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Abstract

Brain-Computer Interface (BCI) systems create a novel communication
channel from the brain to an output device by bypassing conventional
motor output pathways of nerves and muscles. Therefore they could
provide a new communication and control option for paralyzed patients.
Modern BCI technology is essentially based on techniques for the clas-
sification of single-trial brain signals. Here we present a novel technique
that allows the simultaneous optimization of a spatial and a spectral filter
enhancing discriminability of multi-channel EEG single-trials. The eval-
uation of 60 experiments involving 22 different subjects demonstrates
the superiority of the proposed algorithm. Apart from the enhanced clas-
sification, the spatial and/or the spectral filter that are determined by the
algorithm can also be used for further analysis of the data, e.g., for source
localization of the respective brain rhythms.

1 Introduction

Brain-Computer Interface (BCI) research aims at the development of a system that allows
direct control of, e.g., a computer application or a neuroprosthesis, solely by human in-
tentions as reflected in suitable brain signals, cf. [1, 2, 3, 4, 5, 6, 7, 8, 9]. We will be
focussing on noninvasive, electroencephalogram (EEG) based BCI systems. Such devices
can be used as tools of communication for the disabled or for healthy subjects that might
be interested in exploring a new path of man-machine interfacing, say when playing BCI
operated computer games.
The classical approach to establish EEG-based control is to set up a system that is con-
trolled by a specific EEG feature which is known to be susceptible to conditioning and to
let the subjects learn the voluntary control of that feature. In contrast, the Berlin Brain-
Computer Interface (BBCI) uses well established motor competences in control paradigms
and a machine learning approach to extract subject-specific discriminability patterns from
high-dimensional features. This approach has the advantage that the long subject training
needed in the operant conditioning approach is replaced by a short calibration measurement



(20 minutes) and machine training (1 minute). The machine adapts to the specific charac-
teristics of the brain signals of each subject, accounting for the high inter-subject variability.
With respect to the topographic patterns of brain rhythm modulations the Common Spatial
Patterns (CSP) (see [10]) algorithm has proven to be very useful to extract subject-specific,
discriminative spatial filters. On the other hand the frequency band on which the CSP al-
gorithm operates is either selected manually or unspecifically set to a broad band filter, cf.
[10, 5]. Obviously, a simultaneous optimization of a frequency filter with the spatial filter
is highly desirable. Recently, in [11] the CSSP algorithm was presented, in which very
simple frequency filters (with one delay tap) for each channel are optimized together with
the spatial filters. Although the results showed an improvement of the CSSP algorithm over
CSP, the flexibility of the frequency filters is very limited. Here we present a method that
allows to simultaneously optimize an arbitrary FIR filter within the CSP analysis. The pro-
posed algorithm outperforms CSP and CSSP on average, and in cases where a separation of
the discriminative rhythm from dominating non-discriminative rhythms is of importance, a
considerable increase of classification accuracy can be achieved.

2 Experimental Setup

In this paper we investigate data from 60 EEG experiments with 22 different subjects. All
experiments included so called training sessions which are used to train subject-specific
classifiers. Many experiments also included feedback sessions in which the subject could
steer a cursor or play a computer game likebrain-pong by BCI control. Data from feedback
sessions are not used in this a-posteriori study since they depend on an intricate interaction
of the subject with the original classification algorithm.
In the experimental sessions used for the present study, labeled trials of brain signals were
recorded in the following way: The subjects were sitting in a comfortable chair with arms
lying relaxed on the armrests. All 4.5–6 seconds one of 3 different visual stimuli indicated
for 3–3.5 seconds which mental task the subject should accomplish during that period. The
investigated mental tasks were imagined movements of the left hand (l), the right hand
(r), and one foot (f ). Brain activity was recorded from the scalp with multi-channel EEG
amplifiers using 32, 64 resp. 128 channels. Besides EEG channels, we recorded the elec-
tromyogram (EMG) from both forearms and the leg as well as horizontal and vertical elec-
trooculogram (EOG) from the eyes. The EMG and EOG channels were used exclusively
to make sure that the subjects performed no real limb or eye movements correlated with
the mental tasks that could directly (artifacts) or indirectly (afferent signals from muscles
and joint receptors) be reflected in the EEG channels and thus be detected by the classifier,
which operates on the EEG signals only. Between 120 and 200 trials for each class were
recorded. In this study we investigate only binary classifications, but the results can be
expected to safely transfer to the multi-class case.

3 Neurophysiological Background

According to the well established model called homunculus, first described by [12], for
each part of the human body there exists a corresponding region in the motor and so-
matosensory area of the neocortex. The ’mapping’ from the body to the respective brain
areas preserves in big parts topography, i.e., neighboring parts of the body are almost rep-
resented in neighboring parts of the cortex. While the region of the feet is located at the
center of the vertex, the left hand is represented lateralized on the right hemisphere and the
right hand on the left hemisphere. Brain activity during rest and wakefulness is describable
by different rhythms located over different brain areas. These rhythms reflect functional
states of different neuronal cortical networks and can be used for brain-computer inter-
facing. These rhythms are blocked by movements, independent of their active, passive or
reflexive origin. Blocking effects are visible bilaterally but pronounced contralaterally in
the cortical area that corresponds to the moved limb. This attenuation of brain rhythms is
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Figure 1: The plot shows the spectra for
one subject during left hand (light line)
and foot (dark line) motor imagery be-
tween 5 and 25 Hz at scalp positions Pz,
Cz and C4. In both central channels
two peaks, one at 8 Hz and one at 12 Hz
are visible. Below each channel ther2-
value which measures discriminability
is added. It indicates that the second
peak contains more discriminative infor-
mation.

termed event-related desynchronization (ERD), see [13]. Over sensorimotor cortex a so
called idle- orµ-rhythm can be measured in the scalp EEG. The most common frequency
band ofµ-rhythm is about 10 Hz (precentralα- or µ-rhythm, [14]). Jasper and Penfield
([12]) described a strictly local so called beta-rhythm about 20 Hz over human motor cor-
tex in electrocorticographic recordings. In Scalp EEG recording one can findµ-rhythm
over motor areas mixed and superimposed by 20 Hz-activity. In this contextµ-rhythm is
sometimes interpreted as a subharmonic of cortical faster activity. These brain rhythms de-
scribed above are of cortical origin but the role of a thalomo-cortical pacemaker has been
discussed since the first description of EEG by Berger ([15]) and is still a point of dis-
cussion. Lopes da Silva ([16]) showed that cortico-cortical coherence is much larger than
thalamo-cortical. However, since the focal ERD in the motor and/or sensory cortex can be
observed even when a subject is only imagining a movement or sensation in the specific
limb, this feature can well be used for BCI control. The discrimination of the imagina-
tion of movements of left hand vs. right hand vs. foot is based on the topography of the
attenuation of theµ and/orβ rhythm.
There are two problems when using ERD features for BCI control:
(1) The strength of the sensorimotor idle rhythms as measured by scalp EEG is known to
vary strongly between subjects. This introduces a high intersubject variability on the accu-
racy with which an ERD-based BCI system works. There is another feature independent
from the ERD reflecting imagined or intended movements, the movement related potentials
(MRP), denoting a negative DC shift of the EEG signals in the respective cortical regions.
See [17, 18] for an investigation of how this feature can be exploited for BCI use and
combined with the ERD feature. This combination strategy was able to greatly enhance
classification performance in offline studies. In this paper we focus only on improving the
ERD-based classification, but all the improvements presented here can also be used in the
combined algorithm.
(2) The precentralµ-rhythm is often superimposed by the much stronger posteriorα-
rhythm, which is the idle rhythm of the visual system. It is best articulated with eyes
closed, but also present in awake and attentive subjects, see Fig. 1 at channel Pz. Due to
volume conduction the posteriorα-rhythm interferes with the precentralµ-rhythm in the
EEG channels over motor cortex. Hence aµ-power based classifier is susceptible to mod-
ulations of the posteriorα-rhythm that occur due to fatigue, change in attentional focus
while performing tasks, or changing demands of visual processing. When the two rhythms
have different spectral peaks as in Fig. 1, channels Cz and C4, a suitable frequency filter
can help to weaken the interference. The optimization of such a filter integrated in the CSP
algorithm is addressed in this paper.

4 Spatial Filter - the CSP Algorithm

The common spatial pattern (CSP) algorithm ([19]) is very useful in calculating spatial
filters for detecting ERD effects ([20]) and for ERD-based BCIs, see [10], and has been
extended to multi-class problems in [21]. Given two distributions in a high-dimensional
space, the (supervised) CSP algorithm finds directions (i.e., spatial filters) that maximize



variance for one class and at the same time minimize variance for the other class. After
having band-pass filtered the EEG signals to the rhythms of interest, high variance reflects
a strong rhythm and low variance a weak (or attenuated) rhythm. Let us take the example
of discriminating left hand vs. right hand imagery. According to Sec. 3, the spatial filter
that focusses on the area of the left hand is characterized by a strong motor rhythm during
imagination of right hand movements (left hand is in idle state), and by an attenuated motor
rhythm during left hand imagination.
This criterion is exactly what the CSP algorithm optimizes: maximizing variance for the
class of right hand trials and at the same time minimizing variance for left hand trials.
Furthermore the CSP algorithm calculates the dual filter that will focus on the area of the
right hand (and it will even calculate several filters for both optimizations by considering
orthogonal subspaces).
The CSP algorithm is trained on labeled data, i.e., we have a set of trialssi, i = 1,2, ...,
where each trial consists of several channels (as rows) and time points (as columns). A
spatial filterw ∈ IR#channels projects these trials to the signal ˆsi(w) = w⊤si with only one
channel. The idea of CSP is to find a spatial filterw such that the projected signal has
high variance for one class and low variance for the other. In other words we maximize the
variance for one class whereas the sum of the variances of both classes remains constant,
which is expressed by the following optimization problem:

max
w ∑

i:Trial in Class 1

var(ŝi(w)), s.t. ∑
i

var(ŝi(w)) = 1, (1)

wherevar(·) is the variance of the vector. An analoguous formulation can be formed for
the second class.
Using the definition of the variance we simplify the problem to

max
w

w⊤Σ1w, s.t. w⊤(Σ1 + Σ2)w = 1, (2)

whereΣy is the covariance matrix of the trial-concatenated matrix of dimension [channels
× concatenated time-points] belonging to the respective classy ∈ {1,2}.
Formulating the dual problem we can find that the problem can be solved by calculating a
matrix Q and diagonal matrixD with elements in[0,1] such that

QΣ1Q⊤ = D and QΣ2Q⊤ = I−D (3)

and by choosing the highest and lowest eigenvalue.
Equation (3) can be accomplished in the following way. First wewhiten the matrixΣ1+Σ2,
i.e., determine a matrixP such thatP(Σ1 + Σ2)P⊤ = I which is possible due to positive
definiteness ofΣ1+Σ2. Then definêΣy = PΣyP⊤ and calculate an orthogonal matrixR and
a diagonal maxtrixD by spectral theory such thatΣ̂1 = RDR⊤. ThereforêΣ2 = R(I−D)R⊤

sinceΣ̂1 + Σ̂2 = I andQ := R⊤P satisfies (3). The projection that is given by thej-th row
of matrixR has a relative variance ofd j ( j-th element ofD) for trials of class 1 and relative
variance 1− d j for trials of class 2. Ifd j is near 1 the filter given by thej-th row of R
maximizes variance for class 1, and since 1− d j is near 0, minimizes variance for class
2. Typically one would retain some projections corresponding to the highest eigenvalues
d j, i.e., CSPs for class 1, and some corresponding to the lowest eigenvalues, i.e., CSPs for
class 2.

5 Spectral Filter

As discussed in Sec. 3 the content of discriminative information in different frequency
bands is highly subject-dependent. For example the subject whose spectra are visualized in
Fig. 1 shows a highly discriminative peak at 12 Hz whereas the peak at 8 Hz does not show
good discrimination. Since the lower frequency peak is stronger a better performance in



classification can be expected, if we reduce the influence of the lower frequency peak for
this subject. However, for other subjects the situation looks differently, i.e., the classifica-
tion might fail if we exclude this information. Thus it is desirable to optimize a spectral
filter for better discriminability. Here are two approaches to this task.
CSSP.In [11] the following was suggested: Givensi the signalsτ

i is defined to be the signal
si delayed byτ timepoints. In CSSP the usual CSP approach is applied to the concatenation
of si andsτ

i in the channel dimension, i.e., the delayed signals are treated as new channels.
By this concatenation step the ability to neglect or emphasize specific frequency bands can
be achieved and strongly depends on the choice ofτ which can be accomplished by some
validation approach on the training set. More complex frequency filters can be found by
concatenating more delayed EEG-signals with several delays. In [11] it was concluded that
in typical BCI situations where only small training sets are available, the choice of only one
delay tap is most effective. The increased flexibility of a frequency filter with more delay
taps does not trade off the increased complexity of the optimization problem.
CSSSP.The idea of our new CSSSP algorithm is to learn a complete global spatial-
temporal filter in the spirit of CSP and CSSP.
A digital frequency filter consists of two sequencesa andb with lengthna andnb such that
the signalx is filtered toy by

a(1)y(t) = b(1)x(t)+ b(2)x(t−1)+ ...+ b(nb)x(t −nb−1)

− a(2)y(t −1)− ...−a(na)y(t −na −1)

Here we restrict ourselves to FIR (finite impulse response) filters by definingna = 1 and
a = 1. Furthermore we defineb(1) = 1 and fix the length ofb to someT with T > 1. By
this restriction we resign some flexibility of the frequency filter but it allows us to find a
suitable solution in the following way: We are looking for a real-valued sequenceb1,...,T
with b(1) = 1 such that the trials

si,b = si + ∑
τ=2,...,T

bτ sτ
i (4)

can be classified better in some way. Using equation (1) we have to solve the problem

max
w,b,b(1)=1

∑
i:Trial in Class 1

var(ŝi,b(w)), s.t. ∑
i

var(ŝi,b(w)) = 1, (5)

which can be simplified to

max
b,b(1)=1

max
w

w⊤

(

∑
τ=0,...,T−1

(

∑
j=1,...,T−τ

b( j)b( j + τ)

)

Στ
1

)

w,

s.t. w⊤

(

∑
τ=0,...,T−1

(

∑
j=1,...,T−τ

b( j)b( j + τ)

)

(Στ
1 + Στ

2)

)

w = 1.

(6)

whereΣτ
y = E(〈si(sτ

i )
⊤ + sτ

i s⊤i | i : Trial in Classy〉), namely the correlation between the
signal and the byτ timepoints delayed signal.
Since we can calculate for eachb the optimalw by the usual CSP techniques (see equation
(2) and (3)) a(T − 1)-dimensional (b(1)=1) problem remains which we can solve with
usual line-search optimization techniques ifT is not too large.
Consequently we get for each class a frequency band filter and a pattern (or similar to CSP
more than one pattern by choosing the next eigenvectors).
However, with increasingT the complexity of the frequency filter has to be controlled in
order to avoid overfitting. This control is achieved by introducing a regularization term in
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Figure 2: The plot on the left shows one learned frequency filter for the subject whose spectra was
shown Fig. 1. In the plot on the right the resulting spectra are visualized after applying the frequency
filter on the left. By this technique the classification error could be reduced from 12.9 % to 4.3 %.

the following way:

max
b,b(1)=1

max
w

w⊤

(

∑
τ=0,...,T−1

(

∑
j=1,...,T−τ

b( j)b( j + τ)

)

Στ
1

)

w−C/T ||b||1,

s.t. w⊤

(

∑
τ=0,...,T−1

(

∑
j=1,...,T−τ

b( j)b( j + τ)

)

(Στ
1 + Στ

2)

)

w = 1.

(7)

HereC is a non-negative regularization constant, which has to be chosen, e.g., by cross-
validation. Since a sparse solution forb is desired, we use the 1-norm in this formulation.
With higherC we get sparser solutions forb until at one point the usual CSP approach
remains, i.e.,b(1) = 1,b(m) = 0 for m > 1. We call this approachCommon Sparse Spectral
Spatial Pattern (CSSSP) algorithm.

6 Feature Extraction, Classification and Validation

6.1 Feature Extraction

After choosing all channels except the EOG and EMG and a few of the outermost channels
of the cap we apply a causal band-pass filter from 7–30 Hz to the data, which encompasses
both theµ- and theβ -rhythm. For classification we extract the interval 500–3500ms after
the presented visual stimulus. To these trials we apply the original CSP ([10]) algorithm
(see Sec. 4), the extended CSSP ([11]), and the proposed CSSSP algorithm (see Sec. 5).
For CSSP we choose the bestτ by leave-one-out cross validation on the training set. For
CSSSP we present the results for different regularization constantsC with fixed T = 16.
Here we use 3 patterns per class which leads to a 6-dimensional output signal. As a measure
of the amplitude in the specified frequency band we calculate the logarithm of the variances
of the spatio-temporally filtered output signals as feature vectors.

6.2 Classification and Validation

The presented preprocessing reduces the dimensionality of the feature vectors to six. Since
we have 120 up to 200 samples per class for each data set, there is no need for regulariza-
tion when using linear classifiers. When testing non-linear classification methods on these
features, we could not observe any statistically significant gain for the given experimen-
tal setup when compared to Linear Discriminant Analysis (LDA) (see also [22, 6, 23]).
Therefore we choose LDA for classification.
For validation purposes the (chronologically) first half of the data are used as training and
the second half as test data.

7 Results

Fig. 2 shows one chosen frequency filter for the subject whose spectra are shown in Fig. 1
and the remaining spectrum after using this filter. As expected the filter detects that there



C = 0.1 C = 0.5 C = 1 C = 5

CSP
vs.
CSSSP

0 20 40
0

10

20

30

40

50

0 20 40
0

10

20

30

40

50

0 20 40
0

10

20

30

40

50

0 20 40
0

10

20

30

40

50

CSSP
vs.
CSSSP

0 20 40
0

10

20

30

40

50

0 20 40
0

10

20

30

40

50

0 20 40
0

10

20

30

40

50

0 20 40
0

10

20

30

40

50

Figure 3: Each plots shows validation error of one algorithm against another, in row 1 that is CSP
(y-axis) vs. CSSSP (x-axis), in row 2 that is CSSP (y-axis) vs. CSSSP (x-axis). In columns the
regularization parameter of CSSSP is varied between 0.1, 0.5, 1 and 5. In each plot a cross above the
diagonal marks a dataset where CSSSP outperforms the other algorithm.

is a high discrimination in frequencies at 12 Hz, but only a low discrimination in the fre-
quency band at 8 Hz. Since the lower frequency peak is very predominant for this subject
without having a high discrimination power, a filter is learned which drastically decreases
the amplitude in this band, whereas full power at 12 Hz is retained.
Applied to all datasets and all pairwise class combinations of the datasets we get the results
shown in Fig. 3. Only the results of those datasets are displayed whose classification accu-
racy exceeds 70 % for at least one classifier. First of all, it is obvious that a small choice
of the regularization constant is problematic, since the algorithm tends to overfit. For high
values CSSSP tends towards the CSP performance since using frequency filters is punished
too hard. In between there is a range where CSSSP is better than CSP. Furthermore there
are some datasets where the gain by CSSSP is huge.
Compared to CSSP the situation is similar, namely that CSSSP outperforms the CSSP in
many cases and on average, but there are also a few cases, where CSSP is better.
An open issue is the choice of the parameterC. If we choose it constant at 1 for all datasets
the figure shows that CSSSP will typically outperform CSP. Compared to CSSP both cases
appear, namely that CSSP is better than CSSSP and vice versa.
A more refined way is to chooseC individually for each dataset. One way to accomplish
this choice is to perform cross-validations for a set of possible values ofC and to select the
C with minimum cross-validation error. We have done this, for example, for the dataset
whose spectra are shown in Fig. 1. Here on the training set forC the value 0.3 is chosen.
The classification error of CSSSP with thisC is 4.3 %, whereas CSP has 12.9 % and CSSP
8.6 % classification error.

8 Concluding discussion

In past BCI research the CSP algorithm has proven to be very sucessful in determining
spatial filters which extract discriminative brain rhythms. However the performance can
suffer when a non-discriminative brain rhythm with an overlapping frequency range inter-
feres. The presented CSSSP algorithm successful solves such problematic situations by
optimizing simultaneously with the spatial filters a spectral filter. The trade-off between
flexibility of the estimated frequency filter and the danger of overfitting is accounted for by
a sparsity constraint which is weighted by a regularization constant. The successfulness of
the proposed algorithm when compared to the original CSP and to the CSSP algorithm was
demonstrated on a corpus of 60 EEG data sets recorded from 22 different subjects.
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