think of the alignment path r(t) as a polymer stretched
along the t axis, with \chemical potential" � and \line tension" 
.)

We use the Smith-Waterman recursion relation 10

S(r; t) = max

8>><
>>:

S(r � 1; t� 1) + � � 


S(r + 1; t� 1) + � � 


S(r; t� 2) + s(r; t) + 2�
0

9>>=
>>; (2)

with

s(r; t) =

( p
c� 1 if Q(r+t)=2 = Q0

(t�r)=2

� 1p
c�1 if Q(r+t)=2 6= Q0

(t�r)=2

(3)

and suitable boundary conditions 9. S(r; t) is the score maximum for the
set of all alignment paths ending at the point (r; t). The optimal alignment
ends at the point (r2; t2) de�ned by the global score maximum, S(r2; t2) =
maxr;t S(r; t). The entire path is then traced back from the endpoint to the

Pacific Symposium on Biocomputing 4:302-313 (1999) 



initial point (r1; t1) given by S(r1; t1) = 0. The length of the optimal path is
L = t2 � t1. For large values of �, the optimal alignment of long sequences
becomes a so-called global alignment involving the entire sequencesQ and Q0 up
to small unpaired regions at both ends; i.e., L ' N . In this limit, the Smith-
Waterman algorithm becomes equivalent to the simpler Needleman-Wunsch
algorithm 11.

3 Scaling of Smith-Waterman alignments

The statistical theory of alignment describes averages (denoted by overbars)
over an ensemble of sequence pairs with well-de�ned mutual correlations. How-
ever, we emphasize that the properties of single pairs of \typical" sequences
are well approximated by these averages 7.

The simplest form of scaling is realized in the limit of global alignment
(� ! 1) for pairs of Markov sequences without mutual correlations. Im-
portant statistical averages then scale as powers of the sequence length; for
example, the variance of the optimal score (�S)2 / N2=3. The exponents of
these power laws are universal, i.e., independent of the scoring parameters. A
detailed discussion was given by Drasdo et al 9.

For generic values of �, the alignment statistics becomes more complicated
even for mutually uncorrelated sequences. Most importantly, there is a phase
transition 12 along a critical line � = �c(
). For � > �c, the optimal alignment
of long sequences remains global; i.e., it has asymptotic length L ' N and
score S / N for N � 1. This is called the linear phase. For � < �c, however,
the optimal alignment ending at a given point (r; t) remains �nite. The limit
values of its average length and score, t0 � limt!1 L(t) and S0 � limt!1 S(t),
are characteristic scales asymptotically independent of the sequence length N .
(The argument r has been suppressed since these averages are independent of
it.) The global optimal alignment path is then of length L � t0 logN , which
gives the name logarithmic phase to the regime � < �c.

Close to the phase transition, the characteristic scales themselves diverge
as powers of the distance �� � � � �c(
) to the critical line

8,

t0(�; 
) � B3=2(
)j��j�3=2 ; S0(�; 
) � B3=2(
)j��j�1=2 : (4)

(Here � denotes proportionality with a (�; 
)-independent proportionality con-
stant.) The coe�cient function B(
) and the critical line �c(
) are known
numerically 9;8. In this region, the average length and score take the scaling
form 7

L(t)

t0
= L�

�
t

t0

�
;

S(t)

S0
= S�

�
t

t0

�
: (5)
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The subscript of the scaling functions L and S refers to the sign of ��; the two
branches correspond to the linear and the logarithmic phase, respectively. The
entire dependence on the scoring parameters is contained in the characteristic
scales (4), while the scaling functions S� and L� are again universal. The
meaning of the scaling form (5) is quite simple: It relates alignment data for
di�erent values of the scoring parameters. This leads to the data collapse of
Fig. 2.
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Fig. 2: Local alignment of sequences without mutual correlations. (a) Average score

S(t) (over an ensemble of 1000 random sequence pairs of 10000 elements each) of the

optimal alignment for various scoring parameters. The curves correspond to 
 = 3:0

and ��=�c(
) = 0:05 to �0:05 (top to bottom). (b) The scaled curves S(t)=S0 as

functions of t=t0 collapse to the universal two-branched function S� of Eq. (5). The

asymptotics of this function is given by power laws (dashed lines) predicted by the

scaling theory 7.
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We now turn to alignments of Markov sequences Q and Q0 with mutually

correlated subsequences Q̂ and Q̂0 (referred to below as target) of approxi-
mately equal length N̂=2. The \daughter" sequence Q̂0 is obtained from the
\ancestor" sequence Q̂ by a simple Markov evolution process 9 with substitu-
tion probability p and insertion/deletion probability q. The average fraction
U = (1 � p)(1 � q) of ancestor elements conserved in the daughter sequence
quanti�es the degree of correlations between Q̂ and Q̂0. The remainder of Q
and Q0 has no correlations.

A meaningful alignment of the sequences Q and Q0 should (i) match a fair
fraction f of the pairs of conserved elements (Qi; Q

0
j) 2 Q̂ � Q̂0 and (ii) re-

main con�ned to the target region to avoid false matches. We quantify these
properties by the �delity function

F =
2N̂

L+ N̂
f ; (6)

which takes values between 0 and 1. The prefactor is designed to penalize
local alignments that are too long (L > N̂). Its precise form in
uences the
parameter dependence of the �delity only weakly. For global alignments, F
reduces to the �delity function used previously 9, F = f . Maximizing F for
a given pair of sequences should produce an alignment of bona �de biological
signi�cance.

Alignments of correlated sequences have a second set of characteristic
scales related to their statistical signi�cance 9. The threshold or correlation

length tc(
) is the minimal length of a target to be detectable statistically by
alignment a. (tc also depends on the evolution parameters, in the present case
U and q, but is independent of �.) In the sequel, we study targets of length
N̂ well above tc and well below the overall length N . The relevant ensemble
averages can then again be written in scaling form. For the �delity and the
length of the optimal alignment, we expect the approximate expressions

F
F�(
) = '

�
tc

t0

�
;

L

N̂
= L

�
tc

t0

�
; (7)

where F�(
) � max� F(�; 
) denotes the relative �delity maximum at a given
value of 
. The important point of this scaling form is again quite simple:
It relates alignment data at di�erent values of the alignment parameters and

aMore precisely, we consider global alignments (� ! 1) of sequences of length N with

mutual correlations over their entire length (i.e., Q̂ = Q and Q̂0 = Q0). For N̂ < tc, however,

random agglomeration of matches outweigh the pairs of correlated elements, rendering the

correlation undetectable. See Ref. 9 for details.
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of the evolution parameters. The scaling functions ' and L are universal as
before, only their arguments tc=t0 depend on the parameters. This is crucial
for �nding optimal alignment parameters as we show in the next Section.

The form of Eq. (7) has been veri�ed numerically: Figs. 3(a) and 4(a) show
the average �delity and length of optimal alignments, respectively, for di�erent
values of 
 and �. The data for di�erent parameter values are indeed related
as is evident from the collapse of the scaled curves F=F�(
) and L=N̂ ; see
Figs. 3(b) and 4(b). The scaled abscissa ��=j���(
)j can be expressed in terms
of the ratio of characteristic scales in (7), ��=j���(
)j = (tc=t0)

2=3, as follows
from (4) and the relation tc(
) � (���(
)=B(
))�3=2 which is anticipated from
a previous analysis 8. Here, ��� � ��(
)� �c(
), and �� is the location of the
relative �delity maximum, de�ned from F�(
) = F(��; 
). The data collapse
shown in Figs. 3 and 4 therefore supports the proposed scaling form (7).

4 Parameter dependence and optimization

As the �delity curves of Fig. 3(a) show, the quality of an alignment depends on
the proper choice of both scoring parameters � and 
. The strong dependence
of F on � can be understood by comparison with Fig. 4. The relative �delity
maximum F�(
) occurs at a value ���(
) < 0 where the optimal alignment
just covers the target (i.e., L = N̂). For �� < ���, the optimal alignment
is too short. For �� > ���, the alignment \overshoots" the target, adding
random matches to both sides and reducing its �delity. As �� % 0, the length
L increases continuously to values of order N ; that is, the optimal alignment
becomes global. Our result L � N̂ when �� = ��� (Fig. 4) justi�es the use of
Eq. (6) as a �delty measure for local alignment.

For real alignment applications with unknown sequence correlations, the
�delity is of course not accessible directly. What is readily accessible is the
optimal score S of an alignment. Below, we describe how the �delity maximum
can be inferred from the score data. The key quantity to consider is the
parameter dependence of the score ratio

s(�; 
) � S=S0 : (8)

As shown in Fig. 5 for alignment of a single pair of sequences, s attains its
relative maximum at a value ��max(
) that is close to ���(
) and at 
max �

�. More importantly, a comparison of Fig. 5(b) with Fig. 3(b) shows that
the �delity F(�max; 
max) evaluated at the maximum of s is very close to the

actual �delity maximum F�. While the �delity and score patterns 
uctuate
for individual sequence pairs, this relationship between their maxima turns
out to be remarkably robust. Our results therefore suggest that high-�delity
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Fig. 3: Fidelity of local alignments for piecewise correlated sequences. (a) The av-

erage �delity F of the optimal alignment for various values of the scoring scoring

parameters, each averaged over an ensemble of 100 | 800 sequences pairs. The se-

quences are of length N=2 = 10000; they contain mutually correlated subsequences

of length N̂=2 = 2000, which are related by Markovian evolution rules 9 with param-

eters U = 0:3 and q = 0:25. (b) The scaled curves F=F�(
) as functions of the scaled

abscissa x = ��=j���(
)j collapse to the single scaling function '(x3=2) in accordance

with Eqs. (4) and (7).
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Fig. 4: Length of local alignments for piecewise correlated sequences. (a) The average

length L of the optimal alignment for various scoring parameters, obtained from the

sequence pairs of Fig. 3. (b) The scaled curves L=N̂ as functions of the scaled abscissa

x = ��=j���(
)j collapse to the single scaling function L(x3=2) in accordance with

Eqs. (4) and (7). Note that at the point of maximal �delity (x = �1), the alignment

length equals the target length, i.e., L=N̂ � 1.
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Fig. 5: Score of local alignments for piecewise correlated sequences. (a) The score

ratio s = S=S0 of the optimal alignment for various scoring parameters, obtained

from a single pair of the correlated sequences described in Fig. 3. (b) The scaled

curves of s as functions of x = ��=j���(
)j have maxima in the high-�delity region

around the point ��=j���(
)j = �1; cf. Fig. 3(b).
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alignments can be obtained by maximizing the score ratio s. As can be seen
from Fig. 5, the parameter dependence of s(�; 
) is given by a \mountain" with
a well-de�ned local maximum. The location of the maximum (�max; 
max), and
hence the location of the �delity maximum, is accessible by a standard iterative
procedure in a few steps.

This link between �delity and score data is expected by the scaling the-
ory of alignment. For 
 � 
�, the score ratio takes the scaling form s =
(N̂=tc)S(tc=t0) similar to (7). The relative maxima F�(
) and smax(
) �
max� s(�; 
) are determined by the maxima of the scaling functions ' and S,
respectively. These are functions of the same variable �c � tc=t0; their maxima
are found to occur at values ��c � �max

c both of order 1. The lines ���(
) and
��max(
) are then given by the equations �c(�; 
) = ��c and �c(�; 
) = �max

c ,
respectively. The positions of the absolute maxima turn out to be related in a
similar way 9. A more detailed discussion will be given elsewhere 13.

The optimization criterion can be reformulated in two ways:
(i) The relative maxima of the score ratio de�ne the function smax(
) =
�maxN=tc(
). Hence, the global maximum smax is obtained by minimizing
the threshold length tc while keeping � � �max, i.e., t0 of order tc.
(ii) The threshold length tc is related to another important quantity, the score
gain �E over uncorrelated sequences per aligned element in global alignments
(see the detailed discussion in Drasdo et al.9). We have tc � B3=2(
)(�E)�3=2.
By comparison with (4), it follows that the above optimization is equivalent
to maximizing �E while keeping j��j of order �E.

5 Summary

We have presented a conceptually simple and statistically well-founded proce-
dure to optimize Smith-Waterman alignments. For given scoring parameters
in the logarithmic phase, we compute (i) the score S of the optimal alignment
and (ii) the average background score S0 obtained by randomizing the se-
quences. The scoring parameters are then improved iteratively by maximizing
the score ratio S=S0. We have shown that this procedure produces alignments
of high �delity on test sequences. E�cient algorithmic implementations and
applications to real biological sequences are currently being studied 13.
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