
Optimizing Static Job Scheduling in a Network of Heterogeneous Computers∗

Xueyan Tang & Samuel T. Chanson
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

E-mail: {tangxy, chanson}@cs.ust.hk

Abstract

This paper investigates static job scheduling schemes
that distribute workload in a network of computers with dif-
ferent speeds. Static schemes involve very low overhead and
complexity compared to dynamic schemes, but can still pro-
vide significant performance improvement over the case of
no load balancing. Optimization techniques are proposed
for workload allocation and job dispatching. Workload al-
location is modeled as a non-linear optimization problem
and solved mathematically. It is shown that allocating a dis-
proportionately high percentage of jobs to the more power-
ful computers improves system performance. The proposed
job dispatching algorithm is an extension of the traditional
round-robin scheme. The objective is to reduce burstiness
in the job arrival stream to each computer. The schemes are
evaluated by simulation experiments. Performance results
verify their effectiveness in terms of mean response time,
mean response ratio, and fairness. The Optimized Round-
Robin (ORR) strategy which combines both techniques out-
performs other static scheduling algorithms examined.

1 Introduction

Workload distribution is an important factor affecting the
performance of a network of computers. Due to uneven
job arrival patterns and possible differences in computing
capacities, the workload on different computers in the sys-
tem can vary greatly [1]. Load balancing techniques im-
prove system performance by dispatching jobs from heav-
ily loaded computers to lightly loaded ones. Researchers
have proposed a variety of approaches for load balancing.
Based on the system information used by the scheduling al-
gorithms, they can be classified into two categories: static
and dynamic [16]. Static approaches either do not use any
workload information or use only average system behaviors

∗This work was partially supported by a grant from the Research Grant
Council of Hong Kong (Grant No. HKUST6080/97E).

such as mean job arrival rate and execution rate. Unlike the
dynamic schemes, they do not consider instantaneous sys-
tem states in job allocation calculations.

Dynamic schemes usually outperform static schemes.
However, they typically involve much higher system over-
head (e.g., frequent collection and processing of workload
information [12]). For some applications, it may not be nec-
essary to obtain the best possible performance; a healthy
performance gain from a good low-cost static algorithm
may be more attractive. The objective of this paper is to
find ways to optimize static job scheduling schemes. We
focus on heterogeneous systems1, and assume the jobs are
independent and do not communicate among themselves or
with the users.

A static job scheduling policy typically contains two
components: a workload allocation scheme and a job dis-
patching strategy. The workload allocation scheme deter-
mines the fractions of the total workload to be assigned to
each computer. The job dispatching strategy decides which
jobs are to be sent to each computer as they arrive based
on the computed fractions. Optimization techniques for
both components are proposed in this paper. A mathemati-
cal model is developed to analyze system performance and
compute the optimized allocation policy. For job dispatch-
ing, a strategy based on the idea of round-robin is presented.
It provides smoother job arrival streams seen by individual
computers to further improve performance. The effective-
ness of the proposed algorithms is studied by simulation.

Optimizing workload allocation for heterogeneous sys-
tems is not an easy task. Leslie et al. [14] recently showed
that distributing workload to computers proportionally to
their speeds does not always provide the best performance
unless the system load is very high. However, they did
not quantitatively investigate how scheduling performance
can be optimized. Banawan et al. [2] discussed a similar
problem, but only an objective function was given without
any solution, and they did not consider the job dispatch-

1Heterogeneity in this paper refers to differences in computing capac-
ity.



ing strategy. Crovella et al. [5] and Schroeder et al. [15]
studied task assignment policies where task sizes follow a
heavy-tailed distribution. They found that system perfor-
mance can be greatly improved by allocating tasks based
on their service demands which results in unbalanced load-
ings on the servers. Their work assumed task sizes are
known a priori while this assumption is not needed in our
work. Our results are also applicable to the World Wide
Web environment. Existing work on domain name server
(DNS) scheduling [4] and HTTP request distribution [6]
employed simple weighted workload allocation for hetero-
geneous servers. The performance can be further improved
with our proposed optimization techniques.

The rest of the paper is organized as follows. Section
2 provides the theoretical foundation and derives the opti-
mized workload allocation scheme. Section 3 presents a
round-robin based job dispatching strategy. Section 4 de-
scribes the simulation model and the scheduling algorithms
used in performance comparison. Experimental results are
discussed in Section 5. Finally, Section 6 concludes the pa-
per.

2 Optimization Technique for Workload Al-
location

We model the system as a network of n computers
c1, c2, . . . , cn (see Figure 1). Each computer ci is associ-
ated with a real number si > 0 which denotes its relative
processing speed. Specifically, let µ be the base-line job
service rate, then the service rate of ci is equal to siµ. The
jobs arrive at the system at an average rate λ. They are as-
signed to the computers by a central scheduler. The sched-
uler applies a static job scheduling scheme, where a fraction
αi of all the jobs are sent to computer ci (0 ≤ αi ≤ 1 and
∑n

i=1
αi = 1).

c

c

c
α λ

λ

α λ

α λ

2

n

1

2

n

s

s

s

µ

µ

α λ1 s µ1

2

n

centraljob arrivals

scheduler

Figure 1. System Model

2.1 Simple Weighted Workload Allocation

A naive workload allocation scheme is to set the amount
of workload for each computer proportional to its process-
ing speed. In other words, αi is set to si

∑

n

j=1
sj

. This scheme

takes speed heterogeneity into consideration and tries to

make all the computers equally utilized. However, it has
been shown that it does not provide the best performance.

2.2 Motivation for Optimization

Previous studies [14] have shown that it is beneficial to
allocate a disproportionately higher fraction of the workload
to the more powerful computers at low and moderate loads,
while at high loads, it is better to keep the machines more
balanced. Similar phenomena were also observed in our
experiments with the Dynamic Least-Load scheduling algo-
rithm in a heterogeneous system [3]. In this algorithm, the
central scheduler keeps track of the load (i.e., the run queue
length2) on each computer. When a new job arrives, it is
assigned to the machine with the least normalized load (i.e.,
run queue length+1

processing speed
). Table 1 shows an example of the av-

erage percentage of jobs allocated to individual computers
with different speeds using this algorithm when the overall
system utilization is 70%.

speed 1.0 1.5 2.0 3.0
percentage (%) 0.29 1.75 3.84 7.17

speed 5.0 9.0 10.0
percentage (%) 14.59 27.95 30.90

Table 1. An Example of Workload Distribution Gener-
ated by Dynamic Least-Load Scheduling

Notice that workload is not proportionately divided
among the computers according to their speeds. Comput-
ers with slow speeds receive much less normalized work-
load than the fast machines. The distribution of workload
becomes even more skewed when the system utilization de-
creases. An intuitive explanation is as follows. It is known
that the response time of a job depends heavily on the uti-
lization of the computer processing it. Consider the case
where the workload is distributed proportionately to com-
puter speeds. If some jobs are moved from a slow machine
to a fast machine, the utilization of the slow machine will
be significantly decreased while that of the fast machine
will not increase much due to differences in their capaci-
ties. Hence, the job transfer will reduce the response time
of jobs on the slow computer without affecting the jobs on
the fast computer very much, and the overall system perfor-
mance will improve.

The observation motivated us to quantitatively analyze
the impact of skewed workload allocation and find a better
strategy for static job scheduling.

2.3 Optimized Workload Allocation

We model the workload allocation problem as a non-
linear optimization problem and solve it mathematically.
The main performance metrics used in our analysis are:

2This descriptor has been shown to be a simple and effective load in-
dex [13].



1. Mean response time: This is defined as the average
completion time of all the jobs.

2. Mean response ratio: The response ratio of a job is
defined as the ratio of the job’s response time to its
size. Job size is the completion time of the job when
it is executed on an idle machine with relative speed 1.
Mean response ratio is the average response ratio over
all the jobs. This metric is more objective as the effect
of job size is eliminated.

Every computer is modeled as an M/M/1 queue which
employs the processor sharing (PS) service discipline at the
server [11]. Let T be the job response time, λ be the mean
job arrival rate, µ be the mean job service rate and ρ = λ

µ
be

the server utilization. The expected response time of a job
with size t is given by

E{T | job size = t} =
t

1 − ρ
.

Therefore, the mean response time T and the mean re-
sponse ratio R of all the jobs can be calculated as follows:

T =
1

1 − ρ
· mean job size =

1

1 − ρ
· 1

µ
, (1)

and

R =
1

1 − ρ
. (2)

Consider our system model (Figure 1). Let T i and Ri

be the mean response time and the mean response ratio of
the jobs processed by ci respectively. Since computer ci

receives a fraction αi of the total workload, equations (1)
and (2) can be rewritten as

T i =
1

(1 − αiλ
siµ

)siµ
=

1

siµ − αiλ
,

and

Ri =
1

1 − αiλ
siµ

· 1

si

=
µ

siµ − αiλ
.

Note that we need to add a factor 1

si
in calculating Ri

according to the definition of response ratio.
Thus the mean response time T and the mean response

ratio R of the system are

T =
n

∑

i=1

1

siµ − αiλ
αi, (3)

and

R =
n

∑

i=1

µ

siµ − αiλ
αi = µT .

Our objective is to find a workload allocation scheme
{α1, α2, . . . , αn} that optimizes system performance.

Since µ is a constant, R is proportional to T . Hence, the
optimized allocation strategies for T and R are the same.

Equation (3) can be rewritten as follows:

T = −n

λ
+

1

λ

n
∑

i=1

siµ

siµ − αiλ
.

Therefore, T is minimized if
∑n

i=1

siµ
siµ−αiλ

is mini-
mized.

Definition 1 Let µ be the base-line service rate, λ be the
job arrival rate of the system, and s1 ≤ s2 ≤ . . . ≤ sn be
the relative speeds of the computers in the network, where
λ <

∑n

i=1
siµ (i.e., the system is not saturated). The ob-

jective function F (α1, α2, . . . , αn) is defined as

F (α1, α2, . . . , αn) =

n
∑

i=1

siµ

siµ − αiλ
. 2

As a starting point, we minimize the objective function
without requiring αi (1 ≤ i ≤ n) to be non-negative.

Theorem 1 The objective function F (α1, α2, . . . , αn) is
minimized when

αi =
1

λ

(

siµ −√
siµ

∑n

j=1
sjµ − λ

∑n

j=1

√
sjµ

)

, (4)

subject to the constraints
∑n

i=1
αi = 1, and αiλ < siµ

(the second constraint ensures that no individual computer
is saturated). The minimum value of F (α1, α2, . . . , αn) is

(
∑n

j=1

√
sjµ)2

∑n

j=1
sjµ − λ

.

Proof: This is a constrained-minimum problem. It can
be solved using the Lagrange multiplier theorem in a
straightforward way (see [17] for details). 2

The solution provided by Theorem 1 may not always
be practical since αi is not guaranteed to be non-negative.
The following theorem is needed to deal with this prob-
lem. When αi calculated in (4) is negative (this means
that the speed of computer ci is very slow, i.e., siµ <

(

∑

n

j=1
sjµ−λ

∑

n

j=1

√
sjµ

)2 ), an intuitive method to make the solution

feasible is to set αi to 0 and recompute the other fractions
again according to Theorem 1. This means we do not assign
jobs to the extremely slow computers. Theorem 2 presents
this method formally.

Theorem 2 Suppose for an integer m (1 ≤ m <

n),
√

smµ <

∑

n

j=m
sjµ−λ

∑

n

j=m

√
sjµ

, then the objective function

F (α1, α2, . . . , αn) is minimized when αi = 0 (1 ≤ i ≤
m), subject to the extra constraint αi ≥ 0 (1 ≤ i ≤ m) in
addition to the two constraints stated in Theorem 1.



Proof: See [17] for details. 2

In fact, (4) can be rewritten as

αi = si

(µ

λ

)

−√
si

(µ
λ
)
∑n

j=1
sj − 1

∑n

j=1

√
sj

,

where µ
λ

can be derived from the system utilization
ρ = λ

µ
∑

n

i=1
si

. As a result, we only need to know ρ and

s1, s2, . . . , sn to compute the optimized allocation strategy
{α1, α2, . . . , αn}. The calculation procedure is formally
presented in Algorithm 1.

Algorithm 1 Calculation of Optimized Workload Alloca-
tion Scheme

Input: System Utilization ρ; Computer Speeds s1, s2, . . . , sn.
Output: Optimized Allocation Strategy {α1, α2, . . . , αn}.

1. Let β = 1

ρ
∑

n

i=1
si

. (β = µ

λ
)

2. Sort s1, s2, . . . , sn in increasing order.

3. Let lower = 1, and upper = n.

4. While (lower ≤ upper)

(4.a) Let mid = b lower+upper

2
c.

(4.b) If
√

smidµ <

∑

n

j=mid
sjµ−λ

∑

n

j=mid

√
sjµ

Let lower = mid + 1.

(4.c) Else
Let upper = mid − 1.

5. Let m = lower − 1.

6. For each i satisfying 1 ≤ i ≤ m

Let αi = 0.

7. For each i satisfying m + 1 ≤ i ≤ n

Let αi = siβ −√
si

β
∑

n

j=m+1
sj−1

∑

n

j=m+1

√
sj

.

The correctness of Algorithm 1 is proved by the follow-
ing theorem.

Theorem 3 The workload allocation strategy
{α1, α2, . . . , αn} computed in Algorithm 1 minimizes
F (α1, α2, . . . , αn) under the constraints

∑n

i=1
αi = 1 and

0 ≤ αi < siµ
λ

(1 ≤ i ≤ n).

Proof: Steps 4 and 5 in Algorithm 1 finds the maxi-

mum index i = m such that
√

siµ <

∑

n

j=i
sjµ−λ

∑

n

j=i

√
sjµ

us-

ing a binary search3. If m = 0, it is easy to prove
the conclusion using Theorem 1. If m 6= 0, for any

3It can be proved (see [17]) that the index i’s are contiguous and there-
fore a binary search can be used to locate the maximum index.

1 ≤ i ≤ m,
√

siµ <

∑

n

j=i
sjµ−λ

∑

n

j=i

√
sjµ

. Applying Theo-

rem 2, α1, α2, . . . , αm should all be set to 0 in order to
minimize F (α1, α2, . . . , αn) under the constraints αi ≥ 0

(1 ≤ i ≤ m) (step 6). Since
√

smµ <

∑

n

j=m
sjµ−λ

∑

n

j=m

√
sjµ

,

we have 0 <
√

smµ
∑n

j=m+1

√
sjµ <

∑n

j=m+1
sjµ − λ,

i.e., λ <
∑n

j=m+1
sjµ. Therefore, we could apply Theo-

rem 1 to the subset {αm+1, αm+2, . . . , αn} only, and their
values in the optimized allocation strategy that minimizes
F (α1, α2, . . . , αn) are given as follows (step 7):

αi =
1

λ

(

siµ −√
siµ

∑n

j=m+1
sjµ − λ

∑n

j=m+1

√
sjµ

)

(5)

= siβ −√
si

β
∑n

j=m+1
sj − 1

∑n

j=m+1

√
sj

,

(for any m + 1 ≤ i ≤ n).

Since m is the maximum index satisfying
√

siµ <

∑

n

j=i
sjµ−λ

∑

n

j=i

√
sjµ

, we have
√

siµ ≥ √
sm+1µ ≥

∑

n

j=m+1
sjµ−λ

∑

n

j=m+1

√
sjµ

, for any m + 1 ≤ i ≤ n. Thus all the

αi (m + 1 ≤ i ≤ n) calculated by (5) are guaranteed to be
non-negative. Hence, the theorem is proved. 2

It can be seen from the analytical result that in the op-
timized scheme, fast computers receive disproportionately
higher share of workload while slow computers are allo-
cated lower proportion or even zero workload. This is con-
sistent with the observations in Section 2.2. The degree of
disproportional workload allocation depends on the system
utilization. The lower the system load, the more skewed the
allocation scheme. When the system utilization approaches
100%, the optimized allocation scheme degenerates to the
simple weighted scheme.

3 Optimization Technique for Job Dispatch-
ing

The job dispatching strategy is another important com-
ponent in static job scheduling. Different schemes can be
used to split the incoming job stream to the system into n
substreams in real time as the jobs arrive, one for each com-
puter in the network proportional to the computed fraction
of the total workload for that computer.

3.1 Random Based Job Dispatching

In random based job dispatching, a newly arrived job
is scheduled to run on a ”randomly” selected computer
where the probability of sending the new job to computer
ci is equal to αi, given fractions {α1, α2, . . . , αn} and



∑n

i=1
αi = 1. This strategy is straightforward but its per-

formance can vary greatly for different random number se-
quences.

3.2 Round-Robin Based Job Dispatching

In this subsection, we propose a job dispatching algo-
rithm that tries to improve performance by smoothing the
job arrival substream of each computer.

The inter-arrival time between two adjacent jobs sent
to the same computer is the sum of several inter-arrival
intervals of consecutive jobs in the overall job arrival
stream. The objective of the proposed strategy is to
equalize the number of original inter-arrival intervals
in between successive jobs dispatched for each com-
puter. This has the effect of smoothing out burstiness
without having to measure the inter-arrival times. For
example, suppose there are four computers c1, c2, c3

and c4 with workload fractions 1

8
, 1

8
, 1

4
and 1

2
respec-

tively. An appropriate job dispatching scheme will be
c4, c3, c4, c2, c4, c3, c4, c1, c4, c3, c4, c2, c4, c3, c4, c1, . . ..
In this way, the numbers of jobs directed to different
computers are proportional to their assigned fractions
even in a short interval. When each computer shares the
same fraction of workload, this scheme degenerates to the
traditional round-robin strategy. Hence, we refer to it as
round-robin based job dispatching. Perfectly spreading
the jobs as in the above example may not always be
possible. In most cases, we can only approximate the
equalization as much as possible. A formal description
of the round-robin based job dispatching algorithm for
the general case is given in Algorithm 2. The algorithm
takes the workload fractions from the allocation scheme as
input. Each computer is associated with two attributes: the
assign field records the number of jobs that have been sent
to the computer, and the next field denotes the expected
number of incoming jobs before the next job assignment to
the computer.

The assign and the next values of every computer are
initialized in step 1. Then the algorithm goes into an infinite
loop. It sends a newly arrived job to the computer with
the minimum expected time (measured in terms of number
of incoming jobs) to the next assignment (step 2.c.2). If
more than one computer has the same expected time, the
one with the smallest number of assigned jobs (including
the new job) normalized by its processing speed is selected
(step 2.c.3). After making the decision, the expected time of
receiving the next job for the selected computer is increased
by 1

αselect
(step 2.e). This is because the selected computer

is expected to receive one job out of every 1

αselect
arrivals

to the system. The number of jobs allocated to the selected
computer is then increased by 1 (step 2.f). After dispatching
a job to its destination, the next field is decreased by 1 for
all computers except those that have not received any job

Algorithm 2 Round-Robin Based Job Dispatching Strat-
egy

Input: Workload fractions from allocation scheme
{α1, α2, . . . , αn}, where αi denotes the fraction of work-
load assigned to computer ci, 0 ≤ αi ≤ 1 (1 ≤ i ≤ n) and
∑n

i=1
αi = 1.

1. For (i = 1; i ≤ n; i = i + 1) do

(1.a) Let c[i].assign = 0.

(1.b) Let c[i].next = 1.

2. While(true)

(2.a) Wait until a job arrives.

(2.b) Let select = −1, minnext = 999999, and
norassign = −1.

(2.c) For (i = 1; i ≤ n; i = i + 1) do

(2.c.1) If αi = 0
Continue.

(2.c.2) Else if select = −1 or minnext > c[i].next

Let minnext = c[i].next.
Let norassign = c[i].assign+1

αi
.

Let select = i.

(2.c.3) Else if minnext = c[i].next and norassign >
c[i].assign+1

αi

Let norassign = c[i].assign+1
αi

.
Let select = i.

(2.d) If c[select].assign = 0

(2.d.1) Let c[select].next = 0.

(2.e) Let c[select].next = c[select].next + 1
αselect

.

(2.f) Let c[select].assign = c[select].assign + 1.

(2.g) Send the job to computer cselect.

(2.h) For (i = 1; i ≤ n; i = i + 1) do

(2.h.1) If c[i].assign 6= 0
Let c[i].next = c[i].next − 1.

yet (step 2.h).

To decide when a computer should receive its first job,
the following algorithm is used. Initially, computers allo-
cated larger fractions of workload are selected first because
they have smaller normalized assign values i.e., 1

αi
(step

2.c.3). Since the next fields of all computers are initialized
to the guard value 1 instead of 0 (step 1), those associated
with smaller workload fractions would not be assigned jobs
as long as there exists at least one computer with a next
value less than 1. This implies that the job arrival patterns
for the computers that have started processing jobs are not
interrupted. In this way, computers with similar and small
workload fractions would receive their first jobs at different
times which are evenly spread out in a cycle (e.g., c1 and



c2 in the previous example). When a computer is selected
for the first time, its next field is reset to 0 (step 2.d) before
being updated in the normal way.

As an example, consider 8 computers with workload
fractions 0.35, 0.22, 0.15, 0.12, 0.04, 0.04, 0.04 and 0.04
respectively. Assume a hyperexponential job arrival pattern
with mean inter-arrival time of 2.2 seconds. Figure 2 shows
the workload allocation deviation4 of round-robin and ran-
dom based strategies in 30 consecutive intervals where the
length of each interval is 120 seconds.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25 30

W
or

kl
oa

d 
A

llo
ca

tio
n 

D
ev

ia
tio

n

Interval Number

Random Based Strategy
Round-Robin Based Strategy

Figure 2. Comparison of Job Dispatching Strategies

It can be seen that the deviations of random based strat-
egy are much higher and fluctuate more widely than those of
round-robin based strategy. This implies that the job arrival
stream to each computer is less bursty under round-robin
based strategy.

The round-robin based job dispatching can be inte-
grated with any workload allocation scheme. Its combi-
nations with the simple weighted and the optimized allo-
cation schemes are referred to as Weighted Round-Robin
(WRR) and Optimized Round-Robin (ORR) algorithms re-
spectively. The round-robin based job dispatching strategy
does not require information exchange among computers
and hence involves little system overhead. Therefore, both
WRR and ORR are low-cost job scheduling algorithms.

4 Experimental Setup

4.1 Simulation Model

A discrete-event simulator was developed to evaluate the
performance of the proposed job scheduling algorithms. In
the simulation model, a collection of computers are con-
nected by a high speed network. A central scheduler re-
ceives all incoming jobs and distributes them to the comput-
ers according to the specified scheduling algorithm. Once

4The workload allocation deviation is defined as
∑

i
(αi−α

′
i)

2, where
αi and α

′
i are the expected and actual fractions of jobs allocated to com-

puter ci in the given interval respectively.

scheduled, the jobs run to completion on the assigned com-
puter and are not rescheduled. The program and data files
are assumed to be stored on a dedicated file server. Conse-
quently, the files do not have to be transferred when assign-
ing jobs to remote computers; only a command line is sent.
All the computers apply preemptive round-robin processor
scheduling.

For simplicity, the theoretical analysis in Section 2.3 was
based on the M/M/1 queueing model. Our simulation
studies have adopted a more realistic workload model. Pre-
vious studies [7, 8] have found that job size distributions
exhibit a heavy-tailed property in most computing systems.
A small number of very large jobs make up a significant
fraction of the total load. We used the Bounded Pareto Dis-
tribution as the job size distribution in our simulation ex-
periments. The probability density function of the Bounded
Pareto Distribution B(k, p, α) is defined as follows [7]:

f(x) =
αkα

1 − (k/p)α
x−α−1 (k ≤ x ≤ p),

where k and p are the lower bound and the upper bound of
job size respectively, and α is a parameter that reflects the
variability of job size. The default values of these param-
eters are: k = 10.0 seconds, p = 21600.0 seconds, and
α = 1.0. Under this setting, the average job size is 76.8
seconds.

It is known that the job arrival process in a computer
system is far from Poisson. The job inter-arrival time of the
trace data collected by Zhou [18] has a coefficient of vari-
ation (CV) equal to 2.64 while the inter-arrival CV of the
Poisson process is 1. This indicates that the instantaneous
system load fluctuates greatly. A two-stage hyperexponen-
tial distribution [10] is used to model the job arrival process,
where the job inter-arrival CV is set to 3.0. The default sys-
tem utilization is set at 70% in our simulator.

The main performance metrics used in our simulation ex-
periments include mean response time, mean response ratio
(defined in Section 2.2), and fairness. Fairness is defined
as the standard deviation of the response ratio over all jobs.
This definition of fairness is reasonable as users are likely
to expect short delays for small tasks and willing to tolerate
longer delays for larger tasks. The smaller the fairness, the
better the performance.

Each simulation was run for 4.0 × 106 seconds, starting
with an idle system. This is sufficient to generate a total
of 1 to 2 million jobs. The first quarter of each run (1.0 ×
106 seconds) is considered the start up period, allowing the
system to get into the steady state. Statistics were collected
from the jobs that arrive after the start up period (3.0 × 106

seconds). Each data point shown in the figure is the average
result of 10 independent runs with different random number
streams.



4.2 Job Scheduling Algorithms

In addition to ORR and WRR, two other static schedul-
ing algorithms, Weighted Random (WRAN) and Optimized
Random (ORAN) were also considered in the simulation for
comparison. WRAN and ORAN are the combinations of
random based job dispatching with the simple weighted and
the optimized workload allocation respectively. WRAN is
the simplest static scheduling algorithm that takes computer
speed into consideration. The performance difference be-
tween ORR and WRAN provides a suitable estimate of the
effectiveness of ORR. Essentially, the four static schedul-
ing algorithms studied are various combinations of job dis-
patching strategies and workload allocation schemes. Their
relationships are summarized in Table 2.

workload allocation scheme
weighted optimized

job dispatch- random WRAN ORAN
ing strategy round-robin WRR ORR

Table 2. Combinations of Job Dispatching and Work-
load Allocation Schemes

We also included the Dynamic Least-Load algorithm
(see Section 2.2) in the study. It is used as a yardstick (up-
per bound) on the performance of the static schemes. In
this algorithm, the load index of a computer is updated in
two situations: job arrival and job departure. For job ar-
rival, since no job rescheduling is allowed, the scheduler
updates the load index of the target computer immediately
after sending the job [9]. For job departure, the load update
process has to be initiated by the computer that had just exe-
cuted the job. We assume that each computer checks its load
index every second. Therefore, after a job is completed on
a computer, it takes the computer U(0, 1) second to detect
the load change, where U(x, y) is a uniformly distributed
number between x and y. Then the computer sends a load
update message to the scheduler. The message transfer de-
lay is set to be exponentially distributed with some mean
value (currently set at 0.05 second).

5 Performance Evaluation

The job scheduling algorithms mentioned in Section 4.2
were evaluated under a wide range of system configurations
and workload levels. The performance results are presented
in this section.

5.1 Effect of Speed Skewness

The optimized workload allocation scheme is designed
for a group of computers with different speeds. In this sub-
section, we examine its effectiveness by varying the speeds
of the computers. The system consists of 18 computers

which are divided into two classes: 2 fast computers and 16
slow computers. The speed of the slow computers is fixed
at 1 and the speed of the fast computers is varied from 1 to
20, ranging from a homogeneous system to a highly skewed
system. Figure 3 presents the performance results.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20

M
ea

n 
R

es
po

ns
e 

T
im

e 
(s

)

Ratio of Maximum Speed to Minimum Speed

Dynamic Least Load
Optimized Round-Robin
Weighted Round-Robin

Optimized Random
Weighted Random

(a) Mean Response Time

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

M
ea

n 
R

es
po

ns
e 

R
at

io

Ratio of Maximum Speed to Minimum Speed

Dynamic Least Load
Optimized Round-Robin
Weighted Round-Robin

Optimized Random
Weighted Random

(b) Mean Response Ratio

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Fa
ir

ne
ss

Ratio of Maximum Speed to Minimum Speed

Dynamic Least Load
Optimized Round-Robin
Weighted Round-Robin

Optimized Random
Weighted Random

(c) Fairness

Figure 3. Performance of Different Skewness of Com-
puter Speeds

Strategies using optimized workload allocation (ORR
and ORAN) reduce mean response time and mean response
ratio over strategies employing simple weighted allocation



(WRR and WRAN) when the system is not homogeneous.
The performance difference increases as the speed differen-
tial increases. When the speed ratio between the two types
of computers is 20:1, ORR outperforms WRR by 42% and
ORAN outperforms WRAN by 49% in terms of mean re-
sponse ratio. The reason is that the optimized allocation
strategy emulates Dynamic Least-Load by sending a higher
proportion of workload to the more powerful computers
while the simple weighted strategy does not make full use
of speed skewness. The performance of ORR and ORAN
approaches that of Dynamic Least-Load when the speed of
the fast computers grows beyond 20 or so. Moreover, it can
be seen from Figure 3(c) that ORR and ORAN exhibit much
better fairness than WRR and WRAN. This implies that the
response time of a job is more predictable under an opti-
mized allocation strategy. A number of experiments for dif-
ferent system configurations have been carried out and they
all show the same performance trends5. Thus, we conclude
that it is beneficial to apply the optimized workload allo-
cation strategy when the system consists of fast and slow
machines.

Another observation is that ORR and WRR perform bet-
ter than ORAN and WRAN respectively. This verifies that
by reducing burstiness in the job arrival stream seen by each
computer, round-robin based job dispatching outperforms
random based dispatching.

It is also interesting to compare the relative significance
of optimizing workload allocation and improving job dis-
patching (see Figure 3). When the system is close to homo-
geneous, applying round-robin based job dispatching shows
greater advantage. We can see that WRR performs better
than ORAN in this case, and optimization of workload al-
location does not do much to improve performance. On the
other hand, when the speeds of the machines are very dif-
ferent, the performance of WRR is not as good as ORAN.
This indicates that optimizing workload allocation is more
important in a highly skewed system. ORR integrates both
techniques (optimized workload allocation and round-robin
dispatching) and outperforms other static scheduling algo-
rithms studied.

5.2 Effect of System Size

In this set of experiments, the computers are divided into
equal numbers of fast and slow machines. The processing
speeds of the slow and the fast computers are set to 1 and
10 respectively. Figure 4 shows the performance of the al-
gorithms6 when the number of computers increases from 2
to 20.

5The figures are not presented here due to space limitation, see [17] for
details.

6Due to space limitation, the result of mean response time is not shown
in this and subsequent subsections as the performance trends of mean re-
sponse time are similar to those of mean response ratio.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

M
ea

n 
R

es
po

ns
e 

R
at

io

Number of Computers in the System

Dynamic Least Load
Optimized Round-Robin
Weighted Round-Robin

Optimized Random
Weighted Random

(a) Mean Response Ratio

Figure 4. Performance of Different System Sizes

ORR reduces mean response ratio over WRAN by 35%
to 40% when there are more than 6 computers. The per-
formance gain of optimizing workload allocation is main-
tained when system size increases. This is consistent with
the analytical models used to calculate the optimized and
simple weighted allocation schemes. However, the perfor-
mance difference between ORR and Dynamic Least-Load
increases as the system grows in size. The reason is that
ORR simply allocates the same fraction of jobs to comput-
ers with the same speed and does not dynamically balance
their loads. In contrast, Dynamic Least-Load makes use of
instantaneous load information and hence performs better
when there are more computers.

For job dispatching, the performance of algorithms us-
ing round-robin based dispatching (ORR and WRR) im-
proves as the size of the system grows. This is because
the inter-arrival time of jobs at each computer shows less
variability with increasing number of computers. By con-
trast, algorithms using random based dispatching (ORAN
and WRAN) are not able to smooth out the burstiness as
much and show worse performance than round-robin based
strategies.

5.3 Effect of System Load

The following system setting (see Table 3) is used as the
base configuration in this and subsequent subsections. It
consists of 15 computers with six different speeds and the
aggregate processing speed is 44.

speed number speed number speed number
1.0 5 2.0 3 10.0 1
1.5 4 5.0 1 12.0 1

Table 3. Base System Configuration

Figure 5 shows the performance results. It can be
seen that ORR outperforms other static algorithms studied.
At low and moderate loads, strategies applying optimized



0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90

M
ea

n 
R

es
po

ns
e 

R
at

io

System Utilization (%)

Dynamic Least Load
Optimized Round-Robin
Weighted Round-Robin

Optimized Random
Weighted Random

(a) Mean Response Ratio

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90

Fa
ir

ne
ss

System Utilization (%)

Dynamic Least Load
Optimized Round-Robin
Weighted Round-Robin

Optimized Random
Weighted Random

(b) Fairness

Figure 5. Performance of Different System Utilizations

workload allocation (ORR and ORAN) schedule most of
the jobs to fast computers. Their performances are signif-
icantly better than those using simple weighted allocation,
and are close to that of Dynamic Least-Load. At high loads,
ORR and ORAN still exhibit considerable improvement
over WRR and WRAN. For example, at a load level of 90%,
the mean response ratio of ORR is 24% less than WRR and
34% less than WRAN. Moreover, ORR and ORAN per-
form much better in fairness than simple weighted schemes
(WRR and WRAN). Thus, it can be concluded that proper
adjustment in workload allocation greatly enhances system
performance over a wide range of system loads. The perfor-
mance difference between ORR and Dynamic Least-Load
increases under very heavy loadings. This implies that dy-
namic load balancing, which involves high system over-
head, is mostly needed when the system utilization is high.

Regarding job dispatching, round-robin based schemes
maintain a measurable advantage over random-based
schemes in all performance metrics examined. The perfor-
mance gain is higher under heavy load. This is because
the burstiness in job arrivals does little harm when system
utilization is low, and system performance becomes more
sensitive to job arrival pattern when system load is high.

5.4 Sensitivity to Load Estimation

System utilization is needed in calculating the optimized
workload allocation strategy. In this section, we assess the
impact of incorrect load estimation on ORR. Figure 6(a) and
(b) show the performance when system utilization is under-
estimated and overestimated respectively. The numbers in
the brackets represent the relative estimation errors. For ex-
ample, ORR(+5%) means that a utilization level of 1.05×ρ
is assumed in the calculation, where ρ is the correct system
load.

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90
M

ea
n 

R
es

po
ns

e 
R

at
io

System Utilization (%)

ORR (accurate)
ORR (-5%)

ORR (-10%)
ORR (-15%)

WRR

(a) Underestimation

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90

M
ea

n 
R

es
po

ns
e 

R
at

io

System Utilization (%)

ORR (accurate)
ORR (+5%)

ORR (+10%)
ORR (+15%)

WRR

(b) Overestimation

Figure 6. Performance Sensitivity to Load Estimation

It can be observed from Figure 6(a) that underestimation
of load does not affect the performance much when the load
is light. However, when the system utilization is high, the
advantage of ORR is offset by load underestimation, espe-
cially when the error is large. Highly inaccurate informa-
tion may even cause ORR to perform worse than WRR and
make the system unstable. This is because underestima-
tion of load will cause too much workload to be assigned to
the fast computers and overload them. In contrast, Figure
6(b)7 shows that the ORR algorithm is relatively insensi-

7The performance result of WRR is adopted for ORR(+15%) at the load
level of 90%, since ORR converges with WRR as utilization approaches
100%.



tive to load overestimation. The mean response ratio is only
marginally worse up to 80% system utilization and mea-
surable performance gain is maintained at 90% utilization
with a +10% estimation error. The reason is that overesti-
mation of system load makes the optimized workload allo-
cation scheme more conservative and closer to the simple
weighted scheme. Therefore, it does little harm to the per-
formance.

In summary, the performance of optimized allocation
scheme is less sensitive to overestimation than underes-
timation of system load. We suggest to conservatively
overestimate system load slightly for the practical use of
ORR.

Notice that in our simulation experiments, the instanta-
neous system load fluctuates greatly (job inter-arrival coef-
ficient of variance is set at 3, see Section 4.1). Therefore,
the results reported in Section 5 would indicate that using
the average system utilization over a long period of time is
sufficient. It is not necessary to measure ρ and recompute
the optimized workload allocation strategy often.

6 Conclusion

We have presented two optimization techniques for static
job scheduling in a computer network consisting of ma-
chines with different processing speeds. These techniques
involve little system overhead compared to the dynamic
schemes which require frequent collection and processing
of workload information on all machines. The key idea of
optimizing the workload allocation scheme is to send a dis-
proportionately high fraction of workload to the more pow-
erful computers. An analytical model is developed to derive
the optimized allocation strategy mathematically. For job
dispatching, an algorithm that extends the idea of round-
robin to the general case is presented. The objective is to
reduce the burstiness in the job arrival stream for each com-
puter. Simulation results show that the Optimized Round-
Robin (ORR) algorithm which integrates these two tech-
niques outperforms other static scheduling schemes exam-
ined. The performance gain increases as the differences be-
tween the computer speeds increase. These optimization
techniques can be applied to other resource management
problems (e.g., replicated heterogeneous server selection)
where the resources have different capacities.

References

[1] T. E. Anderson, D. E. Culler, D. A. Patterson, and the
NOW team. A case for now (networks of workstations).
IEEE Micro, 15(1):54–64, Feb. 1995.

[2] S. A. Banawan and N. M. Zeidat. A comparative study
of load sharing in heterogeneous multicomputer systems.
In Proceedings of the 25th Annual Simulation Symposium,
pages 22–31, Apr. 1992.

[3] S. T. Chanson, W. Deng, C.-C. Hui, X. Tang, and M. Y.
To. Multidomain load balancing. Technical Report HKUST-
CS99-18, Department of Computer Science, HKUST, Dec.
1999.

[4] M. Colajanni, P. S. Yu, and V. Cardellini. Dynamic load
balancing in geographically distributed heterogeneous web
servers. In Proceedings of the 18th IEEE International Con-
ference on Distributed Computing Systems (ICDCS), pages
295–302, May 1998.

[5] M. E. Crovella, M. Harchol-Balter, and C. D. Murta. Task
assignment in distributed system: Improving performance
by unbalancing load. In Proceedings of the 1998 ACM SIG-
METRICS and IFIP Joint International Conference on Mea-
surement and Modeling of Computer Systems (SIGMET-
RICS’98/PERFORMANCE’98), pages 268–269, June 1998.

[6] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A scal-
able and highly available web server. In Proceedings of
the 41st IEEE Computer Society International Conference
(COMPCON), pages 85–92, Feb. 1996.

[7] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On
choosing a task assignment policy for a distributed server
system. Journal of Parallel and Distributed Computing,
59(2):204–228, Nov. 1999.

[8] M. Harchol-Balter and A. B. Downey. Exploiting process
lifetime distributions for dynamic load balancing. ACM
Transactions on Computer Systems, 15(3):253–285, Aug.
1997.

[9] C.-C. Hui and S. T. Chanson. Improved strategies for
dynamic load balancing. IEEE Concurrency, 7(3):58–67,
July–September 1999.

[10] L. Kleinrock. Queueing Systems, Volume I: Theory. John
Wiley & Sons, 1975.

[11] L. Kleinrock. Queueing Systems, Volume II: Computer Ap-
plications. John Wiley & Sons, 1975.

[12] P. Krueger and N. G. Shivaratri. Adaptive location policies
for global scheduling. IEEE Transactions on Software En-
gineering, 20(6):432–444, June 1994.

[13] T. Kunz. The influence of different workload descriptions
on a heuristic load balancing scheme. IEEE Transactions on
Software Engineering, 17(7):725–730, July 1991.

[14] R. Leslie and S. McKenzie. Evaluation of loadsharing al-
gorithms for heterogeneous distributed systems. Computer
Communications, 22(4):376–389, Mar. 1999.

[15] B. Schroeder and M. Harchol-Balter. Evaluation of task as-
signment policies for supercomputing servers: The case for
load unbalancing and fairness. In Proceedings of the 9th
IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC), Aug. 2000. To appear.

[16] N. G. Shivaratri, P. Krueger, and M. Singhal. Load dis-
tribution for locally distributed systems. IEEE Computer,
8(12):33–44, Dec. 1992.

[17] X. Tang and S. T. Chanson. Optimizing static job scheduling
in a network of heterogeneous computers. In Proceedings
of the 29th International Conference on Parallel Processing
(ICPP), pages 373–382, Aug. 2000.

[18] S. Zhou. A trace-driven simulation study of dynamic load
balancing. IEEE Transactions on Software Engineering,
14(9):1327–1341, Sept. 1988.


