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ABSTRACT 

 

Brain-Computer Interfaces (BCI) aim at translating 

brain signals, typically ElectroEncephaloGraphy (EEG), 

into commands for external devices. Spatial filters are 

powerful tools for EEG classification, able to reduce 

spatial blurring effects. In particular, optimal spatial 

filters have been designed to classify EEG signals based 

on band power features. Unfortunately, there are other 

relevant EEG features for which no optimal spatial filter 

exists. This is the case for Phase Locking Value (PLV) 

features, which measure the synchronization between 2 

EEG channels. Therefore, this paper proposes to create 

such a pair of optimal spatial filters for PLV-features. 

To do so, we optimized a functional measuring the 

discriminability of PLV-features based on a genetic 

algorithm. An evaluation of our algorithm on a motor 

imagery EEG data set showed that using optimized 

spatial filters led to higher classification performances, 

and that combining the resulting PLV features with 

traditional methods boosts the overall BCI 

performances. 

 

Index Terms— Brain-Computer Interfaces, EEG 

signal processing, Phase Locking Value, Spatial Filter, 

Genetic Algorithm 

 

1. INTRODUCTION 

 

Brain Computer Interfaces are communication systems able 

to process brain signals in order to detect specific mental 

states or events. The decoded brain activity can be used to 

command an external device allowing communication with 

the external world, notably for people with motor 

disabilities[1]. Measuring brain activity is the first step in 

the design of a BCI, and is most commonly achieved using 

electroencephalography (EEG), which offers the best 

compromise between affordability, availability and low 

invasiveness. 

One of the major challenges in the design of BCI is to 

robustly decode the noisy EEG signals in order to recognize 

the occurrence of two or more different mental states. With 

the rapid recent development of BCI, several EEG signal 

processing techniques were developed to improve mental 

state classification. Among the different instruments 

proposed in the literature, spatial filtering proved to be 

particularly useful to maximize the signal-to-noise ratio 

(SNR). The first used spatial filters were Common Average 

Reference (CAR) and Laplacian, both constructed for 

reducing the effect of spatial blurring. CAR subtracts the 

average value of the entire electrode montage to each 

channel while Laplacian is an approximation of the second 

derivative of the instantaneous spatial voltage distribution 

that operate as a high pass spatial filter able to emphasize 

localized activity [2]. 

Moreover in the last years, more adaptive spatial filters were 

developed to optimize the SNR of specific features, in 

particular to make the features extracted from the spatially 

filtered signals as discriminative as possible. One of the 

most useful such spatial filter is the Common Spatial Pattern 

(CSP), which is the optimal spatial filter for band power 

features [3]. It has notably been used successfully for the 

classification of BCI based on motor imagery [3]. In 

particular CSP is constructed in order to maximize the 

variance of the band-pass filtered EEG signal (i.e., the signal 

band power) recorded under one condition while 

minimizing the variance of the band-pass filtered signal 

during a second condition [4]. 

The success of CSP highlighted the usefulness of optimal 

spatial filters for maximizing the discriminative power of 

EEG features. Unfortunately, there are several EEG features 

for which no optimal spatial filter has been proposed. This is 

notably the case for connectivity features such as the phase 

locking value (PLV), which measures the synchronization 

between the signals from two different EEG channels and 

thus between different brain areas [5], [6]. Such features 

have indeed been shown to be promising to classify EEG 

signals for BCI [7], [8]. 

Thus, the purpose of our work was to fill this gap by 

optimizing spatial filters for PLV features. The PLV was 

introduced in the 1999 as a statistics for detecting synchrony 

in a precise frequency range between two different 

recording sites [5]. For calculating the PLV the variability of 

phase difference between two signals is measured across 

trials making this statistics unusable for online EEG-

classification. In the same year was introduced a variant of  

PLV, the single trial-PLV (S-PLV), in which synchrony is 

compared across samples [6]. Based on this feature we 

constructed a new functional in order to find the best two 

spatial filters able to maximize the discriminative power of 



the S-PLV feature between two conditions of EEG signals 

(e.g., left hand motor imagery versus right hand motor 

imagery). 

In order to find the optimal filters we chose to combine a 

genetic algorithm (GA) with a local minimum search. Each 

chromosome of the GA represents the two spatial filters, 

using this evolutionary methods we were able to explore a 

large space of solutions, and then the best chromosome was 

taken as a starting point for the local search. 

 

2. MATERIALS AND METHODS 

 

A. Single Trial Phase Locking Value 

The feature that we have chosen for the classification of 

EEG traces is the single trial phase locking value, which, 

has we have mentioned earlier, has been identified as a 

promising feature for EEG classification [7], [8]. 

The PLV is a statistic used to investigate synchronization of 

neural activity from EEG data and expresses a measure of 

connectivity. The equation that we used for this measure is: 

!!"# =
1

!
!
! !! ! !!! !

!

!!!

                       (1) 

Where N is the number of samples in the considered time 

window, !!and !! are the phase values of the two signals 

that we want to compare [6]. The computed S-PLV is a 

number between 0 and 1 that reflects how the two 

channels are synchronized to each other. The phase value is 

computed using the Hilbert Transform  [6], [9]. 

 

B. Spatial filters optimization 

Considering that S-PLV is the result of a comparison 

between two channels we had to find two spatial filters that 

will create two new channels, each one a different 

combination of all the recorded ones. Indeed, as mentioned 

before, the EEG signals from individual channels is prone to 

have a low SNR, due to spatial blurring and volume 

conduction effects. In order to obtain better PLV features for 

EEG classification, it thus seems relevant to compute the 

PLV between two spatially filtered channels (thus with a 

higher SNR), rather than between two original channels. We 

therefore propose an algorithm to optimize these two spatial 

filters in order to maximize the resulting PLV feature 

discriminative power. 

We represented EEG traces with a 3D matrix ! ∈

 ℝ
!"×!"×!" (with !" the number of channels, !! the 

number of samples and !" the number of trials), the two 

spatial filters !! and !!were two vectors in ℝ!"×!. The two 

new channels !!,!! were computed as follows: 

                                      !
!
= !!

!
!                                              (2) 

!
!
= !!

!
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where t denotes transpose. The idea for optimizing the 

spatial filters was to maximize the difference of the S-PLV 

between the two new filtered channels during two different 

conditions, hence maximizing the following functional:   

!"## = |!_!"#(!!
!
!!,!!

!
!!) − !_!"#(!!

!
!!,!!

!
!!)|   (4) 

where !!were the EEG traces recorded under one condition 

and !!werethe EEG traces recorded during the second 

condition. In other words, this functional amounts to 

optimizing spatial filters such that the resulting S-PLV value 

is maximally different between the two conditions. 

To avoid obtaining two identical spatial filters, which would 

be useless (a signal is necessarily synchronized with itself), 

we proposed to enforce the orthogonality of the two spatial 

filters by introducing a regularization term expressed as: 

!"# =
!!
!
!! ∗ !"##

!"#(!!)
                                 (5) 

In this way the orthogonality value was scaled according to 

the value computed in !"##.Combining the two members 

gives the final functional which was maximized by the GA: 

!"#$%&& = !"## − ! ∗ !"#                          (6) 

where α was a parameter between 0 and 1 indicating how 

the second member weighs, i.e., how much we want to 

enforce the spatial filter orthogonality 

The PLV value is meaningful only if it is computed in a 

certain frequency band, thus the first operation of our 

research process was a frequency filter, and specifically we 

chose to filter the signal between 8-24Hz, which contains 

both the Mu (8-12 Hz) and Beta (12-24 Hz) rhythms, which 

are involved in motor imagery [10]. For searching the 

solution we developed a Genetic Algorithm working on a 

population of random chromosomes, each containing the 

weights of the two spatial filters. The GA evolves using 

elitism, tournament-k selection, single point crossover 

maintaining gene integrity, and mutation [11]. The GA was 

set to evolve the population for a predefined number of 

generations. The fitness function for evaluating each 

chromosome was computed according to Equation(6). 

The best solution found by the GA was then used as an 

initialization point for the fminsearch function of the 

MATLAB Optimization Toolbox, in order to obtain a better 

local solution. For using this functionality we had to search 

a minimum, thus we decided to minimize the inverse of (6): 

            !"# =
!

!"#$%&&
                                    7  

C. Evaluation 

Our approach was evaluated on data set 2a from BCI 

competition IV [12], provided by the Graz group [13].This 

set comprises EEG signals from 9 subjects who performed 

left hand, right hand, foot and tongue Motor Imagery (MI). 

The EEG signals were recorded using 22 EEG channels. 

 



 

For the purpose of this study, only EEG signals 

corresponding to left and right hand MI were used. EEG 

signals were band-pass filtered in the 8-24 Hz frequency 

band using a 250th order Finite Impulse Response (FIR) 

filter used with Matlab filtfilt function. Indeed, this 

frequency band contains the mu (8-12 Hz) and beta (12-24 

Hz) rhythms, i.e., the main frequencies involved in MI [10]. 

A training and a testing set were available for each subject. 

Both sets contained 72 trials for each class, the duration of a 

trial being 7 sec. Subjects performed MI within the time 

interval of t=3 to 7 sec of each trial. In this work, we only 

considered the discrete classification of the trials, i.e., we 

assigned a class to each trial and not to each trial sample. In 

order to do so, we extracted the features from the time 

segment t=3 to t=6 sec of each trial. 

We used the available training set for the GA evolution and 

fminsearch computation. The initial population of the GA 

was set to 300 chromosomes and evolves for 300 

generations. Then the two spatial filters were applied to the 

data and a feature value for each trial was computed as the 

S-PLV between the two new channels (i.e., between the two 

spatially filtered signals).Training trials were provided as 

input to an Support Vector Machine (SVM) [14] in order to 

train the classifier to recognize the two classes (left hand MI 

vs. right hand MI). Trials belonging to the test set were then 

classify with the trained SVM. For all evaluations and all 

subjects, we used α=0.8, which we found was a good default 

value. Moreover in order to compare our approach with 

those available in the literature, we also computed the 

performance obtained with CSP spatial filtering in the 8-24 

Hz band, evaluating the performances with both one pair of 

CSP filters (i.e., as many filters as with our approach) and 

with three pairs of CSP filters (i.e., the standard way [4]). 

We also explored whether combining spatially filtered S-

PLV features with CSP features was relevant. To do so, we 

concatenated the features extracted with CSP with the new 

ones derived from the proposed spatially filtered S-PLV and 

used them as input to the SVM classifier. 

 

 

 

3. RESULTS 

 

Table I presents the results in term of classification accuracy 

obtained on the test set by using the different signal 

processing approaches mentioned. The first row presented 

the best result obtained using the S-PLV computed between 

each pair of the available channels (i.e., without spatial 

filtering). Using a 5-fold-cross-validation we selected the 

best pair of channels for each subject in terms of 

classification accuracy on the training set. 

In the second row is reported the classification accuracy 

obtained using the S-PLV between the two channels 

computed with the proposed spatial filters. The spatial filter 

algorithm outperformed the original S-PLV by about 9% in 

both mean classification accuracy and median classification 

accuracy. This confirms that our spatial filters improve the 

discriminative power of the S-PLV features. 

The third and fourth row of Table I reports the performances 

obtained with the standard design, i.e., CSP features, with 1 

pair and 3 pair of spatial filters respectively. 

In the last two rows of the table are presented the results 

obtained on the test set combining the CSP approach and the 

spatially filtered PLV approach proposed in this work. 

Using one pair of CSP filters with the new PLV feature we 

improved the mean classification accuracy by 3%, as 

compared to CSP alone. Otherwise using three pairs of CSP 

filters with PLV led to an increase in median accuracy, but 

no increase in mean accuracy probably due to overfitting. 

Overall the best performances are still achieved combining 

CSP and PLV. 

Figure 1 presents the spatial filters obtained for subject 3. 

The first two figures represent the solution found with the 

GA, while the last two the solution obtained by the local 

search (fminsearch function), after the GA. Comparing the 4 

figures it is clear that fminsearch performed a local search 

around the solution of the GA. Fminsearch shapes the two 

spatial filters making them more specific by better 

identifying the cortical areas whose signals should be 

enhanced or suppressed to build two new channels whose 

signals are synchronized in one class and de-synchronized in 

 Subj1 Subj 2 Subj3 Subj4 Subj5 Subj6 Subj7 Subj8 Subj9 Mean ±!"# Median 

PLV 73.61 54.89 78.47 60.42 54.17 49.31 50.69 77.08 78.47 64.12 ±12.59 60.42 

PLV 

SP. FILT. 
84.72 54.17 93.75 68.06 47.22 69.44 68.61 93.75 85.42 73.90±16.66 69.44 

CSP 87.50 50 94.44 72.22 51.39 74.30 61.80 99.30 90.97 75.77±18.50 74.30 

CSP 

(3 filter pairs) 
84.72 58.33 91.67 68.75 53.47 63.88 75.69 97.91 89.58 76±15.83 75.69 

PLV+CSP 89.58 57.64 97.22 74.31 51.39 73.61 66.67 99.30 92.36 78.00±17.49 74.31 

PLV+CSP 

(3 filter pairs) 
86.11 56.94 95.83 70.11 53.47 64.54 78.47 99.31 86.11 76.76±16.50 78.47 

TABLE 1 

CLASSIFICATION ACCURACIES (MEAN, MEDIAN AND STANDARD DEVIATION (STD) IN %) OBTAINED 
FOR EACH SUBJECT FOR DIFFERENT APPROACHES. BEST PERFORMANCES ARE DISPLAYED IN BOLD. 



the other. Figure 2 reports the evolution of the fitness value 

during the generation of the genetic algorithm. In particular, 

it shows the evolution of both terms composing the fitness 

function. It is remarkable to see how in the last generation 

the term related to the difference (!"##, see Equation (4)) 

still increases while the term related to the orthogonality 

(!"#, see Equation (5)) decreases. 

 

Figure 1 Spatial filters: image A and image B represent the two 

spatial filters found with the GA, C and D are the spatial filters 

optimized with fminsearch, following the GA use. 

 

Figure2 Evolution of the fitness function during generation of the 

genetic algorithm for subject 3 

4. DISCUSSION 

 

The results obtained give several interesting insights. 

Concerning performances, they first show that computing a 

S-PLV-feature between two spatially filtered signals does 

lead to increased classification performances as compared to 

computing the S-PLV between two raw EEG channels. This 

further confirms the usefulness of designing optimal spatial 

filters for the different EEG features that are relevant for 

BCI design. Second, our results show that, at least for motor 

imagery-based BCI, spatially filtered PLV features do 

extract a different information than spatially filtered band 

power features (i.e., CSP features) since combining them 

increases the overall classification performances. This 

makes optimally spatially filtered S-PLV features a valuable 

addition to the repertoire of features that can be used by 

EEG-based BCI designers. 

In this work, we optimized a single pair of spatial filters 

which resulted in a single PLV feature. As such, our method 

might not have extracted all the relevant information, and 

maybe some other spatial filter pairs could have been used 

to increase the performances further. In the future, it may be 

useful to use, e.g., deflation approaches to extract several 

pairs of spatial filters from which computing PLV features. 

Furthermore GA generation takes time (several hours) then 

it could be useful to find an analytical solution to optimize 

the proposed functional. 

From a neurophysiological point of view, it is worth noting 

that the obtained spatial filters can be interpreted to check 

the plausibility of the extracted features or to gain some 

insights about the brain dynamics. Here, as can be seen in 

Figure 1, one of the two spatial filters has strong weights on 

the brain motor areas (electrodes C3 and C4, images B and 

D), while the other one has strong weights on the brain 

frontal areas (electrodes FCz, Fz). This suggests that phase 

synchronization between the frontal and motor areas, in the 

Mu and Beta bands, might change during motor imagery 

and could be used to identify the type of motor imagery (left 

hand vs. right hand). However, since such spatial filters are 

"backward" models, this interpretation may be erroneous 

and should be considered with caution [15]. Nonetheless, 

this is in line with previous research on PLV-feature based 

BCI design [7], which confirms the validity and relevance of 

the proposed optimization algorithm. 

 

5. CONCLUSION 

 

In this paper, we proposed a method, based on a genetic 

algorithm, to create an optimal spatial filter pair for EEG 

signal classification with S-PLV-features. We demonstrated 

the validity of our method for classifying signal coming 

from BCI experiments based on motor imagery. We notably 

showed that our spatial filters led to higher classification 

performances, and that combining the resulting S-PLV 

features with CSP boosts the overall BCI performances. 

Future work could aim at applying the proposed algorithm 

to different data sets and BCI tasks, to explore its scope of 

applicability. Moreover, we could optimize more pairs of 

orthogonal spatial filters in order to further increase 

classification performance and also it could be interesting to 

consider time as well. Overall, we hope our method could be 

a new and valuable addition to the repertoire of EEG signal 

processing tools.  
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