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We consider optimization of the linear stability of synchronized states between a pair of weakly coupled

limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are

allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different

components of the oscillator states that maximizes the linear stability of the synchronized state under given

constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear

stability is illustrated by using several types of limit-cycle oscillators as examples.
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I. INTRODUCTION

Synchronization of nonlinear oscillators is widely observed

and often plays important functional roles in a variety of

real-world systems [1–9]. Exploration of efficient methods for

realizing stable synchronization between coupled oscillators or

between oscillators and driving signals is both fundamentally

and practically important. Improvement in the efficiency of

collective synchronization in networks of coupled oscillators

has been studied extensively in the literature [10–19] for both

Kuramoto-type phase models and chaotic oscillators, where

optimization of coupling networks connecting the oscillators

has been the main target.

In the analysis of synchronization dynamics between

weakly coupled nonlinear oscillators undergoing limit-cycle

oscillations, the phase reduction theory has played a dominant

role [4–7,20–22]. It allows us to simplify the dynamics of

a pair of limit-cycle oscillators with weak coupling to a

simple scalar equation for their phase difference. The phase

reduction theory, originally developed for finite-dimensional

smooth limit-cycle oscillators, has recently been generalized

to nonconventional limit-cycling systems such as collectively

oscillating populations of coupled oscillators [23], systems

with time delay [24–26], reaction-diffusion systems [27],

oscillatory fluid convection [28], and hybrid dynamical sys-

tems [29]. Recently, methods for optimizing periodic external

driving signals for efficient injection locking and controlling

of a single nonlinear oscillator (or a population of uncoupled

oscillators) have also been proposed on the basis of the phase

reduction theory [30–41]. In this study, we consider a pair

of coupled limit-cycle oscillators, and we try to optimize

the linear stability of the synchronized state using the phase

reduction theory.

In the analysis of mutual synchronization of coupled

oscillators, linear diffusive coupling between the oscillators

*Author to whom all correspondence should be addressed:

nakao@mei.titech.ac.jp

is a common setup. However, in most cases, only the same

vector component of the state variables can interact between

the oscillators; different vector components of the oscillator

states are usually not allowed to interact. In this study,

we analyze a pair of oscillators with weak cross coupling,

where different vector components of the oscillator states

are allowed to interact, that is, differences in each vector

component of the oscillator states can be feedbacked to

every other component with a linear gain specified by a

coupling matrix, and we optimize the coupling matrix so

that the linear stability of the mutually synchronized state is

maximized.

We use the phase reduction theory to simplify the dynamics

of a pair of weakly coupled limit-cycle oscillators to a

scalar equation for the phase difference, and we use the

method of Lagrange multipliers to derive the optimal coupling

matrix for the cases with and without frequency mismatch

between the oscillators. Using three examples of simple

limit-cycle oscillators, we illustrate that the linear stability of

the synchronized state is actually improved and also that the

stationary phase difference can be controlled by appropriately

choosing the coupling matrix.

This paper is organized as follows: in Sec. II, we introduce

the coupled-oscillator model and derive the equation for the

phase difference by using the phase reduction theory. In

Sec. III, we formulate the optimization problem for improving

linear stability of the phase-locked states. In Sec. IV, the

theoretical results are illustrated by several examples of

limit-cycle oscillators. Section V contains a summary and

discussion.

II. MODEL

In this section, we introduce a pair of nearly identical

limit-cycle oscillators with weak cross coupling, we reduce

the dynamical equations to coupled phase equations by using

the phase reduction theory [4–7,20–22], and we derive the

equation for the phase difference.
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A. A pair of cross-coupled oscillators

We consider a pair of weakly and symmetrically coupled,

nearly identical limit-cycle oscillators described by

Ẋ1(t) = F1(X1) + ǫK(X2 − X1),

Ẋ2(t) = F2(X2) + ǫK(X1 − X2), (1)

where X1 and X2 are the m-dimensional state vectors of the

oscillators 1 and 2, respectively, F1 and F2 are m-dimensional

vector-valued functions representing the dynamics of the

oscillators, K is an m × m matrix of coupling intensities

between the components of the state variables, and ǫ is a small

positive parameter (0 < ǫ ≪ 1) indicating that the interaction

is sufficiently small.

Here, although the oscillators are “diffusively” coupled,

we assume that the matrix K is generally not diagonal and

can possess nondiagonal elements. That is, differences in

each vector component of the oscillator states are returned to

other components as feedback signals with appropriate gains.

Therefore, different components of the state variables of the

oscillators can mutually interact. This makes it possible to

improve the stability of the synchronized state by adjusting

the nondiagonal elements of the coupling matrix, exceeding

the stability that is achievable only with the diagonal coupling.

We assume linear diffusive coupling in the following, but the

argument can be straightforwardly generalized to nonlinear

coupling; see Sec. V.

We assume that the properties of the oscillators are nearly

identical, and their difference is O(ǫ). That is, the functions

F1,2 can be split into a common part F and deviations f 1,2 as

F1,2(X) = F(X) + ǫ f 1,2(X), (2)

where F, f 1, and f 2 are assumed to be O(1). We also assume

that the common part of the oscillator dynamics, Ẋ(t) = F(X),

possesses a stable limit-cycle solution X0(t) = X0(t + T ) of

period T and frequency ω = 2π/T , and that the dynamics

of the oscillator is only slightly deformed and persists even

if small perturbations from the deviations f 1,2 and mutual

coupling are introduced. These assumptions are necessary for

the phase reduction that we rely on in the present study.

B. Phase reduction

Under the above assumptions, we can simplify the dynam-

ics of the coupled oscillators to coupled phase equations by

applying the phase reduction theory [4–7,20–22]. That is, we

introduce a phase θ (0 � θ < 2π ) of the oscillator state near

the limit-cycle solution X0(t) that increases with a constant

frequency ω in the absence of perturbations, and we represent

the oscillator state on the limit cycle as a function of the phase

θ (t) as X0(θ (t)).

In the present case, we introduce phase variables θ1,2 of the

two oscillators, represent the oscillator states near the limit-

cycle orbit as X1,2(t) = X0(θ1,2(t)) + O(ǫ) as functions of

θ1,2(t) at t , and approximately describe their dynamics by

using only θ1,2. By following the standard phase reduction and

averaging procedures, we can derive a pair of coupled phase

equations, which are correct up to O(ǫ), as

θ̇1(t) = ω1 + ǫŴ(θ1 − θ2),

θ̇2(t) = ω2 + ǫŴ(θ2 − θ1). (3)

The frequencies ω1,2 of the oscillators are given by

ω1,2 = ω + ǫ
1

2π

∫ 2π

0

Z(ψ) · f 1,2(X0(ψ))dψ

= ω + ǫ〈Z(ψ) · f 1,2(X0(ψ))〉ψ (4)

and the phase-coupling function Ŵ(φ) is given by

Ŵ(φ) =
1

2π

∫ 2π

0

Z(φ + ψ) · K{X0(ψ) − X0(φ + ψ)}dψ

= 〈Z(φ + ψ) · K{X0(ψ) − X0(φ + ψ)}〉ψ . (5)

Here, we introduced an abbreviation for the average over phase

from 0 to 2π ,

〈A(ψ)〉ψ =
1

2π

∫ 2π

0

A(ψ)dψ, (6)

where A(ψ) is a 2π -periodic function of ψ . In the following,

without loss of generality, we assume that ω1 � ω2, and we

denote the frequency difference between the oscillators as

ǫ	ω = ω1 − ω2 � 0, where 	ω is O(1).

The function Z(θ ) in Eqs. (4) and (5) is a phase sensitivity

function of the limit cycle X0(θ ) of the common part,

Ẋ(t) = F(X). It is given by a 2π -periodic solution to the

adjoint equation ∂ Z(θ )/∂θ = −J (θ )T Z(θ ), where J (θ ) is a

Jacobi matrix of the vector field F(X) at X = X0(θ ) and

the superscript T denotes the matrix transpose, and it is

normalized as Z(θ ) · F(X0(θ )) = ω. By using the adjoint

method by Ermentrout [7,20,21], i.e., by backwardly evolving

the adjoint equation with occasional renormalization, Z(θ ) can

be calculated numerically.

For convenience, we rewrite the phase-coupling function as

Ŵ(φ) = 〈Z(φ + ψ) · K{X0(ψ) − X0(φ + ψ)}〉ψ
= Tr[KW (φ)T], (7)

where

W (φ) = 〈Z(φ + ψ) ⊗ {X0(ψ) − X0(φ + ψ)}〉ψ (8)

is a correlation matrix between the vector components of the

phase sensitivity function and the state difference between the

oscillators. Here, the symbol ⊗ represents a tensor product,

and Tr denotes the trace of a matrix. See Appendix 1 for

the definition and related matrix formulas. Because X0(θ )

and Z(θ ) are 2π -periodic functions, Ŵ(φ) and W (φ) are also

2π -periodic.

C. Stability of the synchronized state

From Eq. (3), the phase difference φ = θ1 − θ2 (restricted

to −π � φ � π hereafter) between the two oscillators obeys

φ̇ = ǫ{	ω + Ŵa(φ)}, Ŵa(φ) = Ŵ(φ) − Ŵ(−φ). (9)

Here, Ŵa(φ) is the antisymmetric part of the phase-coupling

function Ŵ(φ); it is also 2π -periodic and satisfies Ŵa(0) =
Ŵa(±π ) = 0. Therefore, if 	ω satisfies −maxφŴa(φ) <

	ω < −minφŴa(φ), Eq. (9) has at least one stable fixed
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point at the phase differences satisfying 	ω + Ŵa(φ) = 0. We

denote one such fixed point as φ∗.

From Eq. (9), the linear stability of φ∗ is given by ǫŴ′
a(φ∗),

where Ŵ′
a(φ∗) is the slope of Ŵa(φ) at φ = φ∗. Thus, if a fixed

point φ = φ∗ satisfies

	ω + Ŵa(φ∗) = 0 (10)

and

Ŵ′
a(φ∗) =

d

dφ
Ŵa(φ)

∣

∣

∣

∣

φ=φ∗
< 0, (11)

the phase difference φ can take a stationary value, and the

two oscillators can mutually synchronize, or phase-lock to

each other, with a stable phase difference φ = φ∗ (within the

phase-reduction approximation).

By defining a new matrix

V (φ) = W (φ) − W (−φ), (12)

the antisymmetric part of the phase-coupling function and its

slope can be expressed as

Ŵa(φ) = Tr{KV (φ)T},
d

dφ
Ŵa(φ) = Tr{KV ′(φ)T}, (13)

where V ′(φ) represents the derivative of V (φ) with respect to

φ. Using 2π -periodicity of Z(θ ) and X0(θ ), the matrices V (φ)

and V ′(φ) can be expressed as

V (φ) = 〈{Z(φ + ψ) − Z(−φ + ψ)} ⊗ X0(ψ)〉ψ (14)

and

V ′(φ) = W ′(φ) + W ′(−φ)

= 〈{Z′(φ + ψ) + Z′(−φ + ψ)} ⊗ X0(ψ)〉ψ , (15)

where the derivative of W (φ) with respect to φ is given by

W ′(φ) =
d

dφ
W (φ) = 〈Z′(φ + ψ) ⊗ X0(ψ)〉ψ . (16)

See Appendix 2 for the calculations. We use these expressions

in the next section.

III. OPTIMIZING THE COUPLING MATRIX

In this section, we derive the optimal coupling matrix

Kopt for stable synchronization (phase-locking) of the two

oscillators.

A. Optimality condition and constraint on the coupling matrix

Our aim is to maximize the linear stability of the syn-

chronized (phase-locked) state, characterized by −ǫŴ′
a(φ∗),

by adjusting the coupling matrix K . Other types of optimality

conditions for synchronization have also been considered

in the literature for nonlinear oscillators driven by periodic

signals, such as maximization of the frequency difference

between the oscillator and signal for fixed coupling intensity

[31,35], and minimization of the phase diffusion constant

under the effect of noise [39], in addition to the maximization

of linear stability [32–34] that we generalize to coupled

oscillators in the present study [42].

We first consider the simple case in which the two

oscillators are identical and share the same frequency, and

we optimize the stability of the in-phase synchronized state

with zero phase difference, φ∗ = 0. We then consider the

general case with a frequency mismatch 	ω � 0 and optimize

the stability of the synchronized state with a given stationary

phase difference φ∗, which is not necessarily 0. In both cases,

as a constraint on the overall connection intensity between the

oscillators, we fix the Frobenius norm (see Appendix 1) of

the coupling matrix K as ‖K‖2 = P , where P > 0 is a given

constant. In the latter case, the stationary phase difference φ∗

is also constrained.

B. Optimization for identical oscillators

without a frequency mismatch

We first consider the simple case in which the oscillators

are identical, F1 = F2, and their frequencies are equal to each

other, ω1 = ω2 = ω and 	ω = 0. In this case, the in-phase and

anti-phase-synchronized states φ∗ = 0 and φ∗ = π are always

stationary solutions to Eq. (9) because Ŵa(0) = Ŵa(±π ) = 0.

We thus try to find the coupling matrix K that gives the

maximum of linear stability of φ∗ = 0,

−ǫŴ′
a(0), (17)

subject to the constraint on the Frobenius norm of K ,

‖K‖2 = P (P > 0). (18)

Because ǫ > 0, we divide this quantity by ǫ and simply try to

maximize

−Ŵ′
a(0) = −

d

dφ
Ŵa(φ)

∣

∣

∣

∣

φ=0

, (19)

which we also call “linear stability” for simplicity in the

following. We introduce an action,

S(K,λ) = −
d

dφ
Ŵa(φ)

∣

∣

∣

∣

φ=0

+ λ(‖K‖2 − P )

= −Tr (KV ′(0)T) + λ(‖K‖2 − P ), (20)

where λ is a Lagrange multiplier. The first term of S represents

the stability of the fixed point, and the second term represents

the constraint.

By differentiating S by K and λ, we obtain

∂

∂K
S(K,λ) = −V ′(0) + 2λK = 0 (21)

and the constraint ‖K‖2 = P . Therefore, the optimal K should

satisfy

K =
1

2λ
V ′(0). (22)

Plugging this K into Eq. (18) yields

λ = ±
1

2
√

P
‖V ′(0)‖. (23)

It turns out that the negative sign should be chosen [see

Eq. (26)], so that the optimal coupling matrix is given by

Kopt = −
√

P
V ′(0)

‖V ′(0)‖
. (24)
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The antisymmetric part of the phase-coupling function with

this Kopt is given, from Eq. (13), by

Ŵa(φ) = Tr{KoptV (φ)T} = −
√

P

‖V ′(0)‖
Tr{V ′(0)V (φ)T} (25)

and the optimal linear stability of the in-phase fixed point

φ = 0 is given by

−Ŵ′
a(0) = −Tr{KoptV

′(0)T} =
√

P ‖V ′(0)‖. (26)

C. Optimization for nonidentical oscillators

with frequency mismatch

We next consider the general case with nonidentical oscil-

lators with a frequency mismatch 	ω � 0. We constrain the

Frobenius norm of K as ‖K‖2 = P as before, and also require

that the given φ∗ satisfies Eq. (29), i.e., 	ω + Ŵa(φ∗) = 0,

so that φ∗ is actually the stationary phase difference of the

oscillators.

We thus seek the optimal coupling matrix Kopt that

maximizes

−Ŵ′
a(φ∗) = −

d

dφ
Ŵa(φ)

∣

∣

∣

∣

φ=φ∗
, (27)

now for a given stationary phase difference φ∗, subject to

‖K‖2 = P (P > 0) (28)

and

	ω + Ŵa(φ∗) = 0. (29)

Here, we exclude the cases with φ∗ = 0 and φ∗ = ±π ,

because these states can never be realized when 	ω > 0,

as we argue later (the case with 	ω = 0 and φ∗ = 0 was

already considered in the previous subsection, and 	ω = 0

and φ∗ = ±π can be analyzed similarly).

Using Lagrange multipliers λ and μ, we introduce an action

[in the rest of this subsection, shorthand notations V∗ = V (φ∗)

and V ′
∗ = V ′(φ∗) are used],

S(K,λ,μ) = −
d

dφ
Ŵa(φ)

∣

∣

∣

∣

φ=φ∗
+ λ(‖K‖2 − P )

+μ(	ω + Ŵa(φ∗))

= −Tr(KV
′T
∗ ) + λ(‖K‖2 − P )

+μ(	ω + Tr(KV T
∗ )). (30)

Differentiating S by K , λ, and μ, we obtain

∂

∂K
S(K,λ,μ) =−V ′

∗ + 2λK + μV∗ = 0 (31)

and the two constraints, Eqs. (28) and (29). Thus, the optimal

K should satisfy

K =
1

2λ
(V ′

∗ − μV∗), (32)

and plugging this into Eq. (29) yields

	ω +
1

2λ
Tr(V ′

∗V
T
∗ ) −

μ

2λ
‖V∗‖2 = 0. (33)

Solving this equation for μ, we obtain

μ =
2λ	ω + Tr(V ′

∗V
T
∗ )

‖V∗‖2
(34)

and therefore

Kopt =
1

2λ

(

V ′
∗ −

2λ	ω + Tr(V ′
∗V

T
∗ )

‖V∗‖2
V∗

)

, (35)

where λ has yet to be determined from the constraint on the

Frobenius norm.

Plugging this Kopt into ‖K‖2 = P and using Tr(V ′V T) =
Tr(V V ′T), we obtain

4((	ω)2 − ‖V∗‖2P )λ2 + ‖V ′
∗‖

2‖V∗‖2 − [Tr(V ′
∗V

T
∗ )]2 = 0,

(36)

which gives

λ = ±
1

2

√

‖V ′
∗‖2‖V∗‖2 − [Tr(V ′

∗V
T
∗ )]2

‖V∗‖2P − (	ω)2
. (37)

It turns out that the minus sign should be chosen to maximize

the linear stability (see below).

Note here that ‖V ′
∗‖‖V∗‖ � Tr(V ′

∗V
T
∗ ) holds by the

Schwartz inequality (see Appendix 1), so the condition

P >
(	ω)2

‖V∗‖2
(38)

is necessary for λ and hence Kopt to exist. Note also that

‖V ′
∗‖‖V∗‖ > Tr(V ′

∗V
T
∗ ) (39)

should hold strictly for the existence of Kopt in Eq. (35), that

is, ‖V ′
∗‖‖V∗‖ should not be equal to Tr(V ′

∗V
T
∗ ), because then

λ = 0 and Kopt does not exist. Therefore, the optimization

problem cannot be solved in the case in which V ′
∗ and V∗ are

parallel to each other.

The antisymmetric part of the phase-coupling function for

Kopt is given by

Ŵa(φ) = Tr{KoptV (φ)T}

=
1

2λ
Tr{V ′

∗V (φ)T} −
1

2λ

Tr(V ′
∗V

T
∗ )

‖V∗‖2
Tr{V∗V (φ)T}

−
	ω

‖V∗‖2
Tr{V∗V (φ)T} (40)

and the maximal possible linear stability is given by

− Ŵ′
a(φ∗) = −Tr(KoptV

′T
∗ )

= −
1

2λ‖V∗‖2
{‖V ′

∗‖
2‖V∗‖2 − [Tr(V ′

∗V
T
∗ )]2}

+
	ω

‖V∗‖2
Tr(V ′

∗V
T
∗ ). (41)

Because ‖V∗‖2 > 0 and ‖V ′
∗‖2‖V∗‖2 − [Tr(V ′

∗V
T
∗ )]2 � 0, the

first term is positive only when λ < 0. Therefore, the minus

sign should be chosen for λ in Eq. (37) to realize the maximal

stability, and the optimal coupling matrix is given by Eq. (35)

with the negative λ.

012223-4



OPTIMIZING STABILITY OF MUTUAL . . . PHYSICAL REVIEW E 96, 012223 (2017)

Note that even if we choose the minus sign for λ, the above

quantity can still be negative if the second term on the right-

hand side is negative, i.e., Tr(V ′
∗V

T
∗ ) < 0. If so, the fixed point

with phase difference φ∗ is unstable and cannot be realized.

Thus, in this case, as can be shown by comparing the two

terms on the right-hand side of Eq. (41), P should additionally

satisfy

P >
(	ω)2

‖V∗‖2 − [Tr(V ′
∗V

T
∗ )]2/‖V ′

∗‖2
(42)

for φ∗ to be linearly stable.

Depending on the conditions, the present optimization

problem may or may not possess an appropriate solution.

For example, when 	ω 
= 0, it is impossible to realize

completely in-phase (φ∗ = 0) or antiphase (φ∗ = ±π ) syn-

chronization, because Ŵa(φ) satisfies Ŵa(0) = Ŵa(±π ) = 0, so

	ω + Ŵa(φ) = 0 can never be satisfied at φ = 0 or φ = ±π .

Also, when 	ω 
= 0, it is generally difficult (very large P

is required) to realize the synchronized state with a stationary

phase difference φ∗ very close to 0 or π . This will be illustrated

in the next section. The equation 	ω + Ŵ(φ) = 0 may also

have multiple solutions, so not only the fixed point with the

given phase difference but also spurious fixed points with other

phase differences may arise.

IV. EXAMPLES

In this section, we illustrate the improvement in the linear

stability of coupled oscillators by optimizing K with a few

types of limit-cycle oscillators as examples.

A. Stuart-Landau oscillator

As the first example, we consider the Stuart-Landau (SL)

oscillator, a normal form of the supercritical Hopf bifurcation

[5]. All necessary quantities can be analytically calculated

for this model. The SL oscillator has a two-dimensional state

variable, X = (x,y)T, whose dynamics is specified by a vector

field

F(X) =
(

Fx(x,y)

Fy(x,y)

)

=
(

x − αy − (x − βy)(x2 + y2)

αx + y − (βx + y)(x2 + y2)

)

, (43)

where α and β are parameters. It possesses a single stable

limit-cycle orbit of frequency ω = α − β given by

X0(θ ) =
(

x0(θ )

y0(θ )

)

=
(

cos θ

sin θ

)

(44)

with θ (t) = ωt (mod 2π ). The phase sensitivity function of

this limit cycle can be explicitly calculated as [5,21]

Z(θ ) =
(

Zx(θ )

Zy(θ )

)

=
(

− sin θ − β cos θ

cos θ − β sin θ

)

. (45)

We consider a pair of symmetrically coupled SL oscillators

with identical properties obeying Eq. (1), which is explicitly

described by
(

ẋ1

ẏ1

)

=
(

Fx(x1,y1)

Fy(x1,y1)

)

+ ǫ

(

K11 K12

K21 K22

)(

x2 − x1

y2 − y1

)

,

(

ẋ2

ẏ2

)

=
(

Fx(x2,y2)

Fy(x2,y2)

)

+ ǫ

(

K11 K12

K21 K22

)(

x1 − x2

y1 − y2

)

, (46)

where X1 = (x1,y1)T and X2 = (x2,y2)T are the state variables

of the oscillators. The frequency of the oscillators in the

absence of mutual coupling is given by ω = α − β.

From Eqs. (44) and (45), the matrix V (φ) and its derivative

V ′(φ) can be calculated as

V (φ) = − sin φ

(

1 −β

β 1

)

(47)

and

V ′(φ) = − cos φ

(

1 −β

β 1

)

, (48)

so they are parallel to each other.

Because the oscillators are identical, ω1 = ω2 and 	ω = 0,

the in-phase synchronized state φ∗ = 0 always exists. From

Eq. (24), the stability of this state can be maximized by

choosing K as

Kopt =

√

P

2(β2 + 1)

(

1 −β

β 1

)

, (49)

and the maximum possible linear stability is given, from

Eq. (26), by

−Ŵ′
a(0) =

√
P

√

2(β2 + 1). (50)

For comparison, suppose that the coupling matrix is a

multiple of the identity matrix with the same Frobenius norm

as Kopt, i.e.,

KI =
√

P

2

(

1 0

0 1

)

, (51)

which we call the “identity coupling” hereafter. The linear

stability of φ∗ = 0 with this KI is given by

−Ŵ′
a(0) = −Tr[KIV

′(0)T] =
√

2P , (52)

so the linear stability improves by a factor of
√

β2 + 1 by using

the optimal coupling matrix Kopt from the case with KI .

Figure 1 shows the antisymmetric part Ŵa(φ) of the phase-

coupling function calculated for coupling matrices K = Kopt

and K = KI , with parameters α = 3 and β = 2 and overall

coupling intensity P = 0.1. It can be seen that the linear

stability −Ŵ′
a(0) of the in-phase fixed point φ∗ = 0 is higher

in the case with Kopt than in the case with KI . Figure 2

compares the time courses of the phase difference φ(t) from the

initial condition φ(0) = 0.5 for Kopt and KI obtained by direct

numerical simulations of the coupled SL oscillators and by

numerical integration of the reduced phase equation. Figure 3

shows the synchronization dynamics obtained numerically,

where the x components of the two oscillators are shown for

Kopt and KI . It can be seen that the oscillators synchronize

faster in the case with Kopt, reflecting higher linear stability of

φ∗ = 0, than in the case with KI .
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1

a
(
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optimal
identity

FIG. 1. Antisymmetric part Ŵa(φ) of the phase-coupling function

of coupled Stuart-Landau oscillators. The cases with identity coupling

and optimal coupling are compared for P = 0.1. Straight lines

represent the slopes at the origin.

It is interesting to note that when β = 0, that is, when the

instantaneous frequency of the SL oscillator does not depend

on its amplitude, KI is already optimal and no improvement

can be made by introducing cross coupling between different

variables of the oscillators.

For nonidentical SL oscillators with a small parameter mis-

match 	ω > 0, the antisymmetric part of the phase-coupling

function and its derivative take the form Ŵa(φ) = −C sin φ

and Ŵ′
a(φ) = −C cos φ from Eqs. (13), (47), and (48),

where C is a constant determined by K and β (K should also

satisfy ‖K‖2 = P ). Once the stationary phase difference φ∗ 
=
0 is specified, the constant C is determined as C = 	ω/ sin φ∗

and the linear stability of φ∗ is given by a fixed value

−Ŵ′
a(φ∗) = 	ω/ tan φ∗. Therefore, we cannot consider further

optimization of the stability for the coupled SL oscillators.

Indeed, we cannot consider the second case in Sec. III, because

V (φ) and V ′(φ), given by Eqs. (47) and (48), are strictly

parallel to each other, so the Lagrange multiplier λ vanishes

and Kopt does not exist. This is a peculiar property of the

0 100 200 300 400 500
t
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0.2

0.3

0.4

0.5
identity (DNS)

identity (phase)

optimal (DNS)

optimal (phase)

FIG. 2. In-phase synchronization dynamics of coupled identical

Stuart-Landau oscillators. The cases with identity coupling and

optimal coupling are compared for P = 0.1. Results obtained by

direct numerical simulations (DNS) of the coupled Stuart-Landau

oscillators and by numerically integrating reduced phase equations

are shown.
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0.0

1.0

2.0

x 1
, 
x 2

0 20 40 60 80
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FIG. 3. In-phase synchronization dynamics of coupled Stuart-

Landau oscillators for P = 0.1 and ǫ = 0.05. Identity coupling (a)

vs optimal coupling (b).

SL oscillator with purely sinusoidal limit cycles and phase

sensitivity functions.

B. Brusselator

As the second example, we use the Brusselator model

of chemical oscillations [5]. It has a two-dimensional state

variable, X = (x,y)T, which obeys

F(X) =
(

a − (b + 1)x + x2y

bx − x2y

)

, (53)

where a and b are parameters. When a = 1 and b = 3, the

period of the oscillation is ω ≈ 0.878. Figure 4 shows the

limit-cycle solution X0(θ ) = (x0(θ ),y0(θ ))T and the phase

sensitivity function Z(θ ) = (Zx(θ ),Zy(θ ))T for 0 � θ < 2π

obtained numerically. Other quantities such as V (φ) and V ′(φ)

can also be numerically calculated from these X0(θ ) and Z(θ ).

We consider a pair of Brusselators with parameters b =
3 ± δ, where δ is a small number representing the parameter

mismatch, and we couple them in the same way as in the

0 2
  0.0

  2.0

  4.0

x 0
, 
y 0

x
0

y
0

0 2

 0.0

 2.0

 4.0

Z
x
, 

Z
y

Z
x

Z
y

(a)

(b)

FIG. 4. Limit-cycle solution X0(θ ) = (x0(θ ),y0(θ ))T (a) and

phase sensitivity function Z(θ ) = (Zx(θ ),Zy(θ ))T (b) of the

Brusselator.
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FIG. 5. Antisymmetric part Ŵa(φ) of the phase-coupling function

of coupled Brusselators. The results for the optimal and identity

coupling matrices Kopt and KI are compared for P = 0.1. Straight

lines represent the slopes at the origin.

previous SL case, Eq. (46). We seek the optimal Kopt that

gives the maximum stability of the synchronized state, and

we compare the results for Kopt with those for the identity

coupling, i.e., KI given by Eq. (51). The overall intensity P is

fixed at P = 0.1 in the following.

We first consider the case without a parameter mismatch,

δ = 0. The frequencies of the oscillator are identical in this

case, 	ω = 0. The optimal and identity coupling matrices

with ‖K‖2 = P = 0.1 are calculated as

Kopt ≈
(

0.0972 0.195

−0.0428 0.225

)

, KI ≈
(

0.224 0

0 0.224

)

.

(54)

We can see that, in the optimal case, the feedback from the

difference in the y component to the dynamics of the x and y

components is stronger than that in the opposite direction. This

reflects the waveforms of the oscillation and phase sensitivity

function, particularly that the variation in y is generally larger

than that in x, as shown in Fig. 4.

Figure 5 shows the antisymmetric part Ŵa(φ) of the

phase-coupling function for K = Kopt and K = KI . The

linear stability of the in-phase synchronize state φ∗ = 0 is

approximately −Ŵ′
a(0) = 0.621 for Kopt and −Ŵ′

a(0) = 0.448

for KI . Figure 6 shows the evolution of phase differences

for Kopt and KI obtained by direct numerical simulations of

the coupled Brusselators and by numerical integration of the

reduced phase model. The parameter ǫ is fixed at ǫ = 0.05 in

the numerical simulations. Figure 7 shows the synchronization

processes of the Brusselators, where time courses of the

differences in x components between the oscillators, i.e.,

x1 − x2, are plotted for Kopt and KI . For comparison, an

exponentially decaying curve with the decay rate ǫŴ′
a(0) (<0)

is also shown in each figure. It can been seen that in-phase

synchronization is established faster when Kopt is used, and

the exponential decay rate of the state difference matches the

linear stability Ŵ′
a(0) of φ∗ = 0.

We next consider the case with a parameter mismatch, δ =
0.01. The frequencies of the oscillators are ω1 ≈ 0.8797 (b =
2.99) and ω2 ≈ 0.8762 (b = 3.01). We assume ǫ = 0.02 in the

following calculations, so the frequency mismatch parameter

0 100 200 300 400
t

0.0

0.1

0.2

0.3

0.4

0.5
identity (DNS)

identity (phase)

optimal (DNS)

optimal (phase)

FIG. 6. Evolution of phase difference φ for identity and optimal

coupling matrices, KI and Kopt, starting from initial phase difference

φ = 0.5. Results obtained by direct numerical simulations (DNS)

of coupled Brusselators and by numerically integrating the reduced

phase equations are shown. The parameters are P = 0.1 and

ǫ = 0.05.

is 	ω ≈ 0.175. Using the results obtained in the previous

section, we calculate the optimal coupling matrix Kopt for a

given phase difference φ∗ in (−π,π ).

Figure 8 shows the necessary conditions for P given by

Eqs. (38) and (42) as functions of the phase difference φ∗ for

	ω = 0.175, where the latter applies only when Tr(V ′
∗V

T
∗ ) <

0. Both conditions are satisfied in the nonshaded regions. We

see that P should not be too small and that the regions near

φ∗ = 0 and φ∗ = ±π are difficult to realize, as argued in the

previous section.

Figure 9 shows the elements of the optimal coupling

matrix Kopt and the corresponding stability of the fixed point

as functions of the phase difference φ∗. For comparison,

0 50 100 150
t

 -1.0

 0.0

 1.0

 2.0

 3.0

x 1
 -

 x
2

0 50 100 150
t

 -1.0

 0.0

 1.0

 2.0

 3.0

x 1
 -

 x
2

(a)

(b)

FIG. 7. In-phase synchronization process of two identical Brus-

selators with identity (a) and optimal (b) coupling matrices, KI

and Kopt. In each figure, the time sequence of the difference in

x components between the two oscillators is plotted by a solid line,

and the dashed line indicates an exponentially decaying curve with a

decay rate ǫŴ′
a(0) < 0 (actually 4 exp[ǫŴ′

a(0)t]). The parameters are

P = 0.1 and ǫ = 0.05.
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-π 0 π

φ
∗

0

0.1

0.2
P

FIG. 8. Necessary conditions for the overall coupling intensity P

plotted as functions of the target phase difference φ∗ for frequency

mismatch 	ω = 0.175. Only nonshaded regions are realizable. The

first condition (38) is violated in the red-shaded region, and the second

condition (42) is violated in the blue-shaded region. Crosses represent

the values of the given phase difference φ∗ used in the example.

the results for KI , which gives a stable phase difference

φ∗ ≈ 0.378 and negative slope 0.487, are also indicated in the

figure. In this particular example, KI yields reasonably high

stability close to the negative slope 0.493 with the optimal

coupling matrix Kopt at φ∗ = 0.378 [43]. In the blank regions

where the data are not shown, any of the necessary conditions

are not satisfied. The stability varies with φ∗, and, in this case,

the nearly anti-phase-synchronized state yields the highest

stability. Elements of the coupling can be positive or negative

depending on φ∗.
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FIG. 9. Matrix elements of the optimal coupling matrix

K11,K12,K21,K22 and linear stability −Ŵ′
a(φ∗) plotted as functions of

the phase difference φ∗ for P = 0.1. Dotted vertical lines represent

the boundaries of the regions in which both of the necessary

conditions are satisfied.
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FIG. 10. Examples of the antisymmetric part of the phase-

coupling function for given stable phase differences, φ∗ =
2.0,1.5,1.0,0.5,−1.0,−1.5,−2.0, and −2.5, for frequency mismatch

	ω = 0.1754. Crosses represent stable fixed points.

Figure 10 shows the antisymmetric parts Ŵa(φ) of the

obtained phase-coupling functions for given phase differences,

φ∗ = −2.5,−2.0,−1.5,−1.0,0.5,1.0,1.5, and 2.0. The given

phase differences are actually realized with the optimal Ŵa(φ)

as stable fixed points. From this figure, we can clearly see

why stationary phase differences close to 0 or π are difficult

to realize, in agreement with the conditions shown in Fig. 8.

Figure 11 plots the results of direct numerical simulations for

coupled Brusselators using the optimal coupling matrices Kopt,

where the convergence of the phase differences to given values

is shown.

C. Lorenz model

Finally, as a simple three-dimensional example, we con-

sider the Lorenz model in the limit-cycling regime [3], whose

0 500 1000 1500 2000
t

-3

-2

-1

0

1

2

specified phase

DNS

FIG. 11. Convergence of phase differences to given values (φ∗ =
2.0,1.5,1.0,0.5,−1.0,−1.5,−2.0, and −2.5, indicated by horizontal

dashed lines). Results of direct numerical simulations (DNS) are

compared with the specified phase values for frequency mismatch

	ω = 0.175 and ǫ = 0.02.
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FIG. 12. (a) Limit-cycle solution X0(θ ) = (x0(θ ),y0(θ ),z0(θ ))T

of the Lorenz model, where the z variable is shifted by 300 for

clarity. (b) Phase sensitivity function Z(θ ) = (Zx(θ ),Zy(θ ),Zz(θ ))T

of the Lorenz model.

state variable X = (x,y,z)T evolves with the vector field

F(X) =

⎛

⎝

σ (y − x)

rx − y − xz

xy − bz

⎞

⎠ (55)

with σ = 10, b = 8/3, and r = 350. The frequency of the

limit-cycle oscillation is ω = 16.18. Figure 12 shows the

evolution of X0(θ ) = (x0,y0,z0)T for one period of oscillation

and the corresponding phase sensitivity function Z(θ ) =
(Zx,Zy,Zz)

T obtained by the adjoint method [7].

We consider two Lorenz models without frequency mis-

match and couple them via the coupling matrix K as in Eq. (1).

We compare the results for the optimal coupling matrix Kopt

with those for KI . From the results in the previous section, for

P = 0.1, Kopt and KI are estimated as

Kopt ≈

⎛

⎝

0.0283 −0.263 0.000

0.0975 0.106 0.000

0.000 0.000 0.095

⎞

⎠ (56)

and

KI ≈

⎛

⎝

0.183 0 0

0 0.183 0

0 0 0.183

⎞

⎠. (57)

The linear stability −Ŵ′
a(0) is approximately 0.872 for the

optimal coupling and 0.365 for the identity coupling, respec-

tively. Figure 13(a) shows the antisymmetric parts Ŵa(φ) of

the phase-coupling functions for K = Kopt and K = KI , and

Fig. 13(b) compares the time courses of the phase differences

φ obtained numerically for ǫ = 0.5. We can clearly see that

the stability of the in-phase state is higher and correspondingly

the phase difference decays to zero faster in the optimal case.

It is notable that Kopt has several zero components,

indicating that no feedback from the z component to the x or

y component nor from the x or y component to the z component

arises even after optimization. This is because the z component

exhibits qualitatively different dynamics from those of the x

0

-0.5

0.0

0.5

a
(

)

identity

optimal

0 10 20 30 40 50
t

 0.0

 0.2

 0.4 identity (DNS)

identity (phase)

optimal (DNS)
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FIG. 13. (a) Antisymmetric part Ŵa(φ) of the phase-coupling

function of coupled Lorenz models. The straight line represents the

slope at the origin. (b) Convergence of phase difference φ(t) from

φ(0) = 0.5 to 0. Results of direct numerical simulations (DNS) and

phase models are compared for ǫ = 0.5. In each figure, results for

optimal and identity coupling matrices Kopt and KI are compared.

and y components in the Lorenz model. As can be seen from

Fig. 12, the fundamental frequency of the z component is

exactly twice that of the x and y components. Reflecting the

symmetry of the Lorenz model (invariance under x → −x,

y → −y, z → z), the waveforms of z0(θ ) and Zz(θ ) exhibit

the same pulselike oscillations exactly twice, while other

quantities, x0(θ ), y0(θ ), Zx(θ ), and Zy(θ ), undergo one period

of smooth oscillation that is symmetric to (x,y) → (−x,−y).

Therefore, when averaged over one period, feedback from z to

x or y (characterized by Zx or Zy multiplied by the difference

in z components) vanishes and does not help to improve the

stability of the synchronized state for the coupled Lorenz

oscillators. Similarly, feedback from x or y to z (characterized

by Zz multiplied by the difference in x or y) does not contribute

to the stability.

V. SUMMARY AND DISCUSSION

We have considered a pair of limit-cycle oscillators with

weak cross coupling, where different components of the

oscillator states are allowed to interact, and we optimized

the coupling matrix so that the stability of the synchronized

state is improved. For oscillators without frequency mismatch,

the optimal coupling matrix yields higher linear stability of the

in-phase synchronized state. For oscillators with frequency

mismatch, a range of phase-locked states with a given

stationary difference can be realized by choosing the coupling

matrix appropriately. Necessary conditions for the realizability

of a given phase difference are also derived.

In this paper, we have derived the optimal coupling matrix

that yields the highest linear stability of the synchronized state

for linear diffusive coupling given by Eq. (1). This result can be

extended straightforwardly to coupled oscillators with general
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coupling functions, described by

Ẋ1(t) = F1(X1) + ǫKG(X1,X2),
(58)

Ẋ2(t) = F2(X2) + ǫKG(X2,X1),

where G represents general nonlinear coupling between the

oscillators 1 and 2. In this case, the phase-coupling function

in the reduced phase equations (3) is given by

Ŵ(φ) =
1

2π

∫ 2π

0

Z(φ + ψ) · KG(X0(φ + ψ),X0(ψ))dψ

= 〈Z(φ + ψ) · KG(X0(φ + ψ),X0(ψ))〉ψ (59)

instead of Eq. (5). Thus, by defining the function W (φ) as

W (φ) = 〈Z(φ + ψ) ⊗ G(X0(φ + ψ),X0(ψ))〉ψ (60)

in place of Eq. (8) and calculating V (φ) = W (φ) − W (−φ)

and V ′(φ) = W ′(φ) + W ′(−φ) from this W (φ), the optimiza-

tion can be performed in a similar way to the linear diffusive

case. For example, the optimal coupling matrix for the case

without frequency mismatch is given by Eq. (24) with the

above W (φ).

Also, though we have considered only the simple case

in which all components of the oscillator states can interact

with all other components in this paper, it is straightforward

to restrict the pairs of components that can actually interact

by constraining certain components of K to zero in order

to incorporate realistic physical situations. It would also be

interesting to generalize the theory to incorporate different

constraints on K , for example, to reduce the number of nonzero

components by assuming a sparsity constraint on K .

Although we have considered only the most fundamental

two-oscillator problem in this paper, the synchronization of

a network of many oscillators has attracted much attention

[8–19,44–46], and a generalization of the present framework

to many-oscillator networks would be an interesting future

problem. For the simplest globally coupled population of N

identical oscillators described by

Ẋ i(t) = F(X i) +
1

N

N
∑

j=1

K(Xj − X i), i = 1,2, . . . ,N,

(61)

it is expected that the optimal coupling matrix for the

two-oscillator case would also provide faster convergence

to global synchrony than the identity coupling matrix. To

illustrate this, we simulated N = 400 SL oscillators with

the same parameter values as in Sec. IV, starting from

uniformly random initial conditions on the limit cycle.

Figure 14 shows synchronization processes for K = Kopt

and K = KI in Eqs. (49) and (51), where the evolution of

the modulus of the Kuramoto order parameter, estimated by

R = |(1/N)
∑N

i=1 exp[
√

−1 arctan(yi/xi)]|, is plotted. We can

observe that the oscillators exhibit much faster convergence

to complete synchrony (R = 1) with K = Kopt than with

K = KI , as expected. Of course, for more complex oscil-

lator networks with frequency heterogeneity and coupling

randomness, the result of optimization for the two-oscillator

case would not apply due to many-body effects, and further

investigation will be necessary.
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FIG. 14. Collective synchronization of N = 400 globally cou-

pled Stuart-Landau oscillators with identical properties. Time se-

quences of the modulus of the Kuramoto order parameter R for

K = KI and K = Kopt are plotted (P = 0.1 and ǫ = 0.05). The

insets show typical snapshots of the oscillator distributions at the

initial state and at the final state sufficiently after the convergence.

Finally, synchronization between spatiotemporal rhythms

in chemical systems has been studied recently [47–52], and

a generalization of the phase reduction theory to reaction-

diffusion equations exhibiting stable spatiotemporal oscilla-

tions has also been performed [27]. The present framework can

also be extended to such situations and can be used to derive

the optimal coupling schemes between two coupled spatiotem-

poral oscillations. A study in this direction is reported in our

forthcoming article [53], where improvement in the stability

of synchronized states between reaction-diffusion systems

by introducing linear spatial filters into mutual coupling is

considered.
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APPENDIX

1. Matrix formulas

The tensor product of m-dimensional vectors a =
(a1, . . . ,am)T and b = (b1, . . . ,bm)T gives an m × m matrix

whose (i,j ) component is [a ⊗ b]ij = aibj for i,j = 1, . . . ,m.

The inner product of m × m matrices A and B is defined as

Tr(ABT) =
m

∑

i=1

m
∑

j=1

AijBij = Tr(BAT), (A1)

where Aij and Bij represent (i,j ) components of the matrices

A and B, respectively. The Frobenius norm of an m × m matrix

A is defined as

‖A‖ =
√

Tr(AAT) =

√

√

√

√

m
∑

i=1

m
∑

j=1

A2
ij , (A2)
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and the inner product of the matrices A and B is defined as

Tr(ABT) =
m

∑

i=1

m
∑

j=1

AijBij = Tr(BAT). (A3)

The derivative of the inner product of matrices is given by

d

dA
Tr(ABT) = B, (A4)

and the derivative of the Frobenius norm is given by

d

dA
‖A‖2 =

d

dA
Tr(AAT) = 2A. (A5)

For arbitrary matrices A and B, the Schwartz inequality

‖A‖2‖B‖2
� [Tr(ABT)]2 (A6)

holds, which can be shown by plugging λ = Tr(ABT)/‖B‖2

into an inequality ‖A − λB‖2 � 0 that holds for arbitrary λ.

2. Calculation of W (φ) and V (φ)

Using Z(θ ) and X0(θ ), W (φ) is explicitly given as

W (φ) = 〈Z(φ + ψ) ⊗ {X0(ψ) − X0(φ + ψ)}〉ψ . (A7)

From this W (φ), the function V (φ) can be calculated as

V (φ) = W (φ) − W (−φ)

= 〈Z(φ + ψ) ⊗ {X0(ψ) − X0(φ + ψ)}〉ψ
−〈Z(−φ + ψ) ⊗ {X0(ψ) − X0(−φ + ψ)}〉ψ

= 〈[Z(φ + ψ) − Z(−φ + ψ)] ⊗ X0(ψ)}〉ψ

−〈Z(φ + ψ) ⊗ X0(φ + ψ)〉ψ
+〈Z(−φ + ψ) ⊗ X0(−φ + ψ)〉ψ

= 〈[Z(φ + ψ) − Z(−φ + ψ)] ⊗ X0(ψ)}〉ψ , (A8)

where 2π -periodicity of the functions Z(θ ) and X0(θ ) was

used. Similarly, the derivatives of W (φ) and W (−φ) can be

calculated as

W ′(φ) =
d

dψ
W (ψ)

∣

∣

∣

∣

ψ=φ

= 〈Z′(φ + ψ) ⊗ {X0(ψ) − X0(φ + ψ)}〉ψ
−〈Z(φ + ψ) ⊗ X ′

0(φ + ψ)〉ψ
= 〈Z′(φ + ψ) ⊗ X0(ψ)〉ψ

−〈[Z(φ + ψ) ⊗ X0(φ + ψ)]′〉ψ
= 〈Z′(φ + ψ) ⊗ X0(ψ)〉ψ (A9)

and

W ′(−φ) =
d

dψ
W (ψ)

∣

∣

∣

∣

ψ=−φ

= 〈Z′(−φ + ψ) ⊗ X0(ψ)〉ψ ,

(A10)

where 2π -periodicity was used again. Therefore, the derivative

of V (φ) can be calculated as

V ′(φ) = W ′(φ) + W ′(−φ)

= 〈[Z′(φ + ψ) + Z′(−φ + ψ)] ⊗ X0(ψ)〉ψ . (A11)
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