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Optimizing Software Runtime Systems for Speculative Parallelization
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University of Manchester

Thread-Level Speculation (TLS) overcomes limitations intrinsic with conservative compile-time auto-
parallelizing tools by extracting parallel threads optimistically and only ensuring absence of data dependence
violations at runtime.

A significant barrier for adopting TLS (implemented in software) is the overheads associated with main-
taining speculative state. Based on previous TLS limit studies, we observe that on future multicore systems
we will likely have more cores idle than those which traditional TLS would be able to harness. This implies
that a TLS system should focus on optimizing for small number of cores and find efficient ways to take
advantage of the idle cores. Furthermore, research on optimistic systems has covered two important imple-
mentation design points: eager vs. lazy version management. With this knowledge, we propose new simple
and effective techniques to reduce the execution time overheads for both of these design points.

This article describes a novel compact version management data structure optimized for space overhead
when using a small number of TLS threads. Furthermore, we describe two novel software runtime paral-
lelization systems that utilize this compact data structure. The first software TLS system, MiniTLS, relies
on eager memory data management (in-place updates) and, thus, when a misspeculation occurs a rollback
process is required. MiniTLS takes advantage of the novel compact version management representation to
parallelize the rollback process and is able to recover from misspeculation faster than existing software eager
TLS systems.

The second one, Lector (Lazy inspECTOR) is based on lazy version management. Since we have idle
cores, the question is whether we can create “helper" tasks to determine whether speculation is actually
needed without stopping or damaging the speculative execution. In Lector, for each conventional TLS thread
running speculatively with lazy version management, there is associated with it a lightweight inspector. The
inspector threads execute alongside to verify quickly whether data dependencies will occur. Inspector threads
are generated by standard techniques for inspector/executor parallelization.

We have applied both TLS systems to seven Java sequential benchmarks, including three benchmarks
from SPECjvm2008. Two out of the seven benchmarks exhibit misspeculations. MiniTLS experiments report
average speedups of 1.8x for 4 threads increasing close to 7x speedups with 32 threads. Facilitated by
our novel compact representation, MiniTLS reduces the space overhead over state-of-the-art software TLS
systems between 96% on 2 threads and 40% on 32 threads. The experiments for Lector, report average
speedups of 1.7x for 2 threads (that is 1 TLS + 1 Inspector threads) increasing close to 8.2x speedups with 32
threads (16+16 threads). Compared to a well established software TLS baseline, Lector performs on average
1.7x faster for 32 threads and in no case (x TLS +x Inspector threads) Lector delivers worse performance
than the baseline TLS with the equivalent number of TLS threads (i.e. x TLS threads) nor doubling the
equivalent number of TLS threads (i.e., x + x TLS threads).

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming; D.3.4
[Programming Languages]: Processors—run-time environments
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1. INTRODUCTION

Parallelizing applications is the prevailing answer to the ubiquitous presence of multi-
cores. Current practices of parallel programming remains a difficult task for most
programmers and parallelizing compilers are over-conservative, especially with ap-
plications that use pointers and dynamic data structures. In many cases, loops offer
hidden parallelism that a static parallelizing compiler cannot prove until the appli-
cation runs. A solution to this problem, namely Thread-Level Speculation (TLS), also
known as Speculative Multithreading (SpMT), is to speculate at runtime.

In a general TLS system, the sequential program is optimistically transformed into
a parallel one, assuming that the parallel execution will maintain the sequential se-
mantics of the original program; that is, no data dependencies. While the application
executes, each parallel running thread collects and maintains information regarding
all of its memory accesses. For example, any updates (stores) from a given thread are
kept locally to that thread, instead of written immediately back to memory, until proven
to be correct. Since those threads have not proven to be successful while still executing,
they are called speculative threads. During, or at the end of speculative execution, an
inspection phase takes place to ensure that there were no data dependence violations
of the sequential semantics of the application. If a thread did not conflict with another,
then it is safe to propagate its modifications back to memory, an action which is called
commit in this context. Otherwise, the offending thread has to squash, that is, discard
any temporary (local) modifications and re-execute its code. When threads squash, a
procedure initiates to ensure that those threads will undo their modifications properly
and leave the memory state as it was before the squash occurred. This procedure is
called rollback.

Previous work on TLS looked at hardware implementations [Cintra et al. 2000; Chen
and Olukotun 2003; Prabhu and Olukotun 2005; Johnson et al. 2007; Luo et al. 2009;
Madriles et al. 2009; Kim et al. 2010] as well as in software [Dang et al. 2002; Cintra
and Llanos 2005; Oancea et al. 2009; Mehrara et al. 2009; Chen et al. 2008; Tian
et al. 2010; Raman et al. 2010; Kim et al. 2012], just to name a few. However, no
widely available architectures or compilers have incorporated TLS. Nonetheless, the
published limit studies suggest that it could be profitable to use TLS [Packirisamy et al.
2009; Ioannou et al. 2010], although we should focus on optimizing for small number of
threads. Motivated by this potential, we have conducted experiments to verify whether
this applies in a real machine, besides limit studies.

At a high level, there are two main design approaches (explained in the next section)
that have been followed by the software TLS literature, in terms of how a system
maintains its speculative state. We present two novel TLS systems, one for each of
these design direction. The contributions are the following.

—We provide a compact data structure to represent the dependency tracking for a TLS
system. We show space overhead reduction of 5x on average compared to state-of-art
approaches.

—We present MiniTLS, a software TLS system for Java applications, that relies on eager
memory data management. Speculative threads modify directly data which needs
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to be rollback when misspeculation occurs. This eager treatment provides faster
execution in the absence of data dependencies.

—MiniTLS outperforms state-of-the-art software TLS systems and it is the only one
which parallelizes the rollback process under Eager Version Management.

—We present a new software TLS system, Lector using lazy version management.
Compared with a state-of-the-art lazy TLS, Lector shows performance improvements
on average of 1.7 times faster than the baseline.

—We provide a novel algorithm for accelerating TLS systems applicable to any type of
implementation. We show that applying this technique, improves speedup on average
1.7 times for 2 threads increasing close to 8.2 times speedups with 32 threads.

The rest of this article is organized as follows: Section 2 provides background on
TLS (Section 2.1) and the main design approaches when implementing software TLS
(Section 2.2). Section 3 describes our first system, MiniTLS, as well as our novel parallel
rollback algorithm. We illustrate how we take advantage of the information provided by
TLS limit studies to optimize MiniTLS. Oancea et al. [2009] introduced a top performing
software TLS work using eager memory management. Their contribution was how to
eliminate any associated synchronization when accessing the data structures holding
the dependency information. Oancea et al. [2009] traded off increasing the size of the
eager memory management data structures to remove synchronization and optimize
performance. Hereafter, we refer to the software TLS developed by Oancea et al. as
SpLIP. In our experiments, we compare directly the performance delivered by MiniTLS
vs. SpLIP. Section 4 describes our second system, Lector as well as our novel idea of
using inspector threads in the role of helper threads. Section 5 reports the speedup
results as well as speculative operations and memory overhead comparisons using
seven Java benchmarks, with three belonging to SPECjvm2008. Note that two of the
seven benchmarks do include data-dependencies. Section 6 presents related work and
Section 7 summarizes this article.

2. BACKGROUND

2.1. Thread-Level Speculation

Assume, that we wish to parallelize the loop shown in Figure 1(a). Similarly, assume
that the array indexes cannot be resolved until runtime. That is, there is no feasible
means of performing any static analysis (manual or automatic) to prove correct parallel
executions by eliminating the possibility of data dependencies across threads. This can
be the case for example, where i or j are the result of accessing an indirection array.
Therefore, standard parallelizing compilers must conservatively produce sequential
code for the loop in order to guarantee correct execution. Consider now the instance of
sequential execution shown in Figure 1(b). Clearly, the values populated for the array
indexes did not yield any data dependencies amongst them, and thus, the compiler
could have generated a parallel code such as the one in Figure 1(c) and allow the
application to enjoy the performance profits.

Thread-level Speculation (TLS) circumvents this problem by executing the threads
(which are formed by loop iterations in this case) in parallel assuming that the run-time
values of i and j will not trigger any cross-thread conflicts. In this case, TLS would
execute the loop iterations in parallel while at the same time underlying mechanisms
would monitor every speculative access to ensure that the parallel execution will pro-
duce the same results as if the program was executed sequentially. In addition, any
memory updates are buffered locally to the thread rather than written-back to main
memory. Figure 2(a) shows the case where all speculative threads executed success-
fully and thus are allowed to retire or commit by propagating the buffered updates
back to main memory. Sometimes we have the case of a memory dependency like the
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Fig. 1. (a) Code fragment of loop to be parallelized.
(b) Sequential execution. (c) Sample parallel execu-
tion.

Fig. 2. (a) Speculative loop execution without depen-
dencies. (b) Speculative loop execution with depen-
dency. (c) Re-execution of offending threads.

one shown in Figure 2(b). In this case, a thread (iteration) has loaded a value that was
not produced by the correct store. This action causes a Read-After-Write (RAW) data
dependency. As a result, the offending threads need to squash by initiating the rollback
procedure (in this case, discard any buffered updates), and re-execute in the correct
order (see Figure 2(c)).

Implementing the underlying mechanisms that will guarantee correct execution in
TLS require certain design decisions. Three important design characteristics in a TLS
system are: concurrency control, version management, and conflict detection. The next
paragraphs elaborate more on those three.

2.2. Design Choices

There are various axis of implementation options when designing a TLS system. Al-
though, various studies have tried to evaluate different designs, there is no solid exper-
imental study on which choice is better than another in the absence of the application’s
behavior. In other words, design choice depends greatly on the target applications.

2.2.1. Concurrency Control. Concurrency Control refers to the way a system detects and
resolves a conflict when that occurs. There are two general categories of concurrency
control: Pessimistic Concurrency Control (PCC) and Optimistic Concurrency Control
(OCC). In PCC, a speculative thread acquires exclusive ownership of the location to be
accessed. This is done by using some form of locking primitive. While the thread owns
the location, the underlying system checks for conflicts. In the unfortunate scenario that
a conflict occurs, it will be detected and resolved (depending on the system’s design) im-
mediately. With OCC, multiple speculative threads are allowed to access the same loca-
tion simultaneously while conflict detection and resolution can happen at a later stage,
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anytime before the commit phase takes place. OCC is normally more appropriate when
conflicts are expected to be rare, otherwise it may be producing significant wasted work.

2.2.2. Version Management. While threads execute speculative code, different versions
of data are being produced. Version Management refers to the way those different ver-
sions are maintained by the TLS system. Typically, there are two major approaches
for that: Lazy Version Management (LVM), also known as deferred updates and Eager
Version Management (EVM), also known as in-place updates. When LVM is used as a
choice, speculative threads require at least a buffer per thread in order to keep any
tentative stores. Speculative loads search first the thread’s local buffer in case they
find an associated value for that location there. If not, the value needs to be loaded
from memory. Speculative stores just need to add or update the corresponding value
in the local buffer. At the end of a thread’s speculative execution and provided that
there was no conflict for this thread, the results from the local buffer are propagated to
main memory to make visible the updates to other threads. In the case of a conflict, the
speculative thread only needs to discard its local buffer, since there was no modification
of the actual data in memory.

EVM systems, on the other hand, update memory locations directly when the specu-
lative store occurs rather than delaying the action. This involves having a buffer that
preserves the original value of the memory location just before the update. This buffer
is known in the literature as the undo log since in the case of a conflict the log is used
to restore the memory back to a correct state. Speculative loads can use the values
from memory as the new values are already there. Upon successful commit, the thread
simply discards the undo log without requiring any value propagation as in LVM.

2.2.3. Conflict Detection. A conflict can occur when two or more speculative threads
access the same memory location in a way that cause a data dependency violation.
Depending on the version management system used, different actions may or may
not cause violations. There are three type of data dependencies: flow, anti, and out-
put dependencies which give rise to Read-After-Write (RAW), Write-After-Read (WAR),
and Write-After-Write (WAW) hazards respectively. A RAW violation is caused when a
thread loads a value that was not produced by itself. WAR and WAW violations arise
due to reuse of memory locations. A system that used LVM does not need to worry
about WAR and WAW dependence violations since the updates are buffered and spec-
ulative loads use those instead. This is somewhat similar to the Register Renaming
action taken at the hardware level to prevent those kind of hazards. In contrast, EVM
has to take precautions for WAR and WAW dependence violations since the values in
memory are always up-to-date. Nevertheless, both EVM as well as LVM systems need
to be observant for RAW violations.

There are two types of conflict detection: Lazy Conflict Detection (LCD) and Eager
Conflict Detection (ECD). LCD implies that threads may be allowed to run through
their respective speculative code without checking for conflicts on every access. Conflict
detection can occur at a later stage as long as that happens before thread commit. In
this way eager checks during execution are eliminated. ECD checks for conflicts usually
on every speculative access in order to catch any violations as soon as they arise. The
idea here is to prevent any wasted work after a conflict has happened.

2.2.4. Scheduling. Since the loop is parallelized automatically from sequential code, the
execution behavior is rather unpredictable. The way iterations are scheduled to run
across the available threads can have significant impact in the final performance. Tra-
ditional scheduling possibilities include static and dynamic scheduling. Static schedul-
ing partitions the loop into equal chunks of iterations based on the number of avail-
able threads. The thread that will execute a particular chunk is decided statically. In
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contrast, dynamic scheduling allows those chunks to be assigned to threads at runtime.
Both of these are not very well suited for TLS since they can cause, load imbalance,
increase the probability of dependence violation, and increase memory overhead. A
different scheduling technique known as Sliding Window was studied by Cintra and
Llanos [2005] and found to be a good alternative for TLS. Under sliding window, chunks
of iterations are assigned into windows of size W . The window moves forward (slides)
when all iterations in the window have finished. This allows better load balancing, de-
crease in likelihood of dependence violation, and better decoupling of memory overhead.

2.3. Other Implementation Details

The main overhead in software TLS arises from maintaining the speculative state.
Certain hardware solutions that apply LVM can overcome this problem using their
L1 cache, which is already private to the processor and thus having the marking of
speculative loads and stores essentially for free. Software approaches, on the other
hand, rely on additional data structures to maintain marking information. Thus each
potential speculative load or store will produce at least an extra load and store from the
hardware point of view (to read and insert that item to the data structure). These data
structures are normally accessed via monitors or Compare-And-Swap (CAS) operations
to avoid data races between different threads.

Apart from the main design choices, many alternative implementations are possible.
There is no solid study that shows that a certain design choice is better than another.
It all depends mainly in the behavior of the specific running application. Generally
speaking, a system that utilizes EVM might be more complicated to implement than
one using LVM. Since stores are written in-place (eagerly), the designer has to also
consider Write-After-Read (WAR) and Write-After-Write (WAW) dependencies, apart
from Read-After-Write (RAW) dependencies.

3. MINITLS: SYSTEM DESCRIPTION

MiniTLS is based on Eager Version Management and we report its implementation
using the Java programming language. This section also describes, for the first time in
this article, the compact data structure used in our implementations.

3.1. General Idea

The focus of MiniTLS is loop parallelization. Loop iterations run in parallel while
threads are monitored during execution for potential violations. Every memory lo-
cation is protected by a lock primitive and as such only one thread at a time is allowed
to have access on it. Threads update memory locations in-place and therefore any load
performed by others is guaranteed to have the most up-to-date value. Before a thread
updates a memory location, the original value is saved in a log, in case it is required
by a rollback in the future. Marking and monitoring is facilitated by a shadow data
structure (explained in the next section). Discovering a violation by a thread entails re-
covering memory to the latest known correct state by restoring values using logs from
the offending thread as well as any other thread involved in the violation. Parallel
execution restarts and continues in the same fashion until all loop iterations complete.

3.2. Data Structures

Shadow Data Structure. There is a shared data structure, called shadow data struc-
ture (see Figure 3), that maps every user-accessed address into an array of integers
using a hash function. Figure 3 illustrates the case of sixteen running threads. This
structure is an array of Java integer values. In this case of sixteen threads, each ad-
dress in the user data space is represented by two consecutive 32-bit integer memory
locations in the shadow array. The first location (named “mark”) is used to mark the
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Fig. 3. Shadow data structure in MiniTLS.

Fig. 4. Speculative thread lifecycle for MiniTLS.

thread(s) that performed a load and/or a store on that user address, and the second
(named “owner”) is used to indicate the thread(s) that are currently operating in the
user address. The thread that currently performs a read or a write has to lock the
address by setting the appropriate bit in “owner” in order to claim exclusive ownership
to the location. Besides the action to be performed, the appropriate bit in “mark” is set
before ownership is released.

For a thread T that needs to access memory location x, the order of operations is as
follows: First, T checks that x is available by issuing a CAS operation on h = hash(x).
T indicates that is the owner of x by setting the appropriate bit in “owner”. Then, T
operates on h (load or store) accordingly by setting the appropriate bit in “mark” to
indicate the action performed. Finally, T resets the bit in “owner” and releases the lock
so another thread can access h if needed. Note that, the bit location in the bit sequence
acts as thread id and indicates the order of speculation. That is, a less significant bit
indicates a less speculative thread.

The locking mechanism is totally flexible to the designer’s choice. Figure 3 illustrates
how the “owner” could be used for read-write locks that allow multiple readers but only
one writer per user address at a time. In our implementation we did not find this added
complexity worthwhile so the same lock is used for readers as well as for writers and
thus requiring only half the space of the “owner”. Our underlying locking mechanisms
are bounded spin-locks. A thread may busy-wait (a finite number of times) for another
to finish any work in the same location without blocking.

Assuming an 8-thread configuration, each location in the shadow structure requires
24 bits (although extended to 32 bits to avoid misalignments) to keep the owner-(8-
bits)-reader-(8-bits)-writer-(8-bits) information. After the hash function determines a
location in the shadow structure, the appropriate bits must be examined and updated.
If thread 4 requires to read location x, then hash(x) will be accessed in the shadow
structure, and the information will be read and updated using a CAS operation. As-
suming the contents of hash(x) are empty 00000000hex, thread 4 will check no other
thread is operating there; that is, the owner part is empty (i.e., 0000hex). Thus, the CAS
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operation will succeed and set the owner part to 0100hex as well as the reader part to
0100hex. This will leave the contents of hash(x) being 0100 − 0100 − 0000 − 0000hex.

So, in essence, information for all the readers and writers of a particular user address,
can be stored from as little as 6-bits for 2 threads to 96-bits for 32 threads. This solution
represents a more compact way of memory representation compared to other solutions
in the literature. We choose to experiment with only up to 32 threads and not more,
motivated by the results in previous TLS limit studies (such as Ioannou et al. [2010])
which indicate there is no significant benefit with higher number of threads. Of course
this solution can be easily extended to support more threads.

Data Structures Private to Each Thread. In addition to the shadow data structure,
each thread has local read- and write-set implemented using array structures. The
read set consists of a set of indexes accessed in the shadow array. This is used when
the thread finishes, in order to reset all its accesses in the shadow array and avoid
any potential false conflicts in later accesses. The write set, apart from the indexes
accessed, it also keeps a record of the values that are updated in main memory. Since,
this is an implementation of an in-place (eager) system, the memory values need to be
recorded before being modified by a speculative thread. The write-set is also called an
undo log in this context, since in case of a conflict it is used to undo all the speculative
operations. Other in-place implementations [Oancea et al. 2009] require a time-stamp,
for each memory location, to be recorded in the undo log. This provides a sense of
order between multiple writer threads in case of a rollback. When multiple threads
have accessed a location that has to be reverted, only the value of the thread with
the earliest timestamp is used so that the program’s sequential order is maintained.
A proof found in Oancea et al. [2009] establishes the soundness of this idea. Unlike
others, our implementation does not need this extra time-stamp. Since the compact
shadow structure contains already all the writer threads of a given location, the one
with the lowest ID (lowest bit) can be used to revert the value.

3.3. Speculative Operations

In TLS, threads are normally organized in terms of speculation order. For instance,
in loop-level speculation, where threads execute different loop iterations in parallel,
the thread that executes the first chunk of iterations is known as the least speculative
thread. A thread is always more speculative than the thread that executes the previous
set of iterations. Consequently, the thread that executes the last set of iterations is the
most speculative thread. Such an order is useful in TLS, as it facilitates commit and
rollback decisions in order to preserve the program’s sequential order. Less speculative
threads have the right to “kill" more speculative threads.

Loads. A speculative load operation by a thread T to a location x simply needs to
set its corresponding bit in the shadow array. The bit is not set again if x was already
accessed by the same speculative slice. Before this is done, the thread needs to check
whether a more speculative thread has performed a store operation in x, as this can
cause a Write-After-Read (WAR) conflict. The code is shown in Figure 5.

Stores. A store operation needs to check whether a more speculative thread has
performed a store in the same location to prevent Write-After-Write (WAW) conflicts.
Similarly it also needs to check whether a more speculative thread has performed a
load in the same location. This causes a Read-After-Write (RAW) conflict. If none of
those conflicts occurs, then the thread can safely record the current memory value in
its write set and perform an in-place update to the to-be-modified location (code not
shown). Similarly to loads, the store bit is not set if it was already set earlier by the
same thread. The code is shown in Figure 6.
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Fig. 5. Speculative load.
Fig. 6. Speculative store.

3.4. Conflict Detection

MiniTLS implements eager conflict detection, that is, conflicts are detected as soon as
they occur. Another option would be to wait until the end of a speculative thread’s
execution before any conflict is detected. However, we found that checking for conflicts
on every speculative operation is less costly, compared to the wasted execution when the
detection is delayed. Furthermore, our system employs immediate conflict resolution.
That is, a thread that detects a conflict pauses instantly any speculative execution, and
initiates a rollback by notifying all the more speculative threads than itself, to squash.
Since each speculative thread checks for conflicts on every speculative access, the action
will take place immediately. All the more speculative threads, than the offending thread
(including the offending one), will wait until the rollback process begins. As soon as all
the less speculative (than the offending one) threads finish execution and the offending
thread becomes the least speculative thread, rollback is ready to begin.

3.5. Scheduling Policy and Ordering

For scheduling the speculative threads, we have used a sliding window mechanism
[Cintra and Llanos 2005]. In a sliding window policy, the number of active threads
depends on the size of the window. There are two reasons why we have chosen this
mechanism. First, due to the nature of the policy (chunks of iterations are scheduled
in windows), the probability for data dependency violation is decreased and load im-
balance is reduced. Second, it was found as a beneficial scheduling choice in previous
experiments [Cintra and Llanos 2005]. MiniTLS uses a conservative sliding window
implementation where the window is reloaded when all threads currently occupying
the window have completed.

The mapping of iterations to threads within a window is done allocating contiguous
sets of iterations of equal size. The mapping allows for the thread id to inform of how
speculative each thread is; thread T0 is always less speculative than T2 and so on. We
are doing a static block scheduling of the iteration space within a speculation window.
Once all the threads within a window have completed, the shadow data structure is
reinitialized and a new mapping of the following iterations is performed.
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3.6. Rollback and Recovery

MiniTLS is the first software TLS eager management system to propose and implement
a parallel rollback operation. This can help in reducing the overhead when misspecu-
lation occurs. Those speculative threads that need to be squashed will take part in the
rollback operation while those less speculative threads for which no data dependency
has been found will wait for the rollback operation to finish. The rollback mechanism
is started by thread.squash() in Figures 5 and 6. First, we need to identify which is
the least speculative thread that modified each location. We can do this in parallel
by allowing each participating speculative thread to visit its write-set data structure,
and for each element in the write-set check in the shadow data structure whether any
other thread has modified it. To access the shadow data structure, threads use CAS
operations. Should more than one thread have written a given location, it is simple
to know whether that thread is a least speculative thread to have modified it. If the
speculative thread is the first one to have modified it, the thread can go ahead and
restore the value for that memory location. If the speculative thread is not the first one
to modify it and aliasing on that location (hash(x)) is possible, the speculative thread
has to check whether its memory location x is actually contained within the write-set
of the less speculative threads denoted in the shadow data structure for hash(x). If it is
not found in these less speculative write-sets, that speculative thread will restore the
value for memory location x.

Once the memory state has been rolled back, the participating speculative thread
can reset the pertinent memory locations in the shadow data structure in parallel.

3.7. Speculative Thread Lifecycle

Figure 4 is a state diagram illustrating the lifecycle of a speculative thread. A thread
can be in one of the following states.

(1) FREE. Thread is ready to get the next chunk of iterations and start work.
(2) RUN. Thread has started speculative execution.
(3) DONE. Thread has finished execution. Note that since updates are in-place, the

thread has actually committed its results (parallel commit). The thread now must
wait until it becomes the least-speculative thread. While waiting it can still be
squashed by a less speculative thread.

(4) COMMITTING. Thread is now the least-speculative thread and starts clearing its
local data structures. At this stage the thread cannot be squashed since it has
already finished execution and there are no less speculative threads.

(5) COMMITTED. Thread has cleared its local data structures and indicates that is
ready to become a speculative thread again.

(6) FAILED. Thread has been involved in a data dependence violation.
(7) SQUASHING. Thread starts rollback in parallel with any other offending threads.
(8) SQUASHED. Thread has finished rollback. It is now waiting to be restarted.

4. LECTOR: SYSTEM DESCRIPTION

The following sections describe a software TLS runtime system written purely using
the Java programming language.

4.1. General Idea

The runtime software system we propose in this article follows pessimistic concur-
rency control, lazy version management, and eager conflict detection. Parallel execution
proceeds monitored by our TLS system. Performing a load or store, requires a thread
to first acquire exclusive ownership of the desired memory location. Speculative stores
are buffered locally only after ensuring that none of the more speculative threads has
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Fig. 7. Shadow data structure in Lector.
Fig. 8. Speculative thread lifecycle for Lector.

already loaded that location. Otherwise the more speculative threads are squashed due
to RAW dependence violation. Speculative loads search the local buffer (write-set) first,
before loading from memory, in case that value has already been written locally form an
earlier store. This provides the illusion of processor consistency. If not found there, then
the value has to be loaded from main memory. In case an earlier thread has written on
that location, the current thread can either forward the most recent value, wait for the
earlier thread to write-back its write-set to memory and then load, or squash. Buffered
values are written-back to main memory after a thread has been proven successful.

4.2. Speculative Data Structures

The system utilizes a shadow data structure as exhibited in Figure 7. We present the
case of 32 speculative threads in the system. Every user memory location is mapped into
this shadow table using a hash function. Each mapping in the shadow table is composed
out of three consecutive 32-bit integer memory locations as shown in the picture: One to
represent the owner thread, one to indicate whether a thread performed a load, and one
to indicate a store by a thread. A bit in any of this three locations reflects the identity
of the thread that is accessing the original user’s location for the appropriate action.
The next section will provide more details on how that works in practice. Clearly, this
example is for up to 32 threads but it can be easily expanded to greater number by
allocating more memory for each mapping.

In addition to the shadow table, there is a local read- and write-set for each thread.
The read-set is a list with all locations read by that particular thread, whereas the
write-set is a hash map with all the location/value pairs to be written to main memory
when that thread commits.

4.3. Speculative Operations

4.3.1. Speculative Stores. Whenever a speculative store takes place (see Figure 9), the
thread must successfully acquire exclusive ownership of the location to be written in
order to proceed. This is done by accessing the shadow table for that particular location
(using a CAS operation) and setting the appropriate bit in the “owner” to indicate
that this thread is operating on this location. If the thread finds the location locked, it
spins a bounded number of times before initiating a squash. When the thread acquires
exclusive ownership, it checks “loads” to see whether a more speculative thread has
already loaded from that location. Such a load is called an exposed load in this context
and requires all the more speculative threads to be squashed. There is no need to take
any action if a less speculative thread has loaded that value or if there was a store
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Fig. 9. Speculative store. Fig. 10. Speculative load.

by a different less speculative thread since this is a lazy version management system.
Following the check for violations, the thread releases the lock and inserts the value in
its write-set.

4.3.2. Speculative Loads. Since stores are buffered, a speculative load (Figure 10) will
first check the thread-local write-set in case the value has already been written earlier
by the same speculative thread. If this is true, the load will return the latest buffered
value. There is no need for such a load to consult the shadow table since, it is guaranteed
that the loaded value was produced by the correct store. If the value is not present in
the write-set, then the thread acquires exclusive ownership of the location in the same
manner as in speculative stores, checks for violations, and loads the value from main
memory. There is no need to worry about different threads loading the same value
as no conflict can arise from that. Also, threads from the future (more speculative)
that have written to that location are harmless for the moment. The reason is because
a more speculative thread that has produced a store in that location will buffer the
value and write it back to memory when the time is appropriate. Then is when the
system will worry about conflicts because it could be the case that the earlier thread
was squashed. The only situation that can cause a problem is when a less speculative
thread has produced a store for that location but not yet committed. That means
that the current thread requires that value in order to proceed but that value is in
earlier thread’s buffer and not yet in memory. One solution (that is feasible due to
our novel representation) is to identify, using the “stores” in the shadow table, the
latest thread that has produced a store in that location (but not yet committed) and
forward the correct value. This requires careful handling in case the write-set of the
thread we forward from, is updated simultaneously. Another solution is to wait for the
less speculative to write-back its results and load the value from memory. A simpler
solution, which is the one we implement in our system, is to squash the current thread
and restart its execution. If no violation is present the ownership is released, the value
is loaded from main memory as normally, and the hash value from the shadow table
is recorded in the read-set. The read-set is used when the thread commits in order to
release the marking in the shadow table.

4.3.3. Scheduling and Commits. Our system follows a type of scheduling window (de-
scribed in Section 2.2.4) for scheduling the threads. The window size is always the
same as the number of threads; therefore, for n threads we use a window of n − 1 size.
Thread in slot 0 is the nonspeculative thread and similarly thread n − 1 is the most
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speculative thread. Although thread 0 is allowed to write its results immediately back
to memory (i.e., no buffering), it still checks the shadow table in order to eagerly squash
more speculative threads that have exposed loaded from a location the nonspeculative
thread updates. Threads in the window commit their results back to memory in as-
cending order of speculation by locking the location in the shadow table, propagating
the appropriate values, and clearing the shadow table from their markings. After all
threads in the window have committed, speculation restarts with all threads getting
work from a work-queue.

4.4. Speculative Thread Lifecycle

Figure 8 is a state diagram illustrating the lifecycle of a speculative thread. A thread
can be in one of the following states.

(1) FREE. Thread is ready to get the next chunk of iterations and start work.
(2) RUN. Thread has started speculative execution. Note that it can be switched to

squashed, if it was involved in a data dependence violation.
(3) DONE. Thread has finished execution. Thread now must wait until it becomes the

non-speculative thread in order to commit its results to memory. While waiting, it
can still be squashed by a less speculative thread.

(4) COMMITTING. Thread is now the nonspeculative thread and starts clearing its
local data structures and propagating the buffered values to memory. At this stage,
the thread cannot be squashed since it has already finished execution and there are
no less speculative threads. However, it can initiate a squash for a more speculative
thread that has performed an exposed load form a location this thread is writing.

(5) COMMITTED. Thread has cleared its local data structures and finished any mem-
ory updates. It indicates that is ready to become a speculative thread again.

(6) SQUASHED. Thread has been involved in a data dependence violation. It must
clear any marking in the shadow table.

(7) RESTARTED. Thread has re-started speculative execution.

4.5. Inspector Threads

We experiment with a novel technique in this work which combines the advantages of
two popular models involved in the beginning of the TLS research, namely, Inspector-
Executor model and Lpd (Lazy Privatizing DOALL) Test described in Rauchwerger
[1998].

4.5.1. Inspector-Executor Model. Using the Inspector-Executor model, a simpler version
of the loop under question is extracted and executed to verify whether the loop carries
any data dependencies. The simpler version does not produce any side-effects as well
as does not require all the code from the original loop (just the memory accesses).
Therefore, the inspector is expected to execute faster than the original sequential
loop. If proven safe, then the executor may execute the loop in parallel. Inspectors
are created by analyzing memory accesses, collecting information about their iteration
number and access type (read/write) in a separate data structure, and then checked
for data dependencies [Saltz et al. 1991]. The drawback of this model is that, in cases
where the loop cannot be stripped-down sufficiently, the inspector might end up taking
the same time as the original loop.

4.5.2. LPD Test. The Lpd test was more successful than the inspector-executor, being
the heart of Lrpd [Rauchwerger and Padua 1995] test and R-Lrpd [Dang et al. 2002]
test. The Lpd test checks the loop under question for data dependencies or whether
dependencies can be eliminated when privatization is used (i.e., buffered updates). The
test flags whether dependencies exist or not, while the loop executes in parallel buffer-
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ing any updates to memory. If dependencies are found, the loop discards any buffered
updates and executes sequentially; otherwise, the loop has been parallelized correctly
using privatization. Lpd has an advantage over the Inspector-Executor model, espe-
cially when the inspector cannot strip-down the loop to an adequate level. A successful
parallelization of Lpd in that case simply needs to update main memory, whereas the
other model has to still run the executor. Still though, under both models, in case the
loop was not found parallel, all execution and time spent while the test was running,
will be wasted.

4.5.3. LPD Meets Inspector-Executor. In this work, we combine the two ideas in a way
that their drawbacks are eliminated. We do extract a stripped-down version of the loop
to be parallelized like in the case of inspector-executor; however, there is no executor
as such. The inspector performs the Lpd test but since it does not replicate the entire
code, it is expected to run faster. The inspector threads start running ahead, as soon
as the application begins. At the same time, the loop is executed using our speculative
parallelization runtime environment, described earlier in this section. Once the inspec-
tor phase completes, its results dictate how the speculation will continue. Given that
the inspector found the loop to be DOALL, speculation is dropped, any buffered results
are propagated to memory, and the loop continues to execute in parallel without any
speculative overhead. The inspector terminates as soon as it finds a data dependency,
allowing the execution to proceed speculatively. Moreover, even in the unfortunate case
that the inspector finishes at the same time as the speculative execution, there is no
need to execute the loop sequentially since it has been already executed speculatively.
The same applies in case the loop contained any data dependencies. Using this scheme,
DOALL loops that can express a “light” inspector, may benefit significantly from the
absence of speculation-associated overhead.

Our system takes advantage of the benefit from the Inspector-Executor model that is
discovering whether a loop is DOALL or not, quickly. At the same time, we eliminate its
drawback of having wasted work in case the loop was not DOALL since our underlying
TLS model executes alongside with the inspector. The same applies in case the inspector
was as “heavy” as the loop itself. For the same reasons, we eliminate any shortcomings
related with the Lpd test.

The Inspector threads in Lector are created following the PD test [Rauchwerger and
Padua 1994] where a good example is provided of how to generate the inspector threads.

5. EVALUATION AND RESULTS

5.1. Evaluation Methodology

For all our experiments, we have used a UltraSPARC T2 system also known as Niagara
2. It has 8 processors, each of which has 8 hardware threads, making it able to process
up to 64 threads simultaneously. Furthermore, it has 4-MB shared L2 cache. The
Solaris R©10 OS was installed on the machine. Solaris uses a “maximum dispersal”
thread scheduling to assign threads to their initial processors. The kernel selects the
least loaded core when placing a thread, in order to avoid resource contention among
concurrently running threads. This is the default OS thread affinity and running a Java
application it is not possible to change it using the standard libraries or JVM settings.

We have used Java
TM
SDK version 1.6.0 and Java

TM
HotSpot VM with fixed 4GB max-

imum heap size for all executions and the System.nanoTime() timer provided by the
JVM. All the results presented are the average of ten executions for each thread number
for each benchmark and we did check the standard deviation for statistical significance.
The applications we have tested come mainly from two benchmark suits: SPECjvm2008
and JOlden. Following the methodology used by SpLIP [Oancea et al. 2009], we have also
chosen applications that parallelizing their loop-kernels improves the total application
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run time. SpLIP has been reimplemented in Java to provide a direct comparison with
MiniTLS. We have also chosen applications with irregular accesses (not parallelizable
by static compilers) thus making them good candidates for TLS. From SPECjvm2008 we
experimented with: (i) Sparse, a matrix multiplication algorithm (the input used was
the large data set), (ii) SOR, that simulates Jacobi Successive Over-Relaxation (again
the large data set was used), and (iii) Monte-Carlo, which approximates the value of
Pi (large data set used). From JOlden we experiment with: (i) Barnes Hut, an imple-
mentation of the Barnes-Hut force calculation algorithm (using input C), (ii) Em3d, a
simulation of electro-magnetic waves traveling through objects in three dimensions,
and (iii) Perimeter, an implementation of Samet’s algorithm for computing perimeters
of regions in a binary image. Finally we experiment with LeeRouter [Watson et al.
2007], a circuit routing using Lee’s algorithm. For LeeRouter, the mainboard input
dataset was used. Most of these applications are also used in previous TLS studies
[Quiñones et al. 2005; Oancea et al. 2009; Tian et al. 2010; Ioannou et al. 2010].

As the focus of this article is on optimizing the software runtime system of TLS and
not on how to transform a loop into its parallel equivalent by a compiler, the applications
were transformed manually into parallel speculative versions. Two benchmarks exhibit
dependencies (LeeRouter and Em3d), and five have not runtime dependencies. Loop-
induction variables were eliminated as they introduce false dependencies under TLS.
The most time consuming loops were considered for TLS parallelization. Finding these
automatically is an interesting optimization problem in itself [Quiñones et al. 2005;
Liu et al. 2006] (for task selection) and Johnson et al. [2004] and Ottoni et al. [2005]
(for finding suitable tasks).

5.2. MiniTLS Experiments

5.2.1. Baseline TLS system: SPLIP. We compare MiniTLS against a state-of-art TLS li-
brary, SpLIP [Oancea et al. 2009]. The reason we have chosen SpLIP is because it
also relies on eager memory version management and provides the best performance
results. Thus, SpLIP sets an optimized baseline against to compare MiniTLS.

Although, MiniTLS and SpLIP use an eager version management technique, their
implementations are fundamentally different. SpLIP employs two data structures for
handling the iterations that load and store for each speculative access. Two additional
data structures are used for imposing order to accesses to each location between reading
and writing threads. Yet another data structure is required for storing a timestamp for a
particular location in case of a rollback. The rollback procedure also differs from ours.
SpLIP requires to aggregate the write-sets of all speculative threads involved in the
violation by comparing timestamps in case of multiple thread access the same location.
This requires some hash map in order to be able to check whether a location was
already written by a different thread. In contrast, MiniTLS requires no aggregation,
and each thread involved in the violation proceeds in parallel with each other for
rollback, without using timestamp comparisons. Since all the information is kept in
the main shadow structure and there is no need to check the write-set entries once
they have been recorded, the write-set can be implemented as an array structure.

5.2.2. Performance Results. Figure 11 presents speedup results against the original
sequential unmodified version, obtained from applying MiniTLS to the benchmark ap-
plications. The y axis indicates speedup, whereas the x axis shows the benchmarks
used. The sequential application’s speedup is marked by speedup = 1 in the y axis,
thus whatever is higher than that, shows improvement. On average, we start observ-
ing speedups when we go over 4 threads. The reason is due to the speculative overhead
added by TLS. The parallelism starts amortizing the cost on average when more than
4, sometimes 8 threads are used. The cost introduced by speculative operations is high
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Fig. 11. Speedup results for MiniTLS. Sequential execution is denoted by 1 in the y axis.

and thus for small number of threads it drowns the benefits of parallelism. Figure 16
shows an example of the overhead introduced to support MiniTLS in terms of execu-
tion time for the Sparse application. The y axis is intersected where the sequential
time is (i.e., the baseline). When the overhead bars grow below the x axis this im-
plies overhead less than the sequential time, and thus the application starts showing
speedups (after 8 threads). With 4 threads we have 1.8x faster than the sequential
application, for 8 threads nearly 3x faster, 16 threads 5x faster and 32 threads almost
7x faster. In order to be objective, we have also included the average speedup excluding
the Monte-Carlo benchmark, which does not carry any data dependences. Em3d shows
a decline in speedup after 8 threads. The benchmark carries a large number of data
dependences which causes more frequent rollbacks when more that 8 threads are used.

Figure 12 shows speedup comparisons between MiniTLS and SpLIP. As before, the
y axis shows speedup against the sequential unmodified application and the x axis
indicates the number of threads used. The same pattern is again observed in which
speedups are observed after 4 or 8 threads (for the reasons explained earlier). MiniTLS
outperforms SpLIP 1.33x, on average: 1.1x for 2 threads, 1.2x for 4 threads, 1.3x for 8
threads, 1.4x for 16 threads and 32 threads. The main reasons for this performance
difference are analyzed in the next section where we present the execution overhead.

5.2.3. Speculative Overhead Comparison. Figure 12 shows how MiniTLS outperforms
SpLIP in terms of speedup. The main reason why speculative systems suffer speedup
losses is due to speculative overheads, which includes, for example, marking specu-
lative loads/stores and time spent during rollback. MiniTLS shows performance im-
provements over its competitor by reducing those overheads. Figure 13 presents the
reduction percentage of our system against SpLIP for speculative operations. The graph
has two parts: The first part shows how much MiniTLS reduces speculative marking
over SpLIP (SpLIP is the normalized baseline in all cases). The second part shows how
much MiniTLS reduces rollback time over SpLIP (SpLIP is the normalized baseline in all
cases). Both parts are independent. That is, Rollback percentage has nothing to do with
the Marking percentage. For example, looking at the marking section for Em3d for 32
threads one can say that MiniTLS spends around 30% less time for marking compared
to SpLIP (where 100% marking is the total amount of time for SpLIP to perform mark-
ing). We show LeeRouter and Em3d since they are the ones that carry data dependences
and thus could see how much time is saved from rollback. Among the noncarrying
dependency benchmarks we have chosen to show the average as a representative of all
benchmarks (except Monte-Carlo) since they all feature similar execution patterns. The
graph clearly shows the effectiveness of our rollback routine. This is due to two reasons:
(i) SpLIP uses extra buffers for conservative synchronization before and after the same
location is accessed by multiple threads. Due to the absence of locks the possibility of
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Fig. 12. Speedup comparison of MiniTLS and SpLIP.

Fig. 13. Shows the amount of overhead reduction of MiniTLS against SpLIP. Graph is normalized (baseline
SpLIP). First part shows reduction of Speculative read/write marking. Second part reduction of Rollback
time.

those buffers to cause a data-race is very high when a particular location is accessed
by multiple threads concurrently. (ii) When a violation occurs using SpLIP, the write-
sets of the involved threads must aggregate their values, comparing their timestamps,
before write-back occurs. In our implementation, this process is accelerated since the
involved threads can proceed in parallel for write-back and without the cost of the
timestamps. Marking for noncarrying dependency benchmarks is very similar among
both systems. The absence of rollbacks allows both systems to spend approximately
the same amount of effort to bookkeep their information. However, for the dependency-
carrying benchmarks the case is different. Rollbacks cause a lot of code re-execution
and thus more marking involved. Since MiniTLS performs less rollback, it benefits from
having less code to re-mark. Barnes-Hut is the only application that does not follow the
same pattern with other similar benchmarks especially after 8 threads. This applica-
tion requires very minimal marking. When MiniTLS performs marking, it requires very
little space compared to the other library as we explain in the following section.
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Fig. 14. Space required for 8 speculative threads using (a) SpLIP and (b) MiniTLS. (c) Normalized (baseline
SpLIP) space overhead comparison between MiniTLS and SpLIP.

5.2.4. Data Structures Space Comparison. To maintain the speculative state, additional
space is normally required. This section compares the space overhead between the
two systems: MiniTLS and SpLIP. The space we refer in this section, is the space in
regard to any data structures required for version management. We do not consider
the space required by the undo log as there is negligible difference between the two
approaches. Our novel marking scheme is designed in such a way as to require the
minimal space based on the number of threads running (hence the name MiniTLS). A
typical TLS system, unlike MiniTLS, will consume the same amount of speculative space
regardless of the number of threads used. Figure 14(a) and Figure 14(b) illustrate the
memory space required to facilitate speculative marking for eight threads for SpLIP and
MiniTLS respectively. Figure 14(a) shows that for each user accessed memory location,
SpLIP would require at most 160 bits in order to mark the iterations that will possibly
perform a load or a store, the timestamp, as well as the thread ids for synchronizing
loads and stores. Figure 14(b) shows that MiniTLS requires only 24 bits to perform the
same operations as opposed to 160 bits that SpLIP requires. Figure 14(c) shows the
normalized (with SpLIP as baseline) Space Overhead comparison between MiniTLS and
SpLIP. There is a significant space overhead reduction of 96% when 2 threads are in use,
92% reduction with 4 threads, 87% with 8 threads, 70% with 16 threads, and 40% with
32. In other words, MiniTLS requires on average 5x less space than SpLIP. This can have
a great impact in performance, especially in automatic memory managed languages
such as Java since there will be less garbage collection triggers than normally required
and thus less interruptions of the user’s application.

5.2.5. Memory Overhead. While TLS can decrease application execution time, more
memory is required to support the additional data structures. Apart from the sin-
gle shadow structure, each thread has its own copy of its read and write sets. Thus,
we conducted an experiment (similar to Tian et al. [2010]) to measure the memory
consumption of TLS. Two representative applications were selected for comparisons.
The first one, Sparse could be considered as the worst-case scenario as 90% of the
total application accesses, are speculative. The second, Lee Router, is the average case
application where about 50% of the total access are speculative. Figure 15 shows the
results of comparing the additional memory required compared to the sequential appli-
cation. For the “worst case”, the memory consumed is between 0.2x and 1.8x for MiniTLS
and 2.9x for SpLIP, compared to the sequential version. For the “average case” it was
between 0.02x and 0.4x for MiniTLS and 0.6x for SpLIP, compared to the sequential ver-
sion. What we considered as memory overhead in the experiment, is the total amount
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Fig. 15. Memory overhead of MiniTLS and SpLIP compared to the sequential version.

Fig. 16. Time spent on speculation for Sparse. The
y axis in intersected at the sequential time.

Fig. 17. Memory overhead of MiniTLS and Lector

compared to the sequential version of the Sparse
benchmark.

of storage in order to support the shadow data structure compared to the sequential ap-
plication. For baseline memory overhead we took into account all the memory accesses
that the sequential application performs during the entire execution. We measure the
storage required for the shadow structure based on the unique speculative accesses
during the execution of the application (only the unique since only one instance of a
read/write exists in the shadow structure). Then we take into account how many bits
are required for that information. SpLIP is constant across threads since the amount
stored per memory location is always the same. For MiniTLS the storage requirements
grow with the number of threads as more bits are necessary to support marking on
those threads. Although not shown in the graph, there is also the extra overhead for
maintaining local read/write sets. Storing these local per thread data structures re-
quires 50% extra storage of the sequential application’s memory requirements in these
two benchmarks. This number is dependent on the proportion of data accessed during
TLS execution, which in these benchmarks is fairly high. This is a constant overhead
in TLS systems; however, it can be significantly optimized by replacing read-set data
structures with bloom filters.

5.3. Lector - Experiments

For the following experiments, we compare three systems: TL2TLS, our baseline, which
is explained next; LazyTLS, which is simply Lector with inspector threads disabled;
and Lector, which has inspector threads enabled. When showing Lector for n number
of threads that means we execute n inspector threads and n TLS threads. Thus, for 2
threads, Lector uses 2 inspector threads and 2 TLS threads which are 4 threads in total.
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Fig. 18. Speedup results for Lector against the sequential execution. Sequential execution is denoted by 1
in the y axis.

Fig. 19. Speedup comparison between LazyTLS, Lector, and TL2TLS.

5.3.1. Baseline TLS system: TL2TLS. In order to test the performance of our system we
compare against an established baseline used in Mehrara et al. [2009] and Tian et al.
[2010]. The baseline is based on the state-of-art algorithm - Sun’s Transactional Locking
2 [Dice et al. 2006]. Similar to Mehrara et al. [2009] and Tian et al. [2010], speculative
code is added within transactions and explicit synchronization is added into transac-
tional functions to enforce in-order commit, which is necessary to maintain sequential
program semantics. We will refer to the baseline as TL2TLS in the rest of the article.

5.3.2. Performance Results. Figure 18 presents speedup results against the original
sequential unmodified version, obtained from applying Lector to the benchmark
applications. On average, Lector performs between 1.8x and 8.2x faster among
multiple threads compared to the sequential application. The following paragraphs
explain how Lector’s inspector threads help minimize the speculative overhead and
allow for more useful computation to be performed.

Figure 19 shows speedup comparisons between LazyTLS, Lector, and TL2TLS. As
before, y axis shows speedup against sequential unmodified application and x axis
indicates the number of threads used. For em3d and Lee Router, LazyTLS, and Lector
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Fig. 20. Normalized speculative overhead reduction with baseline the TL2TLS system.

are actually identical (thus, only one is shown) because the inspection phase ends
shortly after the first data dependency is found which for both benchmarks is nearly
at the beginning of execution. We do not present speedup comparisons for Monte-Carlo
since it does not carry any speculative activity and thus it has the same behavior under
any system. The most interesting fact is the speedup benefits we observe in certain
benchmarks when using the inspector threads. When inspection is enabled, even the
minimal thread configuration produces higher speedup than running 32 threads with
inspection disabled. For instance, in Sparse, SOR, and Barnes Hut it is more beneficial
to run the benchmark with 2 speculative plus 2 inspector threads rather just with
32 speculative threads and no inspector threads. More details are explained in the
following section where speculative overhead is discussed.

5.3.3. Speculative Overhead Comparison. Speculative overhead is maintaining the infor-
mation in the shadow data structure as well as per thread TLS context support. Lector
outperforms the other two configurations as it reduces that extra cost. Figure 20 shows
the percentage of speculative overhead reduction between the three systems. The graph
is normalized to TL2TLS. For a given amount of overhead that TL2TLS spends, we show
the reduction for the other two systems. For example, executing Barnes-Hut with
8 threads, LazyTLS spends about the same time in speculative overhead as TL2TLS.
Lector, on the other hand, spends about 80% less time compared to TL2TLS. In most
cases TL2TLS and LazyTLS are similar, however in the cases of LeeRouter and Em3d
(which are the ones that carry data dependences) our system is not only faster but also
spends less time for speculative marking. This is mainly because TL2TLS performs lazy
conflict detection (at commit time) which in case of many conflicts, produces wasted
work and additional speculative marking. The idea of TL2 is that a successful thread
will change the version of a memory location at commit time notifying any thread
that holds an out-of-date version of the same location, to be squashed. However, a
thread with an out-of-date version will not discover that incident before its commit
time. Therefore, more execution and marking is done between the time a conflict oc-
curs and the time of detection. In our implementation it is impossible for a thread to
have an out-of-date version of a memory location and still keep executing. If a thread
updates a given location, it will “see” in the shadow structure that a different thread
has performed an action there and thus squash that thread eagerly.

In all cases, Lector has the lowest cost compared to the other two systems. In the
noncarrying dependency benchmarks, an adequate inspector version was extracted
and managed to finish earlier than speculative execution. Abandoning speculation
(i.e., speculative marking) with the aid of inspector threads, allows speedup increase
since there is no more speculative work after that point.
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Fig. 21. Speedup results for Lector Vs. MiniTLS against the sequential execution. Sequential execution is
denoted by 1 in the y axis.

Lector shows greater speedups as the number of threads increases. This is due to
the advantages of the inspector threads during the marking phase having to check
only their local speculative locations as opposed to the other two systems that using
the same data structure for all thread configurations. Perimeter does not follow the
same behavior due to the high number of speculative accesses in each inspector thread,
causing the analysis phase to spend considerable time. LeeRouter and Em3d does not
show any advantage using inspector threads since they carry data dependencies.

5.4. MiniTLS vs. Lector

Finally, we present a speedup comparison between our two systems: MiniTLS and
Lector. As previously, we show speedups over the unmodified sequential execution for
each benchmark. Figure 21 clearly shows how Lector outperforms MiniTLS nearly in
every case. Inspector threads are able to quickly identify a loop without data dependen-
cies and notify Lector that speculation is no longer necessary. Thereafter, the loop can
execute in a fully parallel nonspeculative mode. In cases where data dependencies ex-
ist, inspector threads will not be of any additional benefit, however, they quit inspection
as soon as conflicts are found to allow speculation to continue without any unnecessary
overhead. Nevertheless, Lector is still faster in those cases. For the benchmarks we
experiment with, Lector still benefits from its lazy version management as it does not
trigger as many data dependencies as an eager version management system (lazy can
only trigger RAW dependencies). On average Lector performs approximately 2x faster
than MiniTLS for 2 and 4 threads, 1.8x faster for 8 threads, and nearly 1.5x faster for 16
and 32 threads. MiniTLS appears to be faster than Lector on the Perimeter benchmark
for 16 and 32 threads. The reason for this is the relatively high speculative overheads
of Lector for Perimeter running with 16 and 32 threads, shown in Figures 19 and 20.

Inspector threads can only be applied to systems that buffer their memory updates.
Such threads cannot be applied to eager version management systems such as MiniTLS
as updates to main memory are performed in-place and the inspectors can load the
wrong values and by extension addresses.

The results indicate that Lector outperforms MiniTLS in most cases. However,
this comes with the cost introduced by the additional inspector threads in terms of
memory consumption. Figure 17 shows the memory overhead of both systems for the
Sparse benchmark against the sequential version. Lector requires 1.5x more memory
than MiniTLS. That is, 2.7x compared to the sequential version. Nevertheless, this is
acceptable as it has still lower overhead compared to SpLIP (as shown in Figure 15)
and it is faster.
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6. RELATED WORK

One of the earliest software TLS systems was the Lrpd test [Rauchwerger and Padua
1995] later extended to R-Lrpd [Dang et al. 2002]. In this system, the tests for conflicts
are performed only at the end of speculative execution creating a surplus of wasted
work (if unsuccessful) and delaying conflict resolution. They use a sliding window
scheduling policy to minimize memory overheads, however, the window moves only
when all threads that are currently in-flight finish. Commits are serial, which hinders
scalability. In addition there is contention at the end of each speculative thread, in
which threads are trying to merge their results with the global data structures to per-
form the test. Cintra and Llanos [2005] improve R-Lrpd using a more dynamic thread
partitioning scheme as well as a window that slides upon every thread commit rather
than only when all threads in the window have finished. Forwarding is supported, but
when enabled, unnecessary checks are introduced on applications that perform many
reads first and minimal writes. Commits are serialized as in R-Lrpd, and when checks
for violation occur at the end of a speculative section it is necessary to check at least all
the exposed-loads by all the threads involved. Again, this may slow down significantly
applications with many readers and few writers. Conflicts occur by pointer aliasing are
not addressed. In MiniTLS, we employ parallel commits, which allow higher scalability,
and forwarding is implicit avoiding any backward checks on exposed loads. Like Cintra
and Llanos, we also perform eager conflict detection. In Lector, when forwarding is
enabled, the thread that requires the value can look at the shadow structure and know
immediately whether a thread has produced that value and exactly which thread. Like
Cintra and Llanos, we also perform eager conflict detection.

Perhaps the most similar system to MiniTLS is the in-place implementation proposed
by Oancea et al. [2009]. In their solution, serial commits are avoided and CAS
instructions or memory fences are not used. The main difference from our system
is in the way that they perform the version management. Two data structures are
used, one for loads and one for stores, as well as two additional data structures to
facilitate data race prevention, since locks are absent. An extra data structure is
required to store timestamps. Thus, for every memory location check, they need to
obtain information from at least four different data structures. Our solution minimizes
significantly the space overhead by using a more compact bitwise solution, storing all
the required information in just one data structure. In addition, we utilize a parallel
rollback mechanism as opposed to the sequential used in their work, which also boosts
performance. Experimental performance comparison results among Oancea et al.
[2009] and MiniTLS were presented in Section 5. Lector uses buffered updates, which
can only cause RAW violations, in contrast to in-place updates, which will cause the
system to rollback in case of WAR and WAW data dependencies in addition to RAW.

Mehrara et al. [2009] present STMLite, a STM model modified to support speculative
parallelization. STMLite aims to reduce the overhead associated with validating the
read-set by decoupling the conflict detection from the main process using a central
commit manager. Also individual locks for copying out the write-set are avoided. The
main problem with such a solution is that maintaining a centralized point of control
will harm scalability when the number of threads increases. Furthermore, during val-
idation, a global clock is incremented to maintain consistency. Since the global clock
is incremented at commit-time, like in TL2 [Dice et al. 2006], the system might end
up performing unnecessary validations. Tian et al. [2010] describe a system, based on
their earlier work; CorD [Chen et al. 2008], for supporting speculative parallelization for
dynamic data structures. Their system separates speculative (shared across threads)
from nonspeculative state (local to each thread). When a speculative thread is created,
any value that is needed, is copied-in from the nonspeculative state to the speculative
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one and later the results are copied back if speculation was successful. A mapping
table is maintained for each speculative thread that has entries associated with each
variable copy. Version numbers are used between the two states in order to detect mis-
speculations. Work from speculative threads is committed in-order by the main thread.
A number of optimizations are also described to reduce overheads for their copying
mechanisms. While this work is attractive, especially for applications that manipulate
dynamic data structures, the extra mapping tables, and the copying of values is likely
to hinder performance in the applications we are interested in this work. We aim to
improve over those solutions in terms of scalability due to our parallel commits (in the
case of MiniTLS) as well as space overhead due to our compact data structures.

Finally, Raman et al. [2010] propose the use of software multithreaded transactions
for speculative parallelization. In this case, each thread executes part of the loop for
all iterations and threads are scheduled is such a way to form a pipeline. This is in
contrast to conventional TLS systems where entire loop iterations are distributed
across multiple threads. Their system uses lazy version management and lazy conflict
detection. The focus of their work is on software pipelining parallelization rather than
DOALL loops.

There is also numerous work in a very closely related research area, Software Trans-
actional Memory (STM) [Dice et al. 2006; Dalessandro et al. 2010; Spear et al. 2009b;
Felber et al. 2008; Dice and Shavit 2010]. In Transactional Memory (TM), parallel
applications are executed concurrently as transactions, and access shared data simul-
taneously. Underlying mechanisms guarantee correct execution of those transactions.
TM shares most of the semantics with TLS except from the fact that threads in TM
need not to be ordered. Saha et al. [2006] show a comparison between lazy and eager
version management. They demonstrate that eager updates perform better than lazy
updates. They find most of the lazy system’s overhead coming from the fact that every
time a value need to be loaded, the thread local buffer needs to be searched whether
the value is already there. On the other hand, Spear et al. [2009a] argue that an STM
system is better-off using a lazy strategy. Other studies on STM, that experiment with
both version management systems, include Wang et al. [2007] and Felber et al. [2008].
Rock, developed by Sun Microsystems R©, was intended to be the first general-purpose
processor to support TM, but it was never commercialized. However, TM finally is
making its way to hardware as part of the Intel R©Haswell processor and Blue Gene/Q
[Wang et al. 2012]. Furthermore, Intel provides experimental compiler support in gcc
and C++ language constructs for TM [Ali-Reza et al. 2012]. These models will open new
research paths for TLS, since they can be used to accelerate speculative operations.

The design of our compact software data structure closely resembles the techniques
used for hardware directory-based cache coherence schemes [Culler et al. 1998]. Those
systems rely on a directory to keep track of all processors caching a memory block. A
basic implementation for small number of processors keeps a bit vector per memory
block, comprised of one bit per processor. The downside of this approach is the large
memory requirements to keep the information as the number of processors increases.
Empirical studies showed that the blocks kept in each processor’s cache is relatively
small compared to all blocks in main memory. Thus, more efficient implementations
keep a small number of pointers (to the processors that have the block) per directory
entry [Agarwal et al. 1988]. Techniques were also proposed to handle situations when
the size to keep the number of pointers overflows [Gupta et al. 1990]. Our compact data
structure is similar in a way since both ideas need to record readers/writers in a bit
vector. Our structure differs on the fact that the bits also represent an ordering (the
speculation order) besides ownership. Furthermore, our implementation choice is not
concerned with scaling issues, since we target systems with small number of processors.
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7. CONCLUSIONS

A significant barrier for adopting software TLS is the overheads associated with main-
taining speculative state.

Two techniques for version management have been used extensively in the literature.
For completeness, we propose two systems, one for each technique and we show that
in both cases we are better than the state-of-the-art.

We have proposed a software TLS system with a novel compact version management
representation; MiniTLS. Facilitated by this representation, MiniTLS reduces the space
overhead over state-of-the-art software TLS systems between 96% on 2 threads and
40% on 32 threads. MiniTLS relies on eager memory data management and, thus,
when a misspeculation occurs a rollback process is required. MiniTLS takes advantage
of the novel compact version management representation to parallelize the rollback
process and is able to recover from misspeculation faster than existing software eager
TLS systems.

We also propose a second TLS system, Lector (Lazy inspECTOR), which uses a novel
way of minimizing speculative marking (also uses the compact version management
data structure). Lector performs on average 1.7x faster for 32 threads over an es-
tablished state-of-the-art software TLS system. While the conventional TLS system is
running, lightweight inspector threads are executed alongside to verify quickly whether
speculative state maintenance is actually required. Those threads are highly likely to
be faster than the TLS threads, as they only inspect a stripped-down version of the
actual loop iteration consisting of memory accesses. Should the inspector threads dis-
cover that the loop is DOALL, speculation is abandoned allowing the application to run
in a parallel speculation-free mode. On the other hand, if the inspector exposes any de-
pendencies, then inspection is terminated and the system continues with conventional
speculative parallelization.

We have applied MiniTLS and Lector to seven Java sequential benchmarks (with
presence of misspeculations for two benchmarks), including three benchmarks from
SPECjvm2008. The experiments for MiniTLS report average speedups of 1.8x for 4 threads
increasing close to 7x speedups with 32 threads. Lector experiments report average
speedups of 1.7x for 2 threads increasing close to 8.2x speedups with 32 threads. We
have shown that TLS can speedup the execution of some SPECjvm2008 benchmarks but
we have not fully explored which other SPECjvm2008 will benefit from TLS. Similarly, for
Lector, we have not explored “informed" scheduling to avoid discovered dependencies.
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