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Abstract

Background: Taxonomic classification of marker-gene sequences is an important step in microbiome analysis.

Results: We present q2-feature-classifier (https://github.com/qiime2/q2-feature-classifier), a QIIME 2 plugin

containing several novel machine-learning and alignment-based methods for taxonomy classification. We evaluated

and optimized several commonly used classification methods implemented in QIIME 1 (RDP, BLAST, UCLUST, and

SortMeRNA) and several new methods implemented in QIIME 2 (a scikit-learn naive Bayes machine-learning

classifier, and alignment-based taxonomy consensus methods based on VSEARCH, and BLAST+) for classification of

bacterial 16S rRNA and fungal ITS marker-gene amplicon sequence data. The naive-Bayes, BLAST+-based, and

VSEARCH-based classifiers implemented in QIIME 2 meet or exceed the species-level accuracy of other commonly

used methods designed for classification of marker gene sequences that were evaluated in this work. These

evaluations, based on 19 mock communities and error-free sequence simulations, including classification of

simulated “novel” marker-gene sequences, are available in our extensible benchmarking framework, tax-credit

(https://github.com/caporaso-lab/tax-credit-data).

Conclusions: Our results illustrate the importance of parameter tuning for optimizing classifier performance, and we

make recommendations regarding parameter choices for these classifiers under a range of standard operating

conditions. q2-feature-classifier and tax-credit are both free, open-source, BSD-licensed packages available on GitHub.

Background

High-throughput sequencing technologies have trans-

formed our ability to explore complex microbial com-

munities, offering insight into microbial impacts on

human health [1] and global ecosystems [2]. This is

achieved most commonly by sequencing short, con-

served marker genes amplified with ‘universal’ PCR

primers, such as 16S rRNA genes for bacteria and ar-

chaea, or internal transcribed spacer (ITS) regions for

fungi. Targeted marker-gene primers can also be used to

profile specific taxa or functional groups, such as nifH

genes [3]. These sequences often are compared against

an annotated reference sequence database to determine

the likely taxonomic origin of each sequence with as

much specificity as possible. Accurate and specific taxo-

nomic information is a crucial component of many ex-

perimental designs.

Challenges in this process include the short length of

typical sequencing reads with current technology, sequen-

cing and PCR errors [4], selection of appropriate marker

genes that contain sufficient heterogeneity to differenti-

ate target species but that are homogeneous enough in

some regions to design broad-spectrum primers, quality

of reference sequence annotations [5], and selection of

a method that accurately predicts the taxonomic affili-

ation of millions of sequences at low computational

cost. Numerous methods have been developed for tax-

onomy classification of DNA sequences, but few have
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been directly compared in the specific case of short

marker-gene sequences.

We introduce q2-feature-classifier, a QIIME 2 (https://

qiime2.org) plugin for taxonomy classification of

marker-gene sequences. QIIME 2 is the successor to the

QIIME [6] microbiome analysis package. The q2-

feature-classifier plugin supports use of any of the

numerous machine-learning classifiers available in scikit-

learn [7, 8] for marker gene taxonomy classification, and

currently provides two alignment-based taxonomy con-

sensus classifiers based on BLAST+ [9] and VSEARCH

[10]. We evaluate the latter two methods and the scikit-

learn multinomial naive Bayes classifier (labeled “naive

Bayes” in the “Results” section) for the first time. We

show that the QIIME 2 classifiers provided in q2-

feature-classifier match or outperform the classification

accuracy of the widely used QIIME 1 methods for se-

quence classification, and that performance of the naive

Bayes classifier can be significantly increased by provid-

ing it with information regarding expected taxonomic

composition. Some of the taxonomy classification

methods in QIIME 1 (RDP classifier [11] and BLAST

[9]) are thin wrappers around the original software;

other methods based on uclust [12] SortMeRNA

[13](QIIME 1), VSEARCH, and BLAST+ (QIIME 2) are

also wrapped implementations of other software

followed by consensus taxonomic assignment by QIIME

software. Thus, while our analyses focus on methods

currently implemented in these versions of QIIME, we

expect that the results will generalize to similar applica-

tions of those tools outside of QIIME.

We also developed tax-credit (https://github.com/

caporaso-lab/tax-credit-code/ and https://github.com/

caporaso-lab/tax-credit-data/), an extensible computa-

tional framework for evaluating taxonomy classification

accuracy. This framework streamlines the process of

methods benchmarking by compiling multiple different

test data sets, including mock communities [14] and simu-

lated sequence reads. It additionally stores pre-computed

results from previously evaluated methods, including the

results presented here, and provides a framework for par-

ameter sweeps and method optimization. Tax-credit could

be used as an evaluation framework by other research

groups in the future or its raw data could be easily ex-

tracted for integration in another evaluation framework.

Results

We used tax-credit to optimize and compare multiple

marker-gene sequence taxonomy classifiers. We evalu-

ated two commonly used classifiers that are wrapped in

QIIME 1 (RDP Classifier (version 2.2) [11], legacy BLAST

(version 2.2.22) [15]), two QIIME 1 alignment-based con-

sensus taxonomy classifiers (the default UCLUST classifier

available in QIIME 1 (based on version 1.2.22q) [12], and

SortMeRNA (version 2.0 29/11/2014) [13]), two alignment-

based consensus taxonomy classifiers newly released in q2-

feature-classifier (based on BLAST+ (version 2.6.0) [9] and

VSEARCH (version 2.0.3) [10]), and a new multinomial

naive Bayes machine-learning classifier in q2-feature-

classifier (see the “Methods” section for information about

q2-feature-classifier methods and source code availability).

We performed parameter sweeps to determine optimal par-

ameter configurations for each method.

Mock community evaluations

We first benchmarked classifier performance on mock

communities, which are artificially constructed mixtures

of microbial cells or DNA combined at known ratios

[14]. We utilized 15 bacterial 16S rRNA gene mock

communities and 4 fungal internal transcribed spacer

(ITS) mock communities (Table 1) sourced from mock-

robiota [14], a public repository for mock community

data. Mock communities are useful for method bench-

marking because (1) unlike for simulated communities,

they allow quantitative assessments of method perform-

ance under actual operating conditions, i.e., incorporating

real sequencing errors that can be difficult to model ac-

curately; and (2) unlike for natural community samples,

the actual composition of a mock community is known in

Table 1 Mock communities currently integrated in tax-credit

Study IDa Target geneb Platform Species Strains Citation

mock-1 16S HiSeq 46 48 [33]

mock-2 16S MiSeq 46 48 [33]

mock-3 16S MiSeq 21 21 [33]

mock-4 16S MiSeq 21 21 [33]

mock-5 16S MiSeq 21 21 [33]

mock-7 16S HiSeq 67 67 [34]

mock-8 16S HiSeq 67 67 [14]

mock-9 ITS HiSeq 13 16 [14]

mock-10 ITS HiSeq 13 16 [14]

mock-12 16S MiSeq 26 27 [4]

mock-16 16S MiSeq 56 59 [35]

mock-18 16S MiSeq 15 15 [36]

mock-19 16S MiSeq 15 27 [36]

mock-20 16S MiSeq 20 20 [37]

mock-21 16S MiSeq 20 20 [37]

mock-22 16S MiSeq 20 20 [37]

mock-23 16S MiSeq 20 20 [37]

mock-24 ITS MiSeq 8 8 [38]

mock-26 ITS FLX Titanium 11 11 [39]

aAll studies are available on mockrobiota [14]

at https://github.com/caporaso-lab/mockrobiota/tree/master/data/[studyID]
bAbbreviations: 16S, 16S rRNA gene; HiSeq, Illumina HiSeq; MiSeq,

Illumina MiSeq

Bokulich et al. Microbiome  (2018) 6:90 Page 2 of 17

https://qiime2.org
https://qiime2.org
https://github.com/caporaso-lab/tax-credit-code/
https://github.com/caporaso-lab/tax-credit-code/
https://github.com/caporaso-lab/tax-credit-data/
https://github.com/caporaso-lab/tax-credit-data/
https://github.com/caporaso-lab/mockrobiota/tree/master/data


advance, allowing quantitative assessments of community

profiling accuracy.

An additional priority was to test the effect of setting

class weights on classification accuracy for the naive

Bayes classifier implemented in q2-feature-classifier. In

machine learning, class weights or prior probabilities are

vectors of weights that specify the frequency at which

each class is expected to be observed (and should be dis-

tinguished from the use of this term under Bayesian in-

ference as a probability distribution of weights vectors).

An alternative to setting class weights is to assume that

each query sequence is equally likely to belong to any of

the taxa that are present in the reference sequence data-

base. This assumption, known as uniform class priors in

the context of a naive Bayes classifier, is made by the

RDP classifier [11], and its impact on marker-gene clas-

sification accuracy has yet to be validated. Making either

assumption that the class weights are uniform or known

to some extent will affect results and cannot be avoided.

The mock communities have taxonomic abundances

that are far from uniform over the set of reference tax-

onomies, as any real data set must. We can therefore

use them to assess the impact of making assumptions

regarding class weights. Where we have set the class

weights to the known taxonomic composition of a sam-

ple, we have labeled the results “bespoke”.

We evaluated classifier performance accuracy on mock

community sequences classified at taxonomic levels

from class through species. Mock community sequences

were classified using the Greengenes 99% OTUs 16S

rRNA gene or UNITE 99% OTUs ITS reference sequences

for bacterial and fungal mock communities, respectively.

As expected, classification accuracy decreased as classifi-

cation depth increased, and all methods could predict the

taxonomic affiliation of mock community sequences down

to genus level with median F-measures exceeding 0.8

across all parameter sets (minimum: UCLUST F = 0.81,

maximum: naive Bayes bespoke F = 1.00) (Fig. 1a).

However, species affiliation was predicted with much

lower and more variable accuracy among method configu-

rations (median F-measure minimum: UCLUST F = 0.42,

maximum: naive Bayes bespoke F = 0.95), highlighting the

importance of parameter optimization (discussed in

more detail below). Figure 1a illustrates line plots of

mean F-measure at each taxonomic level, averaged

across all classifier configurations; hence, classifier

performance is underestimated for some classifiers

that are strongly affected by parameter configurations

or for which a wider range of parameters were tested (e.g.,

naive Bayes). Comparing only optimized methods (i.e.,

the top-performing parameter configurations for each

method), naive Bayes bespoke achieved significantly

higher F-measure (paired t test P < 0.05) (Fig. 1b), re-

call, taxon detection rate, taxon accuracy rate (Fig. 1c),

and lower Bray-Curtis dissimilarity than all other

methods (Fig. 1d).

Mock communities are necessarily simplistic, and can-

not assess method performance across a diverse range of

taxa. Although raw sequences may contain PCR and se-

quencing errors (allowing us to assess method perform-

ance under biological conditions), sequences that do

match the expected mock community sequences are not

removed from the reference database prior to classifica-

tion. This approach replicates normal operating condi-

tions and assesses recovery of expected sequences, but

may implicitly bias toward methods that find an exact

match to the query sequences, and does not approxi-

mate some natural microbial communities in which few

or no detected sequences exactly match the reference se-

quences. Hence, we performed simulated sequence read

classifications (described below) to further test classifier

performance.

Cross-validated taxonomy classification

Simulated sequence reads, derived from reference data-

bases, allow us to assess method performance across a

greater diversity of sequences than a single mock com-

munity generally encompasses. We first evaluated classi-

fier performance using stratified k-fold cross-validation

of taxonomy classification for simulated reads. The k-

fold cross-validation strategy is modified slightly to ac-

count for the hierarchical nature of taxonomic classifica-

tions, which all of the classifiers in this study (with

the exception of legacy BLAST) handle by assigning

the lowest (i.e., most specific) taxonomic level where

the classification surpasses some user-defined “confi-

dence” or “consensus” threshold (see materials and

methods). The modification is to truncate any expected

taxonomy in each test set to the maximum level at which

an instance of that taxonomy exists in the training set.

Simulated reads were generated from Greengenes 99%

OTUs 16S rRNA gene or UNITE 99% OTUs ITS refer-

ence sequences. Greengenes 16S rRNA gene simulated

reads were generated from full-length 16S rRNA genes

(primers 27F/1492R) and V4 (primers 515F/806R) and

V1–3 subdomains (primers 27F/534R). The simulated

reads currently available in tax-credit do not incorporate

artificial errors from PCR or sequencing for several rea-

sons. As our mock communities analyses already assess

classifier performance under true noisy experimental

conditions, the goal of the analyses of simulated se-

quences is to assess theoretical classifier performance

(when exact sequence matches do not exist in the refer-

ence database). Additionally, marker-gene amplicon se-

quence analysis pipelines commonly utilize denoising

methods [4] to model per-run error profiles, filter noisy

sequences, and resolve actual sequence variants. Hence,

in our evaluations, we simulate an idealized (if unlikely)
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theoretical scenario in which all sequencing errors have

been denoised in order to separate classifier perform-

ance from denoiser performance. In this set of tests and

below for novel taxa, the “bespoke” classifier had prior

probabilities that were inferred from the training set

each time it was trained.

Classification of cross-validated reads performed better

at coarser levels of classification (Fig. 2a), similar to the

trend observed in mock community results. For bacterial

sequences, average classification accuracy for all methods

declined from near-perfect scores at family level (V4 do-

main median F-measure minimum: BLAST+ F = 0.92,

maximum: legacy BLAST F = 0.99), but still retained ac-

curate scores at species level (median minimum: BLAST+

F = 0.76, maximum: SortMeRNA F = 0.84), relative to

some mock community data sets (Fig. 2a). Fungal se-

quences exhibited similar performance, with the exception

that mean BLAST+ and VSEARCH performance was

markedly lower at all taxonomic levels, indicating high

sensitivity to parameter configurations, and species-level

F-measures were in general much lower (median mini-

mum: BLAST+ F = 0.17, maximum: UCLUST F = 0.45)

than those of bacterial sequence classifications (Fig. 2a).

Species-level classifications of 16S rRNA gene simu-

lated sequences were best with optimized UCLUST and

SortMeRNA configurations for V4 domain, and naive

Bayes and RDP for V1–3 domain and full-length 16S

rRNA gene sequences (Fig. 2b). UCLUST achieved the

highest F-measure for ITS classification (F = 0.51). How-

ever, all optimized classifiers achieved similar F-measure

ranges, with the exception of legacy BLAST for ITS se-

quences (Fig. 2b).

Species-level classification performance of 16S rRNA

gene simulated reads was significantly correlated be-

tween each subdomain and the full-length gene se-

quences (Fig. 2c). In our tests, full-length sequences

exhibited slightly lower accuracy than V1–3 and V4 sub-

domains. The relative performance of full-length 16S

rRNA genes versus hypervariable subdomain reads is

Fig. 1 Classifier performance on mock community datasets for 16S

rRNA gene sequences (left column) and fungal ITS sequences (right

column). a Average F-measure for each taxonomy classification

method (averaged across all configurations and all mock community

datasets) from class to species level. Error bars = 95% confidence intervals.

b Average F-measure for each optimized classifier (averaged across all

mock communities) at species level. c Average taxon accuracy rate for

each optimized classifier (averaged across all mock communities)

at species level. d Average Bray-Curtis distance between the expected

mock community composition and its composition as predicted by

each optimized classifier (averaged across all mock communities) at

species level. Violin plots show median (white point), quartiles (black

bars), and kernel density estimation (violin) for each score distribution.

Violins with different lower-case letters have significantly different

means (paired t test false detection rate-corrected P < 0.05)
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variable in the literature [11, 16–21], and our results add

another data point to the ongoing discussion of this

topic. Nevertheless, species-level classifications yielded

strong correlation between method configurations

(Fig. 2c) and optimized method performance (Fig. 2b),

suggesting that primer choice impacts classification accur-

acy uniformly across all methods. Hence, we focused on

V4 subdomain reads for downstream analyses.

Novel taxon classification evaluation

Novel taxon classification offers a unique perspective on

classifier behavior, assessing how classifiers perform

when challenged with a “novel” clade that is not rep-

resented in the reference database [22–25]. An ideal

classifier should identify the nearest taxonomic

lineage to which this taxon belongs, but no further.

In this evaluation, a reference database is subsampled

k times to generate query and reference sequence

sets, as for cross-validated classification, but two im-

portant distinctions exist: (1) the reference database

used for classification excludes any sequence that

matches the taxonomic affiliation of the query se-

quences at taxonomic level L, the taxonomic rank at

which classification is being attempted; and (2) this is

performed at each taxonomic level, in order to assess

classification performance when each method encoun-

ters a “novel” species, genus, family, etc.

Due to these differences, interpretation of novel taxon

classification results is different from that of mock

community and cross-validated classifications. For the

latter, classification accuracy may be assessed at each

taxonomic level for each classification result: mean

classification accuracy at family level and species level

evaluate the same results but focus on different taxo-

nomic levels of classification. For novel taxa, however,

different query and reference sequences are compiled

for classification at each taxonomic level and separate

classifications are performed for each. Hence, classifi-

cations at family and species level are independent

Fig. 2 Classifier performance on cross-validated sequence datasets.

Classification accuracy of 16S rRNA gene V4 subdomain (first row),

V1–3 subdomain (second row), full-length 16S rRNA gene (third tow),

and fungal ITS sequences (fourth row). a Average F-measure for each

taxonomy classification method (averaged across all configurations

and all cross-validated sequence datasets) from class to species

level. Error bars = 95% confidence intervals. b Average F-measure for

each optimized classifier (averaged across all cross-validated sequence

datasets) at species level. Violins with different lower-case letters have

significantly different means (paired t-test false detection rate-corrected

P < 0.05). c correlation between F-measure performance for each

method/configuration classification of V4 subdomain (x axis), V1–3

subdomain (y axis), and full-length 16S rRNA gene sequences (z axis).

Inset lists the Pearson R2 value for each pairwise correlation; each

correlation is significant (P < 0.001)
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events—one assesses how accurately each method per-

forms when it encounters a “novel” family that is not rep-

resented in the reference database, the other when a

“novel” species is encountered.

Novel taxon evaluations employ a suite of modified

metrics to provide more information on what types of

classification errors occur. Precision, recall, and F-

measure calculations at each taxonomic level L assess

whether an accurate taxonomy classification was made

at level L-1: for example, a “novel” species should be

assigned a genus, because the correct species class is not

represented within the reference database. Any species-

level classification in this scenario is an overclassification

(affecting both recall and precision) [25]. Overclassifica-

tion is one of the key metrics for novel taxa evaluation,

indicating the degree to which novel sequences will be

misinterpreted as known organisms. This overclassifica-

tion is often highly undesirable because it can lead, for

example, to the incorrect classification of unknown but

most likely innocuous environmental sequences as

known pathogens. Novel sequences that are classified

within the correct clade, but to a less specific level

than L, are underclassified (affecting recall but not

precision) [25]. Sequences that are classified into a

completely different clade are misclassified (affecting

both recall and precision) [25].

Precision, recall, and F-measure all gradually increase

from average scores near 0.0 at class level, reaching peak

scores at genus level for bacteria and species level for

fungi (Fig. 3a–c). These trends are paired with gradual

decreases in underclassification and misclassification

rates for all classification methods, indicating that all

classifiers perform poorly when they encounter se-

quences with no known match at the class, order, or

family levels (Fig. 3d, f ). At species level, UCLUST,

BLAST+, and VSEARCH achieved significantly better F-

measures than all other methods for 16S rRNA gene

classifications (P < 0.05) (Fig. 3g). UCLUST achieved sig-

nificantly better F-measures than all other methods for

ITS classifications (Fig. 3g). Over-, under-, and misclassi-

fication scores are less informative for optimizing classi-

fiers for real use cases, as most methods could be

optimized to yield near-zero scores for each of these

metrics separately, but only through extreme configura-

tions, leading to F-measures that would be unacceptable

under any scenario. Note that all comparisons were

made between methods optimized to maximize (or

minimize) a single metric, and hence the configurations

that maximize precision are frequently different from

those that maximize recall or other metrics. This trade-

off between different metrics is discussed in more

detail below.

The novel taxon evaluation provides an estimate

of classifier performance given a specific reference

database, but its generalization is limited by the

quality of the reference databases available and by the

label-based approach used for partitioning and evalu-

ation. Mislabeled and polyphyletic clades in the database,

e.g., clostridium group, increase the probability of mis-

classification. A complementary analysis based on se-

quence similarity between a novel query and top reference

hit could mitigate this issue. However, we choose to apply

a label-based approach, as it better reflects the biological

problem that users can expect to encounter, i.e., using a

particular reference sequence database (which will contain

some quantity of mislabeled and polyphyletic taxa inher-

ent to currently available resources), how likely is a classi-

fier to misclassify a taxonomic label?

Multi-evaluation method optimization

The mock community and cross-validation classification

evaluations yielded similar trends in configuration per-

formance, but optimizing parameters choices for the

novel taxa generally led to suboptimal choices for the

mock community and cross-validation tests (Fig. 4). We

sought to determine the relationship between method

configuration performance for each evaluation and use

this information to select configurations that perform

best across all evaluations. For 16S rRNA gene sequence

species-level classification, method configurations that

achieve maximum F-measures for mock and cross-

validated sequences can perform poorly for novel taxon

classification (Fig. 4b). Optimization is more straightfor-

ward for genus-level classification of 16S rRNA gene se-

quences (Fig. 4a) and for fungal sequences (Fig. 4c, d),

for which configuration performance (measured as mean

F-measure) is maximized by similar configurations

among all three evaluations.

To identify optimal method configurations, we set

accuracy score minimum thresholds for each evalu-

ation by identifying natural breaks in the range of

quality scores, selecting methods and parameter ranges

that met these criteria. Table 2 lists method configurations

that maximize species-level classification accuracy scores

for mock community, cross-validated, and novel taxon

evaluations under several common operating conditions.

“Balanced” configurations are recommended for general

use and are methods that maximize F-measure scores.

“Precision” and “recall” configurations maximize precision

and recall scores, respectively, for mock, cross-validated,

and novel-taxa classifications (Table 2). “Novel” configura-

tions optimize F-measure scores for novel taxon classifica-

tion, and secondarily for mock and cross-validated

performance (Table 2). These configurations are recom-

mended for use with sample types that are expected to

contain large proportions of unidentified species, for

which overclassification can be excessive. However,

these configurations may not perform optimally for

Bokulich et al. Microbiome  (2018) 6:90 Page 6 of 17



classification of known species (i.e., underclassification

rates will be higher). For fungi, the same configura-

tions recommended for “precision” perform well for

novel taxon classification (Table 2). For 16S rRNA

gene sequences, BLAST+, UCLUST, and VSEARCH

consensus classifiers perform best for novel taxon

classification (Table 2).

Computational runtime

High-throughput sequencing platforms (and experiments)

continue to yield increasing sequence counts, which—

even after quality filtering and dereplication or operational

taxonomic unit clustering steps common to most micro-

biome analysis pipelines—may exceed thousands of

unique sequences that need classification. Increasing

numbers of query sequences and references sequences

may lead to unacceptable runtimes, and under some ex-

perimental conditions, the top-performing method (based

on precision, recall, or some other metric) may be insuffi-

cient to handle large numbers of sequences within an ac-

ceptable time frame. For example, quick turnarounds may

be vital under clinical scenarios as microbiome evaluation

becomes translated to clinical practice, or commercial sce-

narios, when large sample volumes and client expectations

may constrain turnaround times and method selection.

We assessed computational runtime as a linear func-

tion of (1) the number of query sequences and (2) the

number of reference sequences. Linear dependence is

empirically evident in Fig. 5. For both of these metrics,

the slope is the most important measure of performance.

The intercept may include the amount of time taken to

train the classifier, preprocess the reference sequences,

load preprocessed data, or other “setup” steps that will

diminish in significance as sequence counts grow, and

hence is negligible.

UCLUST (0.000028 s/sequence), VSEARCH (0.000072 s/

sequence), BLAST+ (0.000080 s/sequence), and legacy

BLAST (0.000100 s/sequence) all exhibit shallow slopes

with increasing numbers of reference sequences. Naive

Bayes (0.000483 s/sequence) and SortMeRNA (0.000543 s/

sequence) yield moderately higher slopes and RDP

(0.001696 s/sequence) demonstrates the steepest slope

(Fig. 5b). For runtime as a function of query sequence

count, UCLUST (0.002248 s/sequence), RDP (0.002920 s/

Fig. 3 Classifier performance on novel-taxa simulated sequence

datasets for 16S rRNA gene sequences (left column) and fungal ITS

sequences (right column). a–f, Average F-measure (a), precision (b), recall

(c), overclassification (d), underclassification (e), and misclassification (f) for

each taxonomy classification method (averaged across all configurations

and all novel taxa sequence datasets) from phylum to species level.

Error bars = 95% confidence intervals. b Average F-measure for each

optimized classifier (averaged across all novel taxa sequence datasets) at

species level. Violins with different lower-case letters have significantly

different means (paired t test false detection rate-corrected P < 0.05)
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sequence), and SortMeRNA (0.003819 s/sequence) have

relatively shallow slopes (Fig. 5a). Naive Bayes (0.022984 s/

sequence), BLAST+ (0.026222 s/sequence), and VSEARCH

(0.030190 s/sequence) exhibit greater slopes. Legacy BLAST

(0.133292 s/sequence) yielded a slope magnitudes higher

than other methods, rendering this method impractical

for large data sets.

Discussion

We have developed and validated several machine-

learning and alignment-based classifiers provided in q2-

feature-classifier and benchmarked these classifiers, as

well as other common classification methods, to evaluate

their strengths and weaknesses for marker-gene ampli-

con sequence classification across a range of parameter

settings for each (Table 2).

Each classifier required some degree of optimization

to define top-performing parameter configurations, with

the sole exception of QIIME 1’s legacy BLAST wrapper,

which was unaffected by its only user-defined parameter,

e-value, over a range of 10− 10 to 1000. For all other

methods, performance varied widely depending on

parameter settings, and a single method could achieve

among the worst performance with one configuration but

among the best performance with another. Configurations

greatly affected accuracy with mock community, cross-

validated, and novel taxon evaluations, indicating that

optimization is necessary under a variety of performance

conditions, and optimization for one condition may not

necessarily translate to another. Mock community and

cross-validated evaluations exhibited similar results, but

novel taxon evaluations selected different optimal con-

figurations for most methods (Fig. 4), indicating that

configurations optimized to one condition, e.g., high-

recall classification of known sequences, may be less

suited for other conditions, e.g., classification of novel

sequences. Table 2 lists the top-performing configur-

ation for each method for several standard performance

conditions.

Optimal configurations also varied among different evalu-

ation metrics. Precision and recall, in particular, exhibited

some mutual opposition, such that methods increasing

precision reduced recall. For this reason, F-measure,

the harmonic mean of precision and recall, is a useful

metric for choosing configurations that are well

balanced for average performance. “Balanced” method

configurations—which maximize F-measure scores for

mock, cross-validated, and novel taxon evaluations

(Table 2)—are best suited for a wide range of user con-

ditions. The naive Bayes classifier with k-mer lengths of

6 or 7 and confidence = 0.7 (or confidence ≥ 0.9 if using

bespoke class weights), RDP with confidence = 0.6–0.7,

and UCLUST (minimum consensus = 0.51, minimum

similarity = 0.9, max accepts = 3) perform best under

Fig. 4 Classification accuracy comparison between mock community, cross-validated, and novel taxa evaluations. Scatterplots show mean F-measure

scores for each method configuration, averaged across all samples, for classification of 16S rRNA genes at genus level (a) and species

level (b), and fungal ITS sequences at genus level (c) and species level (d)
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Table 2 Optimized methods configurations for standard operating conditions

Mock Cross-validated Novel taxa

Target Condition Method Parameters F P R F P R F P R Threshold

16S rRNA gene Balanced NB-bespoke [6,6]:0.9 0.705 0.98 0.582 0.827 0.931 0.744 0.165 0.243 0.125 F = (0.49, 0.8, 0.1)

[6,6]:0.92 0.705 0.98 0.581 0.825 0.936 0.737 0.165 0.251 0.123 F = (0.7, 0.8, 0.15)

[6,6]:0.94 0.703 0.98 0.579 0.822 0.942 0.729 0.162 0.259 0.118

[7,7]:0.92 0.712 0.978 0.592 0.831 0.931 0.751 0.151 0.221 0.115

[7,7]:0.94 0.708 0.978 0.586 0.829 0.936 0.743 0.157 0.239 0.117

Naive-Bayes [7,7]:0.7 0.495 0.797 0.38 0.819 0.886 0.761 0.115 0.138 0.099

rdp 0.6 0.564 0.798 0.457 0.815 0.868 0.768 0.102 0.128 0.084

0.7 0.55 0.799 0.438 0.812 0.892 0.746 0.124 0.173 0.096

Uclust 0.51:0.9:3 0.498 0.746 0.392 0.846 0.876 0.817 0.154 0.201 0.126

Precision NB-bespoke [6,6]:0.98 0.676 0.987 0.537 0.803 0.956 0.692 0.163 0.303 0.111 P = (0.94, 0.95, 0.25)

[7,7]:0.98 0.687 0.98 0.551 0.815 0.951 0.713 0.164 0.283 0.115

rdp 1 0.239 0.941 0.16 0.632 0.968 0.469 0.12 0.457 0.069

Recall NB-bespoke [12,12]:0.5 0.754 0.8 0.721 0.815 0.83 0.801 0.053 0.058 0.049 R = (0.47, 0.75, 0.04)

[14,14]:0.5 0.758 0.802 0.726 0.811 0.826 0.797 0.052 0.057 0.048 R = (0.7, 0.75, 0.04)

[16,16]:0.5 0.755 0.785 0.732 0.808 0.825 0.792 0.052 0.058 0.047

[18,18]:0.5 0.772 0.803 0.748 0.805 0.823 0.789 0.055 0.061 0.05

[32,32]:0.5 0.937 0.966 0.913 0.788 0.818 0.76 0.054 0.067 0.045

Naive-Bayes [11,11]:0.5 0.567 0.77 0.479 0.793 0.82 0.768 0.059 0.065 0.055

[12,12]:0.5 0.567 0.769 0.479 0.79 0.816 0.765 0.059 0.064 0.055

[18,18]:0.5 0.564 0.764 0.477 0.779 0.807 0.753 0.057 0.063 0.051

rdp 0.5 0.577 0.791 0.48 0.816 0.848 0.787 0.068 0.079 0.06

Novel Blast+ 10:0.51:0.8 0.436 0.723 0.325 0.816 0.896 0.749 0.225 0.332 0.171 F = (0.4, 0.8, 0.2)

Uclust 0.76:0.9:5 0.467 0.775 0.348 0.84 0.938 0.76 0.219 0.358 0.158

VSEARCH 10:0.51:0.8 0.45 0.74 0.342 0.814 0.891 0.75 0.226 0.333 0.171

10:0.51:0.9 0.45 0.74 0.342 0.82 0.896 0.755 0.219 0.338 0.162

Fungi Balanced Naive-Bayes [6,6]:0.94 0.874 0.935 0.827 0.481 0.57 0.416 0.374 0.438 0.327 F = (0.85, 0.45, 0.37)

[6,6]:0.96 0.874 0.935 0.827 0.495 0.597 0.423 0.399 0.473 0.344

[6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361

[7,7]:0.98 0.874 0.935 0.827 0.485 0.596 0.409 0.388 0.47 0.33

NB-bespoke [6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325

[6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34

[6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

[7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329

rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332

0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379

Precision Naive-Bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 P = (0.92, 0.6, 0.3)

NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

rdp 0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379

1 0.821 0.943 0.742 0.461 0.81 0.322 0.459 0.774 0.327

Recall NB-bespoke [6,6]:0.92 0.938 0.971 0.924 0.467 0.544 0.409 0.353 0.407 0.312 R = (0.9, 0.4, 0.3)

[6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325
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these conditions (Table 2). Performance is dramatically

improved using bespoke class weights for 16S rRNA

sequences (Fig. 4a, b), though this approach is develop-

mental and only applicable when the expected compos-

ition of samples is known in advance (a scenario that is

becoming increasingly common with the increasing

quantity of public microbiome data, and which could

be aided by microbiome data sharing resources such as

Qiita (http://qiita.microbio.me)). For ITS sequences, the

naive Bayes classifier with k-mer lengths of 6 or 7 and

confidence ≥ 0.9, or RDP with confidence = 0.7–0.9, per-

form best, and the effects of bespoke class weights are less

pronounced (Fig. 4c, d).

However, some users may require high-precision

classifiers when false-positives may be more damaging to

the outcome, e.g., for detection of pathogens in a sam-

ple. Precision scores are maximized by naive Bayes and

RDP classifiers with high confidence settings (Table 2).

Optimizing for precision will significantly damage re-

call by yielding a high number of false negatives.

Other users may require high-recall classifiers when false-

negatives and underclassification hinder interpretation, but

false positives (mostly overclassification to a closely related

species) are less damaging. For example, in environments

with high numbers of unidentified species, a high-precision

classifier may yield large numbers of unclassified sequences;

Fig. 5 Runtime performance comparison of taxonomy classifiers. Runtime (s) for each taxonomy classifier either varying the number of query

sequences and keeping a constant 10,000 reference sequences (a) or varying the number of reference sequences and keeping a constant 1

query sequence (b)

Table 2 Optimized methods configurations for standard operating conditions (Continued)

Mock Cross-validated Novel taxa

Target Condition Method Parameters F P R F P R F P R Threshold

[6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34

[6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

[7,7]:0.96 0.935 0.969 0.921 0.47 0.56 0.404 0.357 0.422 0.31

[7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329

rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332

0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379

Novel Naive-Bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 F = (0.85, 0.45, 0.4)

NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

rdp 0.8 0.923 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.921 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379

aF, F-measure; P, precision; R, recall
bNaive Bayes parameters: k-mer range, confidence
cRDP parameters: confidence
dBLAST+/VSEARCH parameters: max accepts, minimum consensus, minimum percent identity
eUCLUST parameters: minimum consensus, similarity, max accepts
fThreshold describes the score cut-offs used to define optimal method ranges, in the following format: [metric = (mock score, cross-validated score, novel-taxa score)]. If

two cut-offs are given, the second indicates a higher cut-off used to select parameters for the developmental NB-bespoke method, and the configurations listed are the

union of the two cutoffs: the second cutoff for selecting NB-bespoke, the first for selecting all other methods
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in such cases, a second pass with a high-recall configuration

(Table 2) may provide useful inference of what taxa are

most similar to these unclassified sequences. When recall is

optimized, precision tends to suffer slightly (leading to simi-

lar F-measure scores to “balanced” configurations) but

novel taxon classification accuracy is minimized, as these

configurations tend to overclassify (Table 2). Any user pri-

oritizing recall ought to be aware of and acknowledge these

risks, e.g., when sharing or publishing their results, and

understand that many of the species-level classifications

may be wrong, particularly if the samples are expected to

contain many uncharacterized species. For 16S rRNA gene

sequences, naive Bayes bespoke classifiers with k-mer

lengths between 12 and 32 and confidence = 0.5 yield max-

imal recall scores, but RDP (confidence = 0.5) and naive

Bayes (uniform class weights, confidence = 0.5, k-mer

length = 11, 12, or 18) also perform well (Table 2). Fungal

recall scores are maximized by the same configurations rec-

ommended for “balanced” classification, i.e., naive Bayes

classifiers with k-mer lengths of 6 or 7 and confidence be-

tween 0.92 and 0.98 or RDP with confidence between 0.7

and 0.9 (Table 2).

Runtime requirements may also be the chief concern

dictating method selection for some users. QIIME 1’s

UCLUST wrapper provides the fastest runtime while still

achieving reasonably good performance for most evalua-

tions; naive Bayes, RDP, and BLAST+ also delivered

reasonably low runtime requirements and outperform

UCLUST on most other evaluation metrics.

This study did not compare methods for classification

of shotgun metagenome sequencing data sets, which

present a series of unique challenges that do not exist

for marker-gene amplicon sequence data. These include

much higher unique sequence counts (making runtime a

greater priority) and different analysis and quality con-

trol protocols. Metagenome sequences also exhibit

heterogenous coverage and length, unlike marker-gene

amplicon sequences, which typically have uniform start

sites and read lengths within a single sequencing run. A

recent benchmark of metagenome taxonomic profiling

methods describes similar results to our benchmark of

marker-gene sequence classifiers: most profilers per-

form well from phylum to family level but performance

degrades at genus and species levels; different methods

display superior performance according to different

performance metrics; and parameter configuration dra-

matically impacts performance [26]. In the current study,

we focused on benchmarking and optimizing classifiers

for marker-gene amplicon sequence data, in light of the

distinct needs of metagenome and marker-gene sequence

datasets. Further testing is needed to assess the per-

formance of these methods for metagenome sequence

classification. Additional studies are also warranted to

compare the performance of metagenome sequence

classifiers for classification of marker-gene amplicon

sequences. The tax-credit evaluation framework could

facilitate this process, and we plan to continue to

develop q2-feature-classifier to integrate methods that

demonstrate superior performance for amplicon se-

quence classification.

We acknowledge several limitations to this study. First,

we compare the q2-feature-classifier methods to the

classifiers that have been most commonly used for clas-

sification of 16S rRNA and ITS marker-gene amplicon

sequences accessed through QIIME 1 (RDP, BLAST,

uclust, SortMeRNA). This study therefore focuses on

classification methods that are implemented either in

QIIME 1 or QIIME 2. We note that in many cases, QIIME

wraps other implementations of these methods, and our

results therefore should generalize beyond QIIME. Other

methods—including metagenome sequence classifiers—

deserve comparison. The tax-credit framework will

support ongoing methods optimizations and comparisons

to our foundational analysis by the microbiome research

community. Second, the simulated sequence reads cur-

rently used in tax-credit do not incorporate sequencing

errors, which limits their application for inferring clas-

sification performance under biological conditions. We

instead use mock communities to assay classification of

noisy sequence data and simulated data to assess idealized

performance (i.e., independent of sequence errors). Mock

communities also test actual experimental conditions

(encompassing PCR, sequencing, and other technical

biases that can be difficult to model), instead of attempt-

ing to simulate sequence errors, and hence we argue that

the use of multiple testing datasets (mock, simulated

cross-validated, and novel taxa simulations) is a strength

of our study that allows us to query different aspects of

classifier performance in isolation. However, this caveat—

that our sequence simulations do not contain simulated

errors—must be accounted for when interpreting those

results.

Conclusions

The classification methods provided in q2-feature-

classifier will support improved taxonomy classification

of marker-gene amplicon sequences, and are released

as a free, open-source plugin for use with QIIME 2. We

demonstrate that these methods perform as well as or

better than other leading taxonomy classification methods

on a number of performance metrics. The naive Bayes,

VSEARCH, and BLAST+ consensus classifiers described

here are released for the first time in QIIME 2, with opti-

mized “balanced” configurations (Table 2) set as defaults.

We also present the results of a benchmark of several

widely used taxonomy classifiers for marker-gene amplicon

sequences and recommend the top-performing methods

and configurations for the most common user scenarios.
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Our recommendations for “balanced” methods (Table 2)

will be appropriate for most users who are classifying 16S

rRNA gene or fungal ITS sequences, but other users may

prioritize high-precision (low false-positive) or high-recall

(low false-negative) methods.

We have also shown that great potential exists for

improving the accuracy of taxonomy classifications by

appropriately setting class weights for the machine

learning classifiers. Currently, no tools exist that allow

users to generate appropriate values for these class

weights in real applications. Compiling appropriate class

weights for different sample types could be a promising

approach to further improve taxonomic classification of

marker gene sequence reads.

Methods

Mock communities

All mock communities were sourced from mockrobiota

[14]. Raw fastq files were demultiplexed and processed

using tools available in QIIME 2 (version 2017.4)

(https://qiime2.org). Reads were demultiplexed with

q2-demux (https://github.com/qiime2/q2-demux) and

quality filtered and dereplicated with q2-dada2 [4]. Rep-

resentative sequence sets for each dada2 sequence vari-

ant were used for taxonomy classification with each

classification method.

The inclusion of multiple mock community samples is

important to avoid overfitting; optimizing method per-

formance to a small set of data could result in overfitting

to the specific community compositions or conditions

under which those data were generated, which reduces

the robustness of the classifier.

Cross-validated simulated reads

The simulated reads used here were derived from the

reference databases using the “Cross-validated classifica-

tion performance” notebooks in our project repository.

The reference databases were either Greengenes or

UNITE (99% OTUs) that were cleaned according to

taxonomic label to remove sequences with ambiguous or

null labels. Reference sequences were trimmed to simu-

late amplification using standard PCR primers and slice

out the first 250 bases downstream (3′) of the forward

primer. The bacterial primers used were 27F/1492R [27]

to simulate full-length 16S rRNA gene sequences,

515F/806R [28] to simulate 16S rRNA gene V4 domain se-

quences, and 27F/534R [29] to simulate 16S rRNA gene

V1–3 domain sequences; the fungal primers used were

BITSf/B58S3r [30] to simulate ITS1 internal transcribed

spacer DNA sequences. The exact sequences were used

for cross validation and were not altered to simulate any

sequencing error; thus, our benchmarks simulate denoised

sequence data [4] and isolate classifier performance from

impacts from sequencing errors. Each database was

stratified by taxonomy and 10-fold randomized cross-

validation data sets were generated using scikit-learn’s li-

brary functions. Where a taxonomic label had less than 10

instances, taxonomies were amalgamated to make suffi-

ciently large strata. If, as a result, a taxonomy in any test

set was not present in the corresponding training set, the

expected taxonomy label was truncated to the nearest

common taxonomic rank observed in the training set

(e.g., Lactobacillus casei would become Lactobacillus).

The notebook detailing simulated read generation (for

both cross-validated and novel taxon reads) prior to

taxonomy classification is available at https://github.

com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/

novel-taxa/dataset-generation.ipynb.

Classification performance was also slightly modified

from a standard machine-learning scenario as the classi-

fiers in this study are able to refuse classification if they

are not confident above a taxonomic level for a given

sample. This also accommodates the taxonomy truncation

that we performed for this test. The methodology was

consistent with that used below for novel taxon evalua-

tions, so we defer its description to the next section.

“Novel taxon” simulation analysis

“Novel taxon” classification analysis was performed to

test the performance of classifiers when assigning tax-

onomy to sequences that are not represented in a refer-

ence database, e.g., as a simulation of what occurs when

a method encounters an undocumented species [22–25].

In this analysis, simulated amplicons were filtered from

those used for the cross-validation analysis. For all se-

quences present in each test set, sequences sharing taxo-

nomic affiliation at a given taxonomic level L (e.g., to species

level) in the corresponding training set were removed. Taxa

are stratified among query and test sets such that for each

query taxonomy at level L, no reference sequences match

that taxonomy, but at least one reference sequence will

match the taxonomic lineage at level L-1 (e.g., same genus

but different species). An ideal classifier would assign tax-

onomy to the nearest common taxonomic lineage (e.g.,

genus), but would not “overclassify” [25] to near neighbors

(e.g., assign species-level taxonomy when species X is

removed from the reference database). For example, a

“novel” sequence representing the species Lactobacil-

lus brevis should be classified as “Lactobacillus,” without

species-level annotation, in order to be considered a true

positive in this analysis. As described above for cross-

validated reads, these novel taxa simulated communities

were also tested in both bacterial (B) and fungal (F) data-

bases on simulated amplicons trimmed to simulate 250-nt

sequencing reads.

Novel taxon classification performance is evaluated

using precision, recall, F-measure, overclassification rates,
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underclassification rates, and misclassification rates [25]

for each taxonomic level (phylum to species), computed

with the following definitions (see below, Performance

analyses using simulated reads, for full description of pre-

cision, recall, and F-measure calculations):

1) A true positive is considered the nearest correct

lineage contained in the reference database. For

example, if Lactobacillus brevis is removed from the

reference database and used as a query sequence,

the only correct taxonomy classification would be

“Lactobacillus,” without species-level classification.

2) A false positive would be either a classification to a

different Lactobacillus species (overclassification) or

any genus other than Lactobacillus

(misclassification).

3) A false negative occurs if an expected taxonomy

classification (e.g., “Lactobacillus”) is not observed in

the results. Note that this will be the modified

taxonomy expected when using a naive reference

database and is not the same as the true taxonomic

affiliation of a query sequence in the novel taxa

analysis. A false negative results from misclassification,

overclassification, or when the classification contains

the correct basal lineage, but does not assign a

taxonomy label at level L (Underclassification),

e.g., classification as “Lactobacillaceae,” but no

genus level classification.

Taxonomy classification

Representative sequences for all analyses (mock com-

munity, cross-validated, and novel taxa) were classified

taxonomically using the following taxonomy classifiers

and setting sweeps:

1. q2-feature-classifier multinomial naive Bayes

classifier. Varied k-mer length in {4, 6, 7, 8, 9, 10,

11, 12, 14, 16, 18, 32} and confidence threshold in

{0, 0.5, 0.7, 0.9, 0.92, 0.94, 0.96, 0.98, 1}.

2. BLAST+ [9] local sequence alignment followed by

consensus taxonomy classification implemented in

q2-feature-classifier. Varied max accepts from 1 to

100; percent identity from 0.80 to 0.99; and minimum

consensus from 0.51 to 0.99. See description below.

3. VSEARCH [10] global sequence alignment followed

by consensus taxonomy classification implemented in

q2-feature-classifier. Varied max accepts from 1 to

100; percent identity from 0.80 to 0.99; and minimum

consensus from 0.51 to 0.99. See description below.

4. Ribosomal Database Project (RDP) naïve Bayesian

classifier [11] (QIIME1 wrapper), with confidence

thresholds between 0.0 and 1.0 in steps of 0.1.

5. Legacy BLAST [15] (QIIME1 wrapper) varying e-value

thresholds from 1e-9 to 1000.

6. SortMeRNA [13] (QIIME1 wrapper) varying

minimum consensus fraction from 0.51 to 0.99;

similarity from 0.8 to 0.9; max accepts from 1 to 10;

and coverage from 0.8 to 0.9.

7. UCLUST [12] (QIIME1 wrapper) varying minimum

consensus fraction from 0.51 to 0.99; similarity

from 0.8 to 0.9; and max accepts from 1 to 10.

With the exception of the UCLUST classifier, we have

only benchmarked the performance of open-source, free,

marker-gene-agnostic classifiers, i.e., those that can be

trained/aligned on a reference database of any marker

gene. Hence, we excluded classifiers that can only assign

taxonomy to a particular marker gene (e.g., only bacter-

ial 16S rRNA genes) and those that rely on specialized

or unavailable reference databases and cannot be trained

on other databases, effectively restricting their use for

other marker genes and custom databases.

Classification of bacterial/archaeal 16S rRNA gene

sequences was made using the Greengenes (13_8 release)

[5] reference sequence database preclustered at 99% ID,

with amplicons for the domain of interest extracted using

primers 27F/1492R [27], 515F/806R [28], or 27F/534R [29]

with q2-feature-classifier’s extract_reads method. Classifi-

cation of fungal ITS sequences was made using the UNITE

database (version 7.1 QIIME developer release) [31]

preclustered at 99% ID. For the cross validation and

novel taxon classification tests, we prefiltered to remove se-

quences with incomplete or ambiguous taxonomies (con-

taining the substrings ‘unknown,’ ‘unidentified,’ or ‘_sp’ or

terminating at any level with ‘__’).

The notebooks detailing taxonomy classification sweeps

of mock communities are available at https://github.

com/caporaso-lab/tax-credit-data/tree/0.1.0/ipynb/mock-

community. Cross-validated read classification sweeps

are available at https://github.com/caporaso-lab/tax-credit-

data/blob/0.1.0/ipynb/cross-validated/taxonomy-assignment.

ipynb. Novel taxon classification sweeps are available at

https://github.com/caporaso-lab/tax-credit-data/blob/0.1.0/

ipynb/novel-taxa/taxonomy-assignment.ipynb.

Runtime analyses

The tax-credit framework employs two different runtime

metrics: as a function of (1) the number of query se-

quences or (2) the number of reference sequences. Tax-

onomy classifier runtimes were logged while performing

classifications of pseudorandom subsets of 1, 2000, 4000,

6000, 8000, and 10,000 sequences from the Greengenes

99% OTU database. Each subset was drawn once then

used for all of the tests as appropriate. All runtimes were

computed on the same Linux workstation (Ubuntu 16.04.2

LTS, Intel Xeon CPU E7–4850 v3 @ 2.20GHz, 1TB

memory). The exact commands used for runtime ana-

lysis are presented in the “Runtime analyses” notebook
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in the project repository (https://github.com/caporaso-lab/

tax-credit-data/blob/0.1.0/ipynb/runtime/analysis.ipynb).

Performance analyses using simulated reads

Cross-validated and novel taxa reads are evaluated using

the classic precision, recall, and F-measure metrics [5]

(novel taxa use the standard calculations as described

below, but modified definitions for true positive (TP),

false positive (FP), and false negative (FN), as described

above for novel taxon classification analysis).

Precision, recall, and F-measure are calculated as follows:

� Precision = TP/(TP + FP) or the fraction of sequences

that were classified correctly at level L.

� Recall = TP/(TP + FN) or the fraction of expected

taxonomic labels that were predicted at level L.

� F-measure = 2 × precision × recall/(precision+recall),

or the harmonic mean of precision and recall.

The Jupyter notebook detailing commands used for

evaluation of cross-validated read classifications is available

at https://github.com/caporaso-lab/tax-credit-data/blob/

0.1.0/ipynb/cross-validated/evaluate-classification.ipynb.

The notebook for evaluation of novel taxon classifications

is available at https://github.com/caporaso-lab/tax-credit-

data/blob/0.1.0/ipynb/novel-taxa/evaluate-classification.ipynb.

Performance analyses using mock communities

The Jupyter notebook detailing commands used for evalu-

ation of mock communities, including the three evalu-

ation types described below, is available at https://github.

com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/mock-

community/evaluate-classification-accuracy.ipynb.

Precision and recall

Classic precision, recall, and F-measure are used to cal-

culate mock community classification accuracy, using

the definitions given above for simulated reads. These

metrics require knowing the expected classification of

each sequence, which we determine by performing a

gapless alignment between each representative sequence

in the mock community and the marker-gene sequences

of each microbial strain added to the mock community.

These “expected sequences” are provided for the mock

communities in mockrobiota [14]. Representative se-

quences are assigned the taxonomy of the best alignment,

and any representative sequence with more than three

mismatches to the expected sequences are excluded from

precision/recall calculations. If a representative sequence

aligns to more than one expected sequence equally well,

all top hits are accepted as the “correct” classification.

This scenario is rare and typically only occurred when

different strains of the same species were added to the

same mock community to intentionally produce this

challenge (e.g., for mock-12 as described by [4]). Preci-

sion, recall, and F-measure are then calculated by

comparing the “expected” classification for each mock

community sequence to the classifications predicted by

each taxonomy classifier using the full reference data-

bases, as described above.

Taxon accuracy rate and taxon detection rate

Taxon accuracy rate (TAR) and taxon detection rate

(TDR) are used for qualitative compositional analyses of

mock communities. As the true taxonomy labels for

each sequence in a mock community are not known

with absolute certainty, TAR and TDR are useful alter-

natives to precision and recall that instead rely on the

presence/absence of expected taxa, or microbiota that

are intentionally added to the mock community. In prac-

tice, TAR/TDR are complementary metrics to precision/

recall and should provide similar results if the expected

classifications for mock community representative se-

quences are accurate.

At a given taxonomic level, a classification is a

� True positive (TP), if that taxon is both observed

and expected.

� False positive (FP), if that taxon is observed but not

expected.

� False negative (FN), if a taxon is expected but not

observed.

These are used to calculate TAR and TDR as

� TAR = TP/(TP + FP) or the fraction of observed

taxa that were expected at level L.

� TDR = TP/(TP + FN) or the fraction of expected

taxa that are observed at level L.

Bray-Curtis dissimilarity

Bray-Curtis dissimilarity [32] is used to measure the de-

gree of dissimilarity between two samples as a function

of the abundance of each species label present in each

sample, treating each species as equally related. This is a

useful metric for evaluating classifier performance by

assessing the relative distance between each predicted

mock community composition (abundance of taxa in a

sample based on results of a single classifier) and the ex-

pected composition of that sample. For each classifier,

Bray-Curtis distances between the expected and ob-

served taxonomic compositions are calculated for each

sample in each mock community dataset; this yields a

single expected-observed distance for each individual

observation. The distance distributions for each method

are then compared statistically using paired or unpaired

t-tests to assess whether one method (or configuration)

performs consistently better than another.
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New taxonomy classifiers

We describe q2-feature-classifier (https://github.com/qiime2/

q2-feature-classifier), a plugin for QIIME 2 (https://qiime2.

org/) that performs multi-class taxonomy classification of

marker-gene sequence reads. In this work, we compare

the consensus BLAST+ and VSEARCH methods and the

naive Bayes scikit-learn classifier. The software is free and

open-source.

Machine learning taxonomy classifiers

The q2-feature-classifier plugin allows users to apply

any of the suite of machine learning classifiers available

in scikit-learn (http://scikit-learn.org) to the problem of

taxonomy classification of marker-gene sequences. It

functions as a lightweight wrapper that transforms the

problem into a standard document classification prob-

lem. Advanced users can input any appropriate scikit-

learn classifier pipeline, which can include a range of

feature extraction and transformation steps as well as

specifying a machine learning algorithm.

The plugin provides a default method which is to ex-

tract k-mer counts from reference sequences and train

the scikit-learn multinomial naive Bayes classifier, and it

is this method that we test extensively here. Specifically,

the pipeline consists of a sklearn.feature_extraction.text.

HashingVectorizer feature extraction step followed by a

sklearn.naive_bayes.MultinomialNB classification step. The

use of a hashing feature extractor allows the use of signifi-

cantly longer k-mers than the 8-mers that are used by RDP

Classifier, and we tested up to 32-mers. Like most scikit-

learn classifiers, we are able to set class weights when train-

ing the multinomial naive Bayes classifiers. In the naive

Bayes setting, setting class weights means that class priors

are not derived from the training data or set to be uniform,

as they are for the RDP Classifier. For more details on how

class weights enter the calculations, please refer to the

scikit-learn User Guide (http://scikit-learn.org).

In most settings, it is highly unlikely that the assump-

tion of uniform weights is correct. That assumption is

that each of the taxa in the reference database is equally

likely to appear in each sample. Setting class weights to

more realistic values can greatly aid the classifier in mak-

ing more accurate predictions, as we show in this work.

When testing the mock communities, we made use of the

fact that the sequence compositions were known a priori

for the bespoke classifier. For the simulated reads studies,

we allowed the classifier to set the class weights from the

class frequencies observed in each training set for the be-

spoke classifier.

For this study, we performed two parameter sweeps

on the mock communities: an initial broad sweep to

optimize feature extraction parameters and then a more

focused sweep to optimize k-mer length and confidence

parameter settings. These sweeps included varying the

assumptions regarding class weights. The focused

sweeps were also performed for the cross-validated

and novel taxa evaluations, but only for the assumption of

uniform class priors. The results for the focused sweeps

across all data sets are those which are compared against

the other classifiers in this work.

The broad sweeps used a modified scikit-learn pipeline

which consisted of the sklearn.feature_extraction.text.

HashingVectorizer followed by the sklearn.feature_

extraction.text.TfidfTransformer, then the sklearn.

naive_bayes.MultinomialNB. We performed a full grid

search over the parameters shown in Table 3. The

conclusion from the initial sweep was that the Tfidf-

Transformer step did not significantly improve classi-

fication that n_features should be set to 8192, that feature

vectors should be normalized using L2 normalization, and

that the alpha parameter for the naive Bayes classifier

should be set to 0.001. Please see https://github.com/

caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/mock-

community/evaluate-classification-accuracy-nb-extra.

ipynb for details.

Consensus taxonomy alignment-based classifiers

Two new classifiers implemented in q2-feature-classifier

perform consensus taxonomy classification based on

alignment of a query sequence to a reference sequence.

The methods classify_consensus_vsearch and

classify_consensus_blast use the global aligner

VSEARCH [10] or the local aligner BLAST+ [9], respect-

ively, to return up to maxaccepts reference sequences

that align to the query with at least perc_identity

similarity. A consensus taxonomy is then assigned to the

query sequence by determining the taxonomic lineage on

which at least min_consensus of the aligned sequences

agree. This consensus taxonomy is truncated at the taxo-

nomic level at which less than min_consensus of tax-

onomies agree. For example, if a query sequence is

classified with maxaccepts=3, min_consensus=0.51,

and the following top hits:

Table 3 Naive Bayes broad grid search parameters

Step Parameter Values

sklearn.feature_extraction.text.
HashingVectorizer

n_features 1024, 8192, 65,536

ngram_range [4,4], [8, 8], [16, 16],
[4,16]

sklearn.feature_extraction.text.
TfidfTransformer

norm l1, l2, None

usd_idf True, False

sklearn.naive_bayes.MultinomialNB alpha 0.001, 0.01, 0.1

class_prior None, array of
class weights

post processing confidence 0, 0.2, 0.4, 0.6, 0.8
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k__Bacteria; p__Firmicutes; c__Bacilli;

o__Lactobacillales; f__Lactobacillaceae;

g__Lactobacillus; s__brevis.

k__Bacteria; p__Firmicutes; c__Bacilli;

o__Lactobacillales; f__Lactobacillaceae;

g__Lactobacillus; s__brevis.

k__Bacteria; p__Firmicutes; c__Bacilli;

o__Lactobacillales; f__Lactobacillaceae;

g__Lactobacillus; s__delbrueckii.

The taxonomy label assigned will be k__Bacteria;

p__Firmicutes; c__Bacilli; o__Lactobacil-

lales; f__Lactobacillaceae; g__Lactobacil-

lus; s__brevis. However, if min_consensus=0.99,

the taxonomy label assigned will be k__Bacteria, p__

Firmicutes, c__Bacilli, o__Lactobacillales,

f__Lactobacillaceae, and g__Lactobacillus.
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