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Abstract

Modern communication technology facilitates communication from-anywhere to-anywhere. As a

result, low speech intelligibility has become a common problem, which is exacerbated by the lack of

feedback to the talker about the rendering environment. In recent years, a range of algorithms has

been developed to enhance the intelligibility of speech rendered in a noisy environment. We describe

methods for intelligibility enhancement from a unified vantage point. Before one defines a measure of

intelligibility, the level of abstraction of the representation must be selected. For example, intelligibility

can be measured on the message, on the sequence of words spoken, on the sequence of sounds, or on a

sequence of states of the auditory system. Natural measures of intelligibility defined at the message level

are mutual information and the hit-or-miss criterion. The direct evaluation of high-level measures requires

quantitative knowledge of human cognitive processing. Lower level measures can be derived from higher

level measures by making restrictive assumptions. We discuss the implementation and performance of

some specific enhancement systems in detail, including speech intelligibility index (SII) based systems

and systems aimed at enhancing the sound-field where it is perceived by the listener. We conclude with

a discussion of the current state of the field and open problems.

I. INTRODUCTION

Humans adapt their speech to the physical environment. Based on the facial expression of the listener,

a talker may repeat or reformulate the message. A noisy environment gives rise to the Lombard effect,

e.g., [1], an involuntary change in the speech characteristics that makes speech more intelligible.

In modern communication systems, the talker often has little or no awareness of the physical environ-

ment that the speech is rendered in. This is perhaps most obvious for current-generation speech synthesis,
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which produces speech without consideration of the rendering environment. It is also a major factor in

human-to-human communications as communication technology degrades or severes the auditory and

visual links between the talker and the environment. For example, an announcer at a railway station

generally receives little visual or auditory feedback. Similarly, a phone user lacks information about the

rendering environment, even less so if effective noise-suppression technology is used.

The lack of feedback, together with the recent ability to communicate from-anywhere to-anywhere

often leads to low intelligibility. Phonebooths are a relic of the past: the mobile phone is expected to

function in any environment, whether it is a car, a cafeteria, or a windstorm. Thus, there is a strong

motivation for algorithms that can improve the intelligibility of speech rendered in a noisy environment.

Ever since the early work of Griffiths [2] and Niederjohn and Grotelueschen [3], researchers have

attempted to create processing methods that increase the intelligibility of speech in a noisy environment.

Driven by the rapid growth of mobile telephony, research efforts on intelligibility in noise have increased

significantly in the last five years. The result is that it is now possible to increase the intelligibility of

speech in noise significantly, e.g., [4]–[11]. Approaches to intelligibility enhancement are increasingly

based on the mathematical optimization of quantitative measures that are hypothesized to represent

intelligibility accurately. First introduced by [2], the optimization approach has been used in numerous

recent studies, starting with [12]. The optimization criteria vary widely as the signal processing algorithms

are derived from different viewpoints and with different computational and delay constraints. Criteria

used include the probability of correct phoneme recognition [11], auditory models [6], [13], [14], the

articulation index [2], the speech intelligibility index [4], [8], mutual information [15], and sound-field

distortion [16].

In this tutorial, we describe a range of methods for intelligibility enhancement from a unified vantage

point, delineating the similarities and dissimilarities between the various approaches. In contrast to the

broad overview of human and algorithmic modifications that affect intelligibility in [7], our discussion

focuses on the definition and use of quantitative measures of intelligibility, showing that many of these

measures can be derived from the same basic principle. A number of quantitative measures is defined

in section II. We then discuss three different implementations in some detail in section III and end with

conclusions and a view of the future in section IV.
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II. MEASURES OF INTELLIGIBILITY

A. Defining Intelligibility

The word intelligibility expresses a qualitative measure of whether a conveyed message is interpreted

correctly by a human listener. To define quantitative instrumental measures of intelligibility we must

select a level of abstraction. That is, we must decide if we measure intelligibility on the sequence of

words spoken, on the sequence of sounds, on a sequence of states of the auditory system, or on the

acoustic signal waveform. A word sequence is an example of a description at a high level of abstraction

whereas a signal waveform is a description at a low level of abstraction.

The higher the level of abstraction, the more fundamental the measure of intelligibility: the objective of

speech is to convey a message and not to convey a sequence of sounds. A particular measure will be useful

for enhancement at its own level of abstraction and below. Consider an intelligibility measure operating

at the word sequence level. It can be used to evaluate which of a set of sentence formulations with similar

meaning is more intelligible. It can also be used to evaluate if a particular spectral modification (e.g., a

particular filtering operation) makes speech more intelligible.

The generality of high-level measures has a cost: we must map the observations into a sequence at

that high abstraction level. For acoustic observations and a measure operating at the word-sequence level

this requires a robust model of hearing that maps the observed acoustic signal into a word sequence.

Therefore, although it cannot optimize linguistic formulations, an intelligibility measure operating on a

sequence of auditory states may be attractive when optimizing a spectral modification of the signal.

While illusive in practical measurements, the message itself, a random variable that we denote as M,

can be used to define the most basic measure of intelligibility. (To aid clarity, we will write random

variables as bold-face characters and their realizations as regular characters.) In the following we will

show how such a basic measure can be used to derive measures that have been derived earlier on a

heuristic basis. To facilitate our reasoning, we will be opportunistic and sometimes describe the messages

as countable, which is consistent with the notion that a message is a discrete word sequence, and at other

times as continuous, which is consistent with the notion that articulation is continuously variable. To

avoid confusion, we add a breve, as in M̆, whenever messages are considered countable.

A natural measure of intelligibility is the mutual information between the message conveyed by the

talker M̆T and the message interpreted by the listener M̆L:

I(M̆L; M̆T ) =
∑

M̆L,M̆T

pLT (M̆L, M̆T ) log
pL|T (M̆L|M̆T )

pL(M̆L)
, (1)
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where we used the simplified notation pLT = pM̆LM̆T
and pL|T = pM̆L|M̆T

for the joint and conditional

probabilities and use the same convention for the marginal probabilities of the conveyed and received

messages and pT and pL.

We can reformulate the criterion (1) as a measure of distortion D(M̆L, M̆T ) that is a functional of pL|T .

Mutual information is nonnegative and cannot be larger than the entropy H(M̆T ). Thus, the difference

D(M̆L, M̆T ) = H(M̆T )− I(M̆L; M̆T ) is nonnegative and can be interpreted as a distortion. It can be

written as a general distortion measure operating on pL|T for a given talker message distribution pT :

D(M̆L, M̆T ) =
∑
M̆T

pT (M̆T )
∑
M̆L

d(pL|T (M̆L|M̆T )), (2)

where d is a nonnegative function of pL|T (M̆L|M̆T ). For the mutual information based distortion measure

d(pL|T (M̆L|M̆T )) = pL|T (M̆L|M̆T ) log(pL(M̆L)/pL,T (M̆L, M̆T )), where we note that the argument of

the logarithm can be written in terms of pL|T (M̆L|M̆T ) and the given pT (M̆T ) only. The intelligibility

enhancement problem is to find the pL|T that minimizes the distortion (2) subject to the constraints set

by the scenario.

An alternative to the mutual information based distortion measure can be based on the hit-or-miss

distortion, d(pL|T (M̆L|M̆T )) = pL|T (M̆L|M̆T )(1−δM̆L,M̆T
), where δM̆L,M̆T

is a Kronecker delta function.

In this case (2) becomes

D(M̆L, M̆T ) = 1−
∑
M̆T

pLT (M̆T , M̆T ) = 1− ET [pL|T (M̆T |M̆T )]. (3)

The conditional probability pL|T (M̆T |M̆T ) in (3) corresponds to the probability that the message

is interpreted correctly. Thus, an alternative to maximizing the mutual information of the conveyed

and received message is to maximize the expected probability of correct message interpretation,

ET [pL|T (M̆T |M̆T )], where the expectation is over the conveyed messages, M̆T . We will discuss the

practical use of this high-level measure in section II-B1.

While the measures (1) and (3) are general, they cannot be used directly. Either the description of the

message, or the human cognitive system must be approximated such that the measures can be applied

to observable signals. The paradigm shows where such approximations are made, but it does not show

their quantitative impact. Thus, experiments must be used to verify the validity of the resulting system.

Next, we consider how to derive a low-level, acoustics-based measure from a high-level, message-based

measure. For this it is convenient to consider the message as a continuous variable. A conveyed speech

message MT is rendered in the form of an acoustic signal, which we represent by an acoustic sequence

aT . The sequence aT can, for example, consist of signal samples or short-term spectral descriptions,
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such as cepstral vectors. This sequence is rendered in a noisy environment and the listener observes a

corrupted sequence aL, which is then interpreted as a message ML. The communication process thus

forms a Markov chain MT → aT → aL →ML. It is natural that environmental noise makes the mapping

aT → aL stochastic.

Upon reflection, it is clear that the mappings MT → aT and aL →ML are also stochastic: a message is

generally not formulated and never articulated in precisely the same manner, and the interpretation of the

acoustic sequence aL is subject to random variations during the human cognitive process. Anticipating the

discussions in Section II-B1, it can be argued that these variations are captured by the statistical modeling

of modern automatic speech recognition (ASR) algorithms. If we assume the message formulation is

perfect, a simple but effective model of the production and interpretation processes is that they are

subject to additive noise components [15], which we will refer to as, respectively, production noise and

interpretation noise. For example, variability in articulation across different persons may be approximated

as additive noise in a representation based on cepstral or log spectral vectors.

For convenience let us define auxiliary bijective mappings MT ↔ sT and ML ↔ sL, where sT and

sL are realizations of random acoustic sequences. We have

aT = sT + vT

aL = aT + vE (4)

sL = aL + vL

where vT , vE , and vL are additive noise processes, modeling the production noise, environmental noise

and interpretation noise, respectively. Note that the system model differs from the standard system model

in communication theory, which does not include production noise and interpretation noise.

To facilitate analysis, let us assume the sequences sT , vT , vE and vL to be jointly Gaussian processes.

Furthermore, we denote by ρsa the correlation coefficient of (the samples of the) processes s and a and

write ρ0 = ρsTaT
ρaLsL . Let us first consider the case where the signals are white. Exploiting that mutual

information is invariant under reparametrization of the marginal variables, it is then easy to see that [15]

I(ML;MT ) = I(sT ; sL) = −1

2
log

(1− ρ2
0)ξ + 1

ξ + 1
, (5)

where ξ =
σ2
aT

σ2
vE

is the SNR of the acoustic channel aT → aL, and σ2
aT

and σ2
vE

are the variances of

processes aT and vE , respectively. An important and intuitive conclusion that can be drawn from (5)

is that if the environmental noise variance is small compared to the production and interpretation noise
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variances, then the mutual information between talker and listener is not affected significantly by the

environmental noise.

The spectral coloring of the acoustic content can be accounted for by splitting the signal into spectral

bands such that each band can be approximated as white. If we assume the signals to be stationary, the

frequency bands are independent and the mutual information can be written as the sum of the mutual

informations in the bands:

I(ML;MT ) = −1

2

∑
i

log
(1− ρ2

0,i)ξi + 1

ξi + 1
, (6)

where i is the band index and where ξi =
σ2
aT,i

σ2
vE,i

is the SNR of the acoustic channel in band i. Note that

the SNR in (6) is computed on whichever representation is used for the acoustic features. Also note that

the variances σ2
aT,i

and σ2
vE,i

are generally unknown and must be estimated in practice. For example,

if the acoustic features are based on short-time DFT coefficients, variance estimation can be based on

the short-time DFT periodogram, i.e., σ̂2
aT,i

= |aT,i|2 having a variance of E
[
|aT,i|2

]2. The low-level

measure (6) can then be used directly to optimize speech intelligibility [15].

The frequency resolution of the human auditory system decreases with frequency, which reduces the

mutual information from that obtained with (6) for a uniform high resolution. An improved model

of information transfer is obtained by assuming that the signal is represented with one independent

component per equivalent rectangular bandwidth (ERB), which is consistent with studies on intelligibility

[17]. We show in section II-B3 that this approach provides an information-theoretical justification of the

well-known speech intelligibility index (SII, see also Fig. 2) [18], a low-level measure of intelligibility.

B. Practical Measures of Intelligibility

Existing practical measures of intelligibility generally operate at the word-sequence level, at the level

of a sequence of auditory states, or at the level of short-term spectra. We discuss these classes below.

We end this subsection with a discussion of the constraints that must be imposed on the optimization.

1) Measures Operating on a Word-Sequence: In section II-A, we discussed that the expected probabil-

ity of correct interpretation of the message, ET [pL|T (M̆T |M̆T )], is a reasonable measure of intelligibility.

This measure can be approximated as pL|T (M̆T |M̆T ) on real-world data, where the overbar indicates

averaging over realizations M̆T . If the averaging is done in time, i.e., over segments of a single larger

message (e.g., words), then this operation assumes ergodicity. The measure is easily evaluated in a test

with human test subjects, where pL|T (M̆T |M̆T ) can be estimated using histograms. A machine-based

quantitative measure requires a mapping from any particular acoustic observation aL to a message M̆L
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that captures the probabilistic nature of this mapping as performed by humans. As will be discussed

in Section III-B2, the standard approach to ASR computes the probability of the observations given a

message (word, or word sequence). The basic assumption for machine-based intelligibility enhancement

is then that the trend of ASR word-probability in noise tracks the trend of human recognition performance

in noise sufficiently well for the modification parameters that are optimized. Experiments confirmed this

hypothesis [11], [19] for a particular set of practical systems.

2) Measures Operating on a Sequence of Auditory States: Particularly if the types of modification are

restricted, it is advantageous to minimize the delay and computational requirements of the intelligibility

measure. Let us assume that the modification is a spectral modification, that the word sequence and

speaking rate are fixed, and that the highest intelligibility is achieved by the original speech without

environmental noise. (The latter assumption is an additional simplification required for this approach.)

Then it is natural to use a distortion measure operating on the sequence of auditory states as a measure

of intelligibility. Such measures can exploit that quantitative knowledge of the auditory periphery has

increased significantly in the last three decades (e.g., [20]).

The straight comparison of the auditory states of the conveyed and received signal ignores the pro-

duction noise vT of (4). That is, the auditory model does not weigh signal components according to

their relevance in terms of precision of signal production. However, the auditory model precision of a

speech component may form a reasonable match to the precision of speech production, simplifying the

introduction of production noise.

Although auditory models differ in how exactly the inner ear representation is obtained, they follow in

many cases a similar strategy for modeling the auditory system. In Fig. 1 we outline the basic building

blocks of the psycho-acoustic model presented in [21], which is simple but representative of many

other models, such as [20]. The first stage of the auditory model consists of a filter that mimics the

frequency characteristics of the outer and middle ear. This filter is cascaded with an auditory filterbank

that models processing at the level of the basilar membrane in the cochlea. Subsequently, the envelope

of each of the outputs of the auditory filters is obtained, which simulates the transduction of the inner

hair-cells. To model an absolute hearing threshold, a constant is added to each envelope. In the current

context, this threshold corresponds to an interpretation noise. In the final stage a log transform is used

to model the loudness dependent compression of the auditory filterbank outputs by the outer hair-cells.

An important difference between the model from [21] and the more advanced model presented in [20]

is the logarithmic transform, which is a simplification of the adaptation loops that are used in [20]. The

simplification particularly affects the output near transitions, where the gain of adaptation loops changes.
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By applying an auditory model to the acoustic sequences aT and aL and comparing the results, a

distortion measure can be obtained. Mutual information is a natural measure for this purpose, but, to our

best knowledge, it has not been applied to the auditory representation for intelligibility enhancement. Note

that while mutual information is not affected by smooth invertible mappings, auditory representations

likely are not smooth mappings from features such as cepstra, or line spectral frequencies. This suggests

that it may be essential to consider the detailed behavior of more sophisticated auditory models.

In the literature, various measures have been used to compare the auditory representations of aT and

aL. In [14], it was shown that an `1 criterion leads to a mathematically tractable method and to provide

good results for intelligibility enhancement. [13] uses a similar auditory model for the so-called glimpse

proportion measure of intelligibility: rather than comparing aT and aL directly, it compares the auditory

representation of the aT with the auditory representation of the environmental noise vE . The glimpse

proportion approach computes the proportion of signal blocks where the auditory representation of the

signal is louder than the noise. In more recent work on the glimpse proportion, a sigmoidal function is

applied to the difference of the auditory signal and noise representations [6], [22]. The method provides

good intelligibility enhancement [6], [22], [23]. Both the `1 criterion and glimpse proportion approaches

do not explicitly consider the information conveyed in a particular signal component, which should, at

least in principle, be a disadvantage compared to mutual information based approaches.

3) Measures Operating on Spectral Band Powers: The mutual information between ML and MT (6)

can be seen to correspond to a classic view of intelligibility based on band powers of the auditory filter

bank [17], [18], [24]–[27] by writing it as

I(ML;MT ) =
∑
i

ĨiAi(ξi) (7)

Ĩi =− 1

2
log(1− ρ2

0,i) (8)

Ai(ξi) =
log

(1−ρ20,i)ξi+1

ξi+1

log(1− ρ2
0,i)

. (9)

The maximum mutual information is attained at high SNR and is
∑

i Ĩi. Defining Ii = Ĩi/
∑

j Ĩj and

normalizing (7) accordingly, we recognize Ii as the so-called band-importance function and Ai(ξi) as the

so-called weighting function or band-audibility function. The formulation (7) forms the basis of speech

intelligibility measures such as the SII [18] and the Extended SII [27]. These measures are descendants

of the so-called articulation index [24], [25], a measure that predates information theory. In this classic

view, Ii characterizes the importance of frequency band i and the factor Ai is a weighting function that

indicates what fraction of the information is delivered to the listener. The information-theory derived
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form of Ai shown in (9) describes a sigmoidal function that approximates the definition of Ai in the

SII. ((9) neglects the threshold of hearing, the effect of high loudness, and the self-masking of noise.)

Our derivation of the band importance function Ii of (8) makes its dependency on the production and

interpretation noise explicit. If the relative variances of the production and interpretation noise of a

band are low (high production and interpretation SNR; ρ0,i approaches one), that band is important for

intelligibility. In the SII definition, the values of Ii are set empirically. As is shown in [15], the differences

between the formulas for the classic approach and the above information-theoretical derivation are well

within the precision of the original heuristic derivation of the classic view. The classic SII has proven

to be highly correlated with speech intelligibility in many conditions and has been used as a basis for

speech intelligibility enhancement [4], [8], [12], [28]. It is discussed in additional detail in Section III-B1.

4) Constraints on Optimization: In most cases, the optimization must be performed subject to one

or more constraints. Important constraints are the speech-like nature of the output, the signal power,

and system delay. Additional constraints may be required. For instance, for a given message MT (and

speaking rate), a longer word sequence will likely be more intelligible than a short one, thus making a

length constraint natural.

The speech-like nature, or the speech quality, of the enhanced output may require an explicit constraint.

However, in most practical systems the speech-like nature is enforced implicitly by either the modification

strategy, or the optimization criterion, or both. Modification strategies such as slowly varying spectral

shaping facilitate speech-like output only. The maximum probability of correct phoneme recognition is

an example of a criterion that favors signal features that that resemble those of clean speech.

Signal power is a natural constraint. The unconstrained optimization of signal spectral modifications

may lead to an unbounded increase of the signal power if the reduction in recognition performance of

the human auditory system for loud sounds is not considered. Thus, a power constraint must be applied

to prevent hearing injuries and loudspeaker damage. Approximations to perceived loudness, either in the

form of an analytic expression, or in the form of an algorithm, may also be used as constraints.

The system delay must be constrained in real-time systems. This may prevent the usage of particular

distortion measures and modification operators.

III. SIGNAL PROCESSING APPROACHES

In this section, the focus is on creating practical enhancement systems. We start with a discussion

of various modifications that can be made and then discuss three approaches to enhancement and their

performance. The boxes describe specific applications.
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Fig. 1: Basic structure of the auditory model presented in [21].

A. Speech Modifications

The basic paradigm of intelligibility enhancement discussed in this paper is to select a modification

operation to be used for preprocessing the signal and a measure of intelligibility, and then to adjust

the parameters of the modification operation to maximize the measure. Below, we discuss the classes of

modifications that have been used or can be used and report on current knowledge about their effectiveness.

Enhancement operators can be classified according to a number of criteria. Operators can be classified

generically as time-varying or time-invariant and as linear or non-linear. Most intelligibility enhancement

operators are time-invariant and nonlinear. However, low-level operators that use a linear filtering of the

signal [8] have been used and perform well (if the filter is adapted, the operator is nonlinear).

Additional classifications can be made based on the specific processing performed on the message.

Depending on the abstraction level where a modification takes place, we identify lexical (high-level),

prosodic (mid-level) and spectral and temporal (low level) modifications. In accordance with the Markov

chain model of the communication process, presented in Section II-A, a high-level modification affects

the message representation at the lower levels. The operator can be independent or dependent on the

environmental disturbance, i.e., it can be non-adaptive or adaptive. Finally, depending on the origin of

a modification there are i) mimicking strategies, i.e., modifications that attempt to mimick modifications

used consciously or subconsciously by humans producing speech in adverse conditions, and ii) rational

strategies based on, e.g., expert insight in the human auditory periphery and in cognition [3] or of the

sound field [16], [29].

In unpublished work of the Listening Talker (LISTA) project

(http://listeningtalker.org) 44 possible modifications were identified. This includes the modification strate-
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gies used in essentially all existing intelligibility enhancement systems. The effectiveness of some of the

listed modifications on the intelligibility in noisy environments is reviewed in [7], [9].

Making mobile phones more intelligible: Mobile telephony is often conducted

in the presence of acoustical background noise such as traffic or babble

noise. In this situation, the listener perceives a mixture of clean speech and

environmental noise from the near-end side, which generally leads to an

increased listening effort and possibly to reduced speech intelligibility. As the

noise signal generally cannot be changed, the manipulation of the far-end signal

is the only way to effectively improve speech intelligibility and to ease listening

effort for the near-end listener.

In the mobile-phone application, the algorithmic delay of the processing is

crucial since the allowed roundtrip delay of the communication system is

limited. This places a severe constraint on the modification operator. Further-

more, the restrictions of the micro-loudspeakers of mobile phones need to be

considered. The maximum thermal load of the micro-loudspeaker constitutes

a major limitation, which can be taken into account with a constraint on the

total audio power. Finally, the ear of the near-end listener is usually next to the

loudspeaker and must be protected from damage and pain. This can be ensured

by a power limitations for the critical bands.

As is discussed in

[7], [9], mimicking strate-

gies such as pitch mod-

ification, vowel space

adjustment and uniform

speaking rate reduction

do not improve in-

telligibility consistently

when applied to nat-

ural speech. This out-

come suggests that such

modifications may have

an auxiliary role or

may be the result of

physical limitations in

the speech production

mechanism. Other mim-

icking candidate modifications include changing the relative duration of phonetic units and shortening

units that are more sensitive to energetic masking in favor of more robust units. As yet no conclusions

can be drawn about the benefit from such modifications. In the remainder of this section we focus on

rational strategies.

Lexical speech modifications consist of, among others: i) repetition to provide additional cues and ii)

rephrasing to increase correct recognition probability as a result of better noise robustness and/or higher

predictability. While repetition does not facilitate intelligibility optimization, rephrasing provides an intu-

itive and attractive modification class. Section II discussed high-level modification measures that can, at

least in principle, be used for this purpose. A practical rephrasing approach is presented in [19]: rather than

comparing the measures directly, the method compares the sensitivity to noise addition of each formula-

tion, according to the probability of correct recognition. The approach does not consider the predictability

of the formulation, which is a major factor in intelligibility. An indirect indication of the expected gain

from increasing the predictability of a formulation, e.g., by vocabulary size reduction, can be obtained by
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comparing the outcomes of intelligibility evaluations using closed-set [14] and open-set vocabulary bases

[9]. The considerably higher intelligibility gain for closed-set evaluation suggests that it is feasible to de-

sign a modification system achieving intelligibility gain by improving the predictability of the formulation.

Making it work for hearing instruments:

Hearing instruments aim to compensate for a hearing loss. Typically, this is

done by amplifying a sound recording, followed by dynamic range compres-

sion to ensure the signal remains within the audible and comfortable range.

Environmental noise degrades intelligibility for hearing instrument users in

two ways. A first degradation is due to noise recorded by the microphones.

To decrease the impact of this noise, noise reduction is applied to the recorded

signal prior to amplification for hearing loss compensation.

A second degradation depends on the fitting: the user may experience direct

environmental noise, leaking through the hearing instrument vent. This leakage

degrades the intelligibility and can be overcome by processing the signal with

the application of a speech intelligibility enhancement algorithm before play-

out as discussed in the main text.

Adopting the concept of interpretation noise, the patient’s hearing loss can

be measured and modeled by the noise process vL. The environmental noise

that reaches the ear through the hearing instrument vent can be modeled by

the process vE of (4). Dynamic range compression can be taken into account

by expressing the desired output range in terms of (frequency dependent)

absolute power constraints. Given this model, the hearing instrument can be

optimized using one of the measures discussed in Sec. II-B3 in a constrained

fashion. The resulting integrated solution compares favorably with an ad-hoc

concatenation of processing steps, facilitates a conceptual understanding of

the hearing impairment and is likely to lead to an effective control of the

instrument.

Low-level modifica-

tions do not require

knowledge of the in-

tended message tran-

scription. These can be

subdivided into spec-

tral, temporal, and spa-

tial signal modifications

as well as combinations

there-of.

Straightforward spec-

tral shaping is em-

ployed in [8], [12]. This

modification facilitates

both low complexity

and a high intelligibility

gain, e.g., [9] making

these approaches par-

ticularly suitable for ap-

plication in mobile tele-

phony.

Spectro-temporal en-

ergy redistribution is

considered in [6] where the glimpse proportion is optimized. Use of a genetic algorithm to perform the

optimization makes this method interesting primarily from a theoretical perspective. A low-complexity

approach with high intelligibility gain that performs spectro-temporal energy redistribution by optimizing

a perceptual distortion measure is presented in [14].

A particular class of spectro-temporal energy redistribution is obtained with dynamic range com-
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pression. This approach can either be non-adaptive or adaptive. In a large-scale subjective evaluation

of proposed speech modification systems [9], most of the entries that incorporated dynamic range

compression, including those related to the descriptions in [5], [23], [28], performed well.

Intelligibility can also be enhanced by controlling the spatial soundfield near the ear with a multitude

of remote loudspeakers. As discussed in more detail in section III-B3, if users are wearing microphones

near their ears, reverberation and cross-talk between different messages can be reduced by feedback [16].

The goal is that only the desired signal is present at the ear of a user. If microphones are further from

the ears of the listeners, the emerging field of multi-zone audio rendering becomes relevant, e.g., [29].

B. Intelligibility Enhancement Systems

This section describes three practical methods for intelligibility optimization approaches. The described

approaches are based on different principles.

1) SII based Enhancement: State-of-the-art systems have been developed based on the decomposition

into band-importance and band-audibility functions [4], [8], [28]. We provided a recent perspective on

this decomposition in Section II-B3. The present section describes implementations that closely follow

the SII standard.

The computation of the SII [18] uses a carefully calibrated specification of the speech spectrum σ2
aT,i

and the noise spectrum σ2
vE,i

(where i is a critical or third-octave band index) as measured over an entire

utterance, including minor pauses. The approach accounts for both the hearing threshold and the loss

of intelligibility at very high presentation (loudness) levels, using information stored in tables. For an

acoustic time-domain speech signal aT , the equivalent speech spectrum level in dB, commonly denoted

as Ei, is computed as

Ei = 10 log10(
σ2
aT,i

f∆,i
)− 10 log10(σ2

0), (10)

where σ2
0 denotes the digital reference power per Hz corresponding to the reference sound pressure

of 20 µPa and f∆,i is the frequency bandwidth of the i-th subband in Hz. The equivalent disturbance

spectrum level, Di, is computed in three steps: first the calibration (10) is applied, and then the threshold

of hearing and instantaneous masking are accounted for. In [4] the threshold of hearing and in [8] both

the threshold of hearing and instantaneous masking are neglected.

The band-audibility function of the SII also accounts for the decrease in intelligibility at high pre-

sentation (loudness) levels, which is not accounted for in (9). Consequently, it depends on both the

SNR in the band and the absolute presentation level Ei. The band-audibility function is identical for
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different bands and we denote it for a band i as A(Ei, Di). Let us define the piecewise linear sigmoid

S(x;β1, β2) = (max(min(x, β2), β1)− β1) /(β2 − β1), which has a range [0, 1]. The band audibility

function of the SII is factorized into two factors: the first factor accounts for the instantaneous masking

and the second factor accounts for high presentation levels:

A(Ei, Di) = S(Ei;Di − 15, Di + 15)S(−Ei;−Ui − 170,−Ui − 10), (11)

where Ui is the standard speech level at normal voicing effort (provided in a table in the standard). The

heuristic factor S(Ei;Di − 15, Di + 15) assumes that speech signals 15 dB below the disturbance level

are fully masked, and speech signals 15 dB above the disturbance level are not masked, which leads to

a curve similar to the result derived in (9).

The SII is a refined and normalized version of (7) that accounts for decreased intelligibility at high

presentation levels:

SII =
∑
i

IiA(Ei, Di) . (12)

The band-importance function Ii in the SII is specified by a table that is based on fitting to a database.

Fig. 2 illustrates the computation of the SII. The suppression of the audibility function at high presentation

levels is clearly shown in the panel showing the audibility function (11).

The measure (12) can be used to optimize a modification operator that shapes the spectrum. As the

intelligibility decreases both at high and low presentation levels, the SII criterion can, in principle, be

optimized without constraint. It is seen from (12) that if there is no global constraint, each frequency

band can be optimized independently. The resulting solutions are not necessarily unique because of the

form of S. It is natural to select the solution that has the lowest power, but does not reduce the speech

power in any band. For low absolute noise levels, where the solution is not limited by the second factor

in (11), the solution for the gain is [4]

gi = max (Di + 15, Ei)− Ei, (13)

where the shaping gain gi for band i is given in dB. In (13) the original equivalent speech spectrum level

is Ei and the modified speech has equivalent speech spectrum level gi + Ei.

As was discussed in section II-B4, it is common to constrain the overall loudspeaker signal power in

practical applications. The optimization of (12) subject to a power constraint was studied in [4] and [8].

To facilitate analysis, the two approaches use approximations of (12). Althought the approximations are

different, both neglect the second factor in (11) and start from A(Ei, Di) ≈ S(Ei;Di− 15, Di + 15). [4]

simplifies A(Ei, Di) further by removing the lower bound on the sigmoid and writing A(Ei, Di) ≈ 1
2 +
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Fig. 2: The computation of the SII.

min(Ei−Di, 15)/30. [8], on the other hand, makes the approximation A(Ei, Di) ≈ 10Ei/10/(10Ei/10 +

10Di/10), which is a differentiable function. When writing the above expressions for the modified

speech, the audibility-function approximations are concave functions of the (linear) spectral gain 10gi/10.

Optimizing the approximations subject to linear constraints on 10gi/10 form straightforward optimization

problems that can be solved using the Karush-Kuhn-Tucker conditions. The resulting analytic solutions

are easy to implement. The later work of [8] models A(Ei, Di) more accurately at low SNR values and

provides improved performance over the original work of of [4] under low SNR conditions.

The discussion in this section assumed stationarity. Time variation can be accounted for by recursive

updating of the equivalent spectrum levels Ei and Di and periodically recomputing the gains gi [4]. This

is consistent with the SII update described in [27], which uses frequency-dependent temporal windows.

2) Word-sequence Probability based Enhancement: Section II-A identified the suitability of the ex-

pected probability of correct message recognition as a measure for optimizing intelligibility at a high

level of abstraction. We noted in Section II-B1 that, under an ergodicity assumption, the expectation over

messages can be approximated by averaging over time. Optimizing a measure derived from the probability

of correct recognition under a power constraint has been shown to provide significant intelligibility gain

assuming that accurate sound segmentation information and an appropriate acoustic speech model are

available [11]. We emphasize that the method assumes that ASR word probability tracks the human

recognition performance, which was found to be true in [11] but is not guaranteed. In this subsection we
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provide more detail about this approach.

To make high-level machine-based optimization feasible in practice, we can represent the message at the

phoneme level. This means we refine our Markov chain to include an intermediate level. The chain now

becomes MT → uT → aT → aL → uL →ML, where uT and uL denote the talker and lister phoneme

sequences, respectively. By first performing time alignment of a sequence of acoustic features vectors

aT and a sequence of phonemes uT by means of an ASR engine, a practical intelligibility enhancement

approach can be defined. The ASR speech model can then be used to provide the probability densities

that characterize clean speech sounds in the acoustic feature space.

To enhance intelligibility, we want to find the parameters C∗ of our speech modification scheme that

maximize the average probability that the listener interpreted phoneme sequence uL is the talker-generated

sequence uT :

C∗ =argmax
C

puL|uT
(uT |uT , C) (14)

where the subscripts of the density label the density it represents. Note that the densities are consistent

with the models shown in (4).

Simplifications were introduced in [11] to make the optimization tractable. It was tacitly assumed that

the message is accurately represented by the phonemes and production noise was not formally considered.

It was also assumed that vE (the representation of the noise) can be approximated as deterministic,

which is reasonable for typical acoustic signal representations and stationary noise. The only remaining

uncertainty is due to the interpretation noise in the mapping from aL to uL. In an ASR system based on

an HMM this is modeled by the observation noise. Eq. (14) can now be approximated by:

C∗ ≈argmax
C

puL|âL
(uT |âL(uT , C)) , (15)

=argmax
C

pâL|uL
(âL|uT , C) puL

(uT )
(∑

u′T
pâL|uL

(âL|u′T , C)puL
(u′T )

)−1
, (16)

where we used Bayes’ rule and where âL(uT , C), abbreviated to âL, is the set of acoustic features observed

by the listener, which is modeled as a deterministic function of the talker phoneme sequence uT and the

speech modification parameters C. The first term of (16) is the likelihood of the talker phoneme sequence

for the observed features âL, the second term is the a-priori probability that the phoneme sequence uT

is decoded by the listener, and the third term is the inverse a-priori probability of the listener observed

features. Optimization of the likelihood term only reduces complexity and provides good results [11].

The theory is simplest to implement if the sequences are considered stationary. Averaging of (16) over

long time intervals (multiple sentences) is then preferred. In a practical implementation, shortcuts may
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Fig. 3: Intelligibility enhancement using a phoneme-level measure.

have to be made due to requirements on delay and complexity and because the stationarity assumption

may not be sufficiently accurate.

A system-level perspective of the proposed approach is shown in Figure 3. In [11], the approach

was validated for a combination of two modifications: prosody-affecting phoneme gain adjustment and

a spectral modification redistributing the signal energy across frequency bands. The method compared

favorably to a method based on the optimization of a measure operating on a sequence of auditory states

[14], discussed in Sec. II-B2. Results reported in [9] suggest that using the full Bayesian approach rather

than optimizing only the likelihood component of (16) improves performance.

In text-to-speech applications it may be possible to select from a set of phrases to convey a particular

message. The measure given in (16) has also been used to determine the optimal phrasing of utterances

[19]. This study indicates that maximizing the probability of correct interpretation of the phoneme

sequence increases intelligibility. Taking into consideration prior information on the predictability of

the various formulations is expected to enhance performance further.

3) Enhancement over Multiple Spatial Points: Thus-far we have considered preprocessing techniques

that do not consider the spatial aspects of the rendering scenario. In this section we show that spatial

aspects can also be exploited to enhance intelligibility. In announcement scenarios in public spaces such

as airports, train stations or shopping malls, environmental noise and reverberation contribute to a reduced

intelligibility at the listeners. If different messages are communicated to different spatial regions, acoustic

leakage between regions [16] exacerbates the problem. The impact on intelligibility is particularly large

for hearing-impaired persons.

Consider a scenario in a public environment where N messages are conveyed via the public address
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(PA) system to N listeners wearing a hearing instrument. A possibility is to downstream the corresponding

signals directly to the listeners, but listeners often wear an open fit (non-occluded) hearing instrument,

where the direct signal also is mixed in at the eardrum. Instead of using direct downlink connections, it is

possible to pre-process all speech signals jointly at the PA system so as to minimize the expected distortion

at the eardrums of the listeners. The distortion measure can be based on any (mathematically well-behaved)

model for speech quality or intelligibility, such as some of the models discussed in Sec. II-B.

Let aT = [aT,1, aT,2, . . . , aT,N ]T, ãT and aL (defined similarly) be the (complex-valued) short-time

DFT coefficients of the source speech signals, enhanced signals (at the PA system), and received signals

at the listeners, respectively. The signals aL are captured by the microphones of the hearing instruments.

For simplicity, we neglect production and interpretation noises of Sec. II-A and assume that degradations

are purely acoustical and consist of noise, reverberation and crosstalk between messages. It is easy to see

that if we use stacked-vector notation for the signals aT,i and aL,i, i = 1, 2, . . . , N , upon pre-processing,

all effects can be included in the affine signal model given by [16]

aL = HE ãT + vE , (17)

where the channel matrix HE collects all reverberation and crosstalk transfer coefficients between

production and reception points, and vE is additive noise in the environment.

Consider also a distortion measure d(aT , aL), smooth (continuously differentiable) as a function of

aL, which quantifies the distortion between the reference produced coefficients aT and what is eventually

listened to, aL. Our aim is to find the modification aT 7→ ãT that minimizes the expected distortion

according to d, jointly for all talker-listener points, i.e., we want to solve the optimization problem

minimize
ãT

E[d(aT ,HE ãT + vE)] , (18)

where the expectation is taken only over the acoustic disturbances HE , vE , since we have direct access

to the speech of the talker aT and therefore take it to be deterministic.

Generic necessary conditions can be derived for solving (18) in terms of a functional description of

the distortion measure d. The conditions are [16]

E

[
HH

E

∂d

∂a∗L
(aT ,HE ãT + vE)

]
= 0 , (19)

where (·)H is the hermitian transpose, and ∂
∂v∗ ≡

1
2

(
∂
∂v<
− 1

j
∂
∂v=

)
is a complex differential operator,

expressed in terms of the real differential operators ∂
∂v<

and ∂
∂v=

, in Hessian (vertical) notation, with

respect to the real and imaginary components of the variable v, respectively. The meaning of (19) is that,
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for optimality, it is required to choose the pre-processed speech ãT such as to make the complex gradient

of the distortion measure with respect to the listener DFT bins in all zones orthogonal to all columns of

the channel matrix HE .

To demonstrate the use of the optimality conditions (19), let us consider the simple `2 distortion

measure given by

d(aT , aL) = ‖aL − aT ‖2 , (20)

where ‖ · ‖ is the `2 norm. In this case, (18) is a convex optimization problem, so that (19) are also

sufficient conditions. By using the optimality conditions (19) under the assumption that HE and vE are

uncorrelated, and including the hybrid deterministic-stochastic model for HE introduced in [16], where

the early response is described solely by a deterministic direct path and the late response is modeled by

an exponentially fading stochastic process, the pre-processing algorithm is derived as

ãT =
(
DHD + Λ

)−1
DHaT , (21)

where D is a matrix collecting direct path responses of the channel, and Λ is a diagonal matrix collecting

diffuse reverberation response channel energies. Note that in the case of low reverberation, Λ → 0,

the scheme (21) reduces to a conventional acoustic crosstalk canceller [30], ãT = D−1aT , which by

compensating for the direct paths of the channel HE , makes the cross-signals cancel out at the listeners.

We thus conclude that optimization-based multipoint pre-processing enhancement as formulated in (18)

leads to acoustic crosstalk cancellation, when applied to the `2 distortion measure (20).

IV. CONCLUSIONS / OPEN PROBLEMS

Modern speech communication often leads to the signal being rendered by a machine in a noisy

environment. In these circumstances, communication benefits from methods that make speech more

intelligible in noise, particularly if the enhancement can adapt to the scenario at hand. This requires

quantitative models of the communication process and distortion measures.

The use of a distortion measure facilitates the formulation of convergent algorithms and generally

reduces the need for ad-hoc solutions. Measures formulated at a high level of abstraction, such as (1) and

(3) apply, at least in principle, to all communication tasks. However, when these high-level measures are

applied to specific tasks assumptions must be made, either for the signal or for a model of the human

cognitive system (e.g., by an ASR system), or both. Thus, optimization of any measure can never replace

the need of extensive real-world testing to verify the performance of an intelligibility-enhancement system

for the task at hand.
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At first sight the intelligibility-enhancement problem resembles the standard problem of transmission

over a noisy channel. However, we have shown that the unprecise nature of the human production and

interpretation must be accounted for. When that is done, standardized measures for intelligibility, which

have a long history and were derived heuristically, are found to be consistent with communication theory.

While the field of intelligibility enhancement has developed rapidly, opportunities for significant

improvement remain. Careful accounting for time-domain masking may improve performance. Methods

developed for scenarios with additive noise only must be extended to include reverberation. Refining

methods that perform spectral shaping to include range compression may increase their performance. For

methods based on mutual information, the effect of time and frequency dependencies must be considered.

Studies to determine the best representation (e.g., cepstra or DFT coefficients) and the determination and

usage of appropriate noise distributions for the model likely will lead to improvement. The determination

of a word choice for a message that is more robust to noise is an essentially unsolved task.

Although major challenges remain, the field of intelligibility enhancement has made major strides in

recent years. The technical outcomes will likely become an integral part of speech-rendering devices in

the near future, leading to improved communication among humans and from machines to humans.
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