
REVUE FRANÇAISE D’AUTOMATIQUE, D’INFORMATIQUE ET DE

RECHERCHE OPÉRATIONNELLE. RECHERCHE OPÉRATIONNELLE

PAULO FERNANDES

BRIGITTE PLATEAU

WILLIAM J. STEWART

Optimizing tensor product computations in

stochastic automata networks

Revue française d’automatique, d’informatique et de recherche
opérationnelle. Recherche opérationnelle, tome 32, no 3 (1998),
p. 325-351.

<http://www.numdam.org/item?id=RO_1998__32_3_325_0>

© AFCET, 1998, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, d’infor-
matique et de recherche opérationnelle. Recherche opérationnelle » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1998__32_3_325_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Opérations Research

(vol. 32, n° 3, 1998, pp. 325-351)

OPTIMIZING TENSOR PRODUCT COMPUTATIONS

IN STOCHASTIC AUTOMATA NETWORKS

by Paulo FERNANDES (*), Brigitte PLATEAU (l) and William J. STEWART (2)

Abstract. - In this paper we consider some numerical issues in Computing solutions to networks
of stochastic automata (SAN). In particular our concern is with keeping the amount of computation
per itération to a minimum, since itérative methods appear to be the most effective in determining
numerical solutions. In a previous paper we presented complexity results concerning the vector-
descriptor multiplication phase of the analysis. In this paper our concern is with optimizations
related to the implementation of this algorithm. We also consider the possible benefits of grouping
automata in a SAN with many small automata, to create an equivalent SAN having a smaller
number of larger automata. © Elsevier, Paris

Keywords; Markov chains, Stochastic automata networks, Generalized tensor algebra, Vector-
descriptor multiplication.

Résumé. - Dans cet article, nous étudions les algorithmes numériques pour la résolution de
modèles de réseaux d'automates stochastiques. Plus particulièrement, nous montrons comment il
est possible de réduire le coût de calcul d'une itération, puisque les schémas itératifs apparaissent
les plus efficaces dans ce contexte. Dans un article précédent, nous avons donné des résultats de
complexité pour la multiplication vecteur-descripteur. Dans cet article, nous nous intéressons aux
optimisations liées à l'implantation de l'algorithme. De plus, nous montrons l'intérêt de grouper
les automates en un réseau équivalent qui comporte moins d'automates, ceux-ci étant de taille plus
grande. © Elsevier, Paris

Mots clés : Chaîne de Markov, Réseaux d'automates stochastiques, Produit tensoriel généralisé,
multiplication vecteur-descripteur.

1. INTRODUCTION

The use of Stochastic Automata Networks (S ANs) is becoming increasingly
important in performance modelling issues related to parallel and distributed
computer Systems. Models that are based on Markov chains allow for
considérable complexity, but in practice they often suffer from difficulties
that are well-documented. The size of the state space generated may become

C1) EVIAG-LMC, 100 rue des Mathématiques, 38041 Grenoble Cedex» France.
(2) Department of Computer Science, North Carolina State University, Raleigh, N.C. 27695-

8206, USA.
E-mail: Paulo.Femandes@imag.fr, Brigitte,Plateau@imag.fr, billy@csc.ncsu.edu

Recherche opérationnelle/Opérations Research, 0399-0559/98/03/
© Elsevier, Paris

3 2 6 P. FERNANDES, B. PLATEAU, W. J. STEWART

so large that it effectively prohibits the eomputation of a solution. This is
true whether the Markov ehain results from a stochastic Pétri net formalism,
or from a straightforward Markov ehain analyzer [18, 12].

In many instances, the SAN formalism is an appropriate choice. Parallel
and distributed Systems are often viewed as collections of components that
operate more or less independently, requiring only infrequent interaction
such as synchronizing their actions, or operating at different rates depending
on the state of parts of the overall System. This is exaetly the viewpoint
adopted by SANs [15, 20]. The components are modelled as individual
stochastic automata that interact with each other. Furthermore, the state
space explosion problem associated with Markov ehain models is mitigated
by the fact that the state transition matrix is not stored, nor even generated.
Instead, it is represented by a number of much smaller matrices, one for
each of the stochastic automata that constitute the System, and from these
all relevant information may be determined without explicitly forming the
global matrix. The implication is that a considérable saving in memory is
effected by storing the matrix in this fashion [5, 15]..

Other modelling approaches such as Pétri Nets [6] and Stochastic Process
Algebras [10, 11] can benefit from this tensor représentation of the transition
matrix. But as far as we know, these approaches do not exploit the functional
extension of tensor algebra that is extensively used in SANs. For Superposed
Pétri Nets, in [21], it has been shown that the structured tensor représentation
can also be efficiently used to reduce the storage space of the itération vectors.

There are two overriding concerns in the application of any Markovian
modelling methodology, viz., memory requirements and eomputation time.
Since these are frequently fonctions of the number of states, a first approach
is to develop techniques that minimize the number of states in the model.
In SANs, it is possible to make use of symmetries as well as lumping
and various superpositioning of the automata to reduce the computational
burden, [1, 4, 17]. Furthermore, in [9], structural properties of the Markov
ehain graph (specificially the occurrence of cycles) are used to compute
steady state solutions.

For very large problems, it is well-known that only itérative methods are
viable. We have shown in [20] that projection methods (Arnoldi, GMRES)
with preconditioning can be used with a gain of performance compared to
the standard power method. In this paper we concentrate on procedures that
allow us to keep the amount of eomputation per itération, which is basically
the cost of the matrix-vector multiplication, to a minimum. In a previous
paper [8], we proved a theorem concerning the complexity of a matrix-vector

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPILATIONS 327

multiplication when the matrix is stored as a compact SAN descriptor and
has funetional rates. This algorithm is an improvement of the one in {15]
when functional rates must be handled.

The objective of this paper is to analyze the cost of implementing this
new algorithm and to compare it to more usual sparse methods. In this
way we extend the results reported in [7], We show in these experiments
that the actual performance of the implementation is model dépendant.
Nevertheless, it is shown that some optimizations can alwaysbe used to
improve the performance of the basic algorithm: They concern the ordering
of matrix multiplications (small matrices used to build the transition matrix
in a structured way) and the benefits of reducing the number of automata of a
model using an automatic grouping procedure. In this grouping procedure, a
SAN with many small automata is transformed into an equivalent SAN with
less larger automata and we examine the memory/performance trade-offs.

2. THE SAN DESCRIPTOR AND EXAMPLES

There are basically two way s in which stochastic automata interact [14]:
The rate at which a transition may occur in one automaton may be a
function of the state of other automata. Such transitions are c&lled functional
transitions. A transition in one automaton may force a transition to occur in
one or more other automata. We refer to such transitions collectively under
the name of synchronizing transitions. Synchronizing transitions may also
be functional. In any given automaton, transitions that are not synchronizing
transitions are said to be local transitions. As a gênerai rule, it is shown in
[13], that stochastic automata networks may always be treated by separating
out the local transitions and the synchronizing events. A System containing
N stochastic automata with E synchronizing events may be written as

2E+N

3=1

This formula is referred to as the descriptor of the stochastic automata
network. The subscript g dénotes a generalization of the tensor product
concept to matrices with functional entries [14].

Two simple examples [14] will be used to illustrate the performance of the
numerical algorithms. We do not wish to claim that these examples cover
the entire spectrum of SAN models and often realistic models are more
complex; instead they were chosen because they incorporate features that
typically lead to numerical difficulties.

vol. 32, n° 3, 1998

3 2 8 P. FERNANDES, B. PLATEAU, W. J. STEWART

A Model of Resource Sharing : In this model, JV distinguishable
processes share a certain resource, and at most P of them can concurrently
use this resource. Each of these processes alternâtes between a sleeping state
and a resource using state. We shall let ÀW be the rate at which process i
awakes from the sleeping state wishing to access the resource, and p^l\ the
rate at which this same process releases the resource when it has possession
of it. In our SAN représentation, each process is modelled by a two state
automaton A^\ We shall let sA^ dénote the current state of automaton A^'\
Also, we introducé the function ƒ = Sl^2irzl6(sA^ = using) < P) ,
where 6(b) is an integer function that has the value 1 if the boolean b is true,
and the value 0 otherwise. The local transition matrix for automaton A^ is

and the overall descriptor for the model is, according to équation (1)

AT

g i—i i=l

where Idd dénotes the identity matrix of order d.
The SAN product state space for this model is of size 2N. Notice that when

P — 1, the reachable state space is of size JV + 1, which is considerably
smaller than the product state space, while when P — N the reachable
state space is the entire product state space. Other values of P give rise
to intermediate cases.

A Queueing Network with Blocking and Priority Service : The second
model we shall use is an open queueing network of three finite capacity
queues and two customer classes. Class 1 customers arrive from the exterior
to queue 1 according to a Poisson process with rate Ai. Arriving customers
are lost if they arrive and find the buffer full. Similarly, class 2 customers
arrive from outside the network to queue 2, also according to a Poisson
process, but this time at rate À2 and they also are lost if the buffer at queue
2 is full. The servers at queues 1 and 2 provide exponential service at rates
fil and /J2 respectively. Customers that have been served at either of these
queues try to join queue 3. If queue 3 is full, class 1 customers are blocked
(blocking after service) and the server at queue 1 must halt. This server
cannot begin to serve another customer until a slot becomes available in
the buffer of queue 3 and the blocked customer is transferred. On the other
hand, when a (class 2) customer has been served at queue 2 and finds the

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPUTATIONS 329

buffer at queue 3 full, that customer is lost. Queue 3 provides exponential
service at rate fjJ$1 to class 1 customers and at rate /i32 to class 2 customers.
It is the only queue to serve both classes. In this queue, class 1 customers
have preemptive priority over class 2 customers. Customers departing after
service at queue 3 leave the network. We shall let Ck — 1, k — 1, 2, 3
dénote the finite buffer capacity at queue k.

Queues 1 and 2 can each be represented by a single automaton (A^ and
respectively) with a one-to-one correspondance between the number of

customers in the queue and the state of the associated automaton. Queue 3
requires two automata for its représentation; the first, A^\ provides the
number of class 1 customers and the second, A^2\ the number of class 2
customers present in queue 3.

This SAN has two synchronizing events: the first corresponds to the
transfer of a class 1 customer from queue 1 to queue 3 and the second,
the transfer of a class 2 customer from queue 2 to queue 3. We shall
dénote these synchronizing events as si and S2 respectively. In addition
to these synchronizing events, this SAN requires two functions. They are
ƒ = 6(sA^ + sA^ < Cs-1) and g = 6(sA^ = 0). The function ƒ
has the value 0 when queue 3 is full and the value 1 otherwise, while the
function g has the value 0 when a class 1 customer is present in queue 3,
thereby preventing a class 2 customer in this queue from receiving service.
It has the value 1 otherwise. The various matrices for this model can be
found in [14] and the descriptor follows the gênerai format (eq. (1))

Q =

The reachable state space of the SAN is of size C\ x C% x C%{C% -f- l) /2
whereas the complete SAN product state space has size C\ x C2 x C32.

3. ALGORITHM ANALYSIS

We present without proof, the algorithm [8] concerning vector-descriptor
multiplication. We use the notation B[A] to indicate that the matrix B may
contain transitions that are a function of the state of the automaton A,
and more generally, A^IA^^A^, . . . , A^m~^} to dénote that the matrix
A(m} may contain éléments that are a function of the state variable of one
or more of the automata A^\A^2\... , ^ m ~ 1) . We assume, without loss
of generality that the state space of automaton i is 1 , . . . , u{. Precisely, we

vol. 32, n° 3, 1998

330 P. FERNANDES, B. PLATEAU, W. J. STEWART

consider the algorithm to perform the multiplication

y g vyg

X • • • X l i a ®g A^>[AW] ®5 h:N X A^> ®g I2:jv) (2)

where I^j, with % < j dénotes the identity matrix of size ni=infc*
This algorithm, presented in Figure 1, invalv.es at most of the order of
UiLi ni x JliLi ni multiplications (the worst case being when the matrices
have only nonzero éléments) and this mimber is a bound on the number of
function évaluations. This bound is reached if all matrix entries are functional
and if the arguments of the fonctions are all the automata.

The analysis is a straightforward translation of équation (2). Each tensor
product term is decomposed into N normal factorsl which are processed
iteratively by the algorithm. It is useful to consider the code as consisting of
the three parts illustrated in Figure 1. Part 1 corresponds to the vector-matrix
multiplication, when the matrix has constant entries (Le., af ter all fonctions
have been evaluated). Part 2 corresponds to fetching the subvectors to be
multiplied and the loop management. Note that subvectors that have to be
fetched are composed of non contiguous entries in x, Part 3 occurs only in
models with functional transition rates and corresponds to the transformation
of a vector index into a SAN state, which is subsequently used as an argument
for the fonctions. Then the fonctions are evaluated. This is performed only if
the matrix A^ in the innermost loop has functional entries. Part 1 constitutes
the essential multiplication phase of the algorithm. Complexity results show
that taking advantage of the tensor structure may lead to less opérations
than a regular global operator. Parts 2 and 3 are the overhead due to the
tensor représentation and the use of fonctions. One of the objectives of this

A normal factor is a term of the type

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPUTATIONS 331

2. Initialke: nleft = n\n2 • * * rtN-x ï nr%ht = 1.
2. For t = jV,. . . ,2, ldo
2. • base = 0; jump = «i K nright;
2. • For fc = 1,2,... ,nle ƒ £ do

3.

3.

3.

2.
2.
2.
2.

1.

o For j = 1,2,..,

•*; = ([(*-
o Evakate A£*)[.

,« - 1 do

•i)/n;;l
+1«']^(nL>i))^

4^,^ fv4^1î]forJîif...Jbi-.i

o For jf = 1,2,... ,nright do
* îViofea; = base •+• i ;
* For 1 = 1,2,... ,»Î do

• 21 = xindex) index = index H- nrtg/ït;

* Multiply: z• = *XilW[fclr.rffc-,]

2. * indfes = base + iï
2. * For I = 1,2,. . . ,ni do
2. • a;,„dex = z{\ index = index H- nright;
2. o 6a^e = 6ase -f- jump;
2. • nle/f = nleftfm-i ;
2. • nright = nright x m;

Figure 1. - Basic Multiplication Algorithm.

paper is to give an empirical évaluation of this overhead, to propose some
optimizations, and to compare this method with the usual sparse matrix
method (multiplying a vector and a matrix in a Harwell Boeing format).

Remark 1: In équation (2), only one automata can depend on the (N — 1)
other automata and so on. One automaten must be independent of all the
others. This pro vides a means by which the individual factors on the right-
hand side of équation (2) must be ranked; Le., according to the automata
on which they may depend. A given automaton may actually depend on a
subset of the automata in its parameter list.

What is not immediately apparent from the algorithm as described is the
fact that in ordinary tensorproductsy (OTP), the normal factors commute and
the order in whieh the innermost multiplication is carried out may be arbitrary.
In generalized tensor products, (GTP), however this freedom of choice does
not exist; the order is prescribed. As indicated by the right hand side of
équation 2, each automaton A^ is represented by a normal factor which
must be processed before any factor of its arguments [A^\... »^*"1^] is
processed. Let us call this order a légal processing order. This order dépends

vol. 32, n° 3, 1998

3 3 2 P. FERNANDES, B. PLATEAU, W. J. STEWART #

on the set of dependencies of the tensor product2 and always exists if the
set of dependencies is acyclic. In the sequel, this order is denoted 7, and 7̂
is the index of the automaton in the i-th position after re-ordering. Note that
there may be more than one legal processing order for a term.

Remark 2: Now consider an arbitrary permutation a (ai dénotes the
initial index of the automaton in the i-th position after permutation). In
[8], we show how to perform this simple transformation where the position
of each automata in a list describing the SAN is changed. Let us call
this order a positioning order. In this transformation the multiplication
x A^[A^\ . . . , AW] ®g--®g A W ^ 1 ' , . - -, A^} becomes

x Pa A ^ V ^ . . . , ^)] ^ (P")T. (3)

Hère Pa is a permutation matrix defined by a, and (Pa)T is its transpose.
In what follows, we dénote x° = xPa. In this context the left-hand side
of (2) becomes

No matter which permutation is chosen, the right-hand side remains
essentially identical in the sensé that the ternis are always ordered with
the same legal processing order 7. The only change results from the
manner in which each normal factor is written. Each must have the
form ïa^.a^ 0,? A^[A^\...,A^] <$>g I<ri+1:<rN, where Iai:ak dénotes
the identity matrix of size Y[i=in^z'

Remark 3: Now consider a tensor product term and a legal processing
order 7. The normal factor décomposition is

N

It is possible now to permute each normal factor of this décomposition.
Dénote eW the permutation 3 1 , . . . , N —> 1, . . . , 7̂ - 1,7̂ ; + 1 , . . . , TV, 7 ,̂

(2) A set of dependencies can be modeled with a directed graph, where the nodes are the automata
and there is an arc from i to j if and only if the state of automaton i is an argument of a functional
transition rate in automaton j in the tensor term. We only consider acyclic sets of dependencies
here. It is shown in [8] that if there is a cyclic set of dependencies in a term, this term can be
exactly decomposed into a number of non-cyclic terms.

3 The property is true for any permutation, but will be used for an e ^ as defined next

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPUTATIONS 333

which places automaton 7̂ in the last position. This leads to the equivalent
expression

{ i) ^ W W (J * (i)) r . (4)

In what follows, we show how to use the expressions (3) and (4) to reduce
the number of function évaluations in the algorithm implementation.

4. REDUCING THE NUMBER OF FUNCTION EVALUATIONS

In a descriptor, there are generally terms with and without functions and
the function arguments have various patterns. When a term has no function,
PEPS uses the algorithm of Figure 1 with part 3 removed. When a term
has functions, it incurs an overhead. This cost mainly comes from: (a)
the computation of individual automata states (the arguments) from a global
state index, (b) the function évaluation itself knowing the individual automata
states, (c) the number of these évaluations.

The cost of the function évaluations (b) is clearly model dépendant. The
cost of the computation of individual automata states from a global state
index (a) and the number of times it is done (c) are also model dépendant,
in the sense that it dépends on the set of dependencies. Nevertheless, for a
given set of dependencies, the number of these évaluations and their cost
may be reduced.

To estimate this overhead, we experimented with three versions of the
multiplication algorithm: the first version is straightforward and does not
use any positioning order, the second and third versions use permutations
as indicated in remarks 2 and 3 respectively in order to reduce the cost of
the function évaluations.

Basic algorithm (A): In this algorithm, the positioning order is the
automata index order 1 , . . . , N. A légal processing order is 7 (7^ is the index
/ of the matrix A^ that is ith in processing order), and a genera! algorithm
to perform the following multiplication is given in Figure 2.

N

i=l

In this algorithm (and the versions that foliow), the respective order of the
loops on k and j could be exchanged. Without any spécifie information on

vol. 32, n° 3, 1998

334 P. FERNANDES, B. PLATEAU, W. J. STEWART

2.

2.
2.

2.
2.
2.
2.
2.
2.
2.

3.
3.

1.

2.
2.
2.
2.

For Î = 7i , 7 2 , . . • ,7isr do

• nrtght — 1 1 , . r?f j

• JUTTip — IJ fjj J

• base = 0
• For k = 1,2,... ,n/e/^ do

o For j = 1,2,... ,nright do
* index = 6ase -j- j ;
* For Z = 1 ,2 , . . . ,n 7 . do

• z\ = x index! index = index + nright;

* Automata-state (A;i,... ,fc7i_i ,£-^+1,. -. ,^J^)
* Evaluate A^^[A^y.. • ,-4^^] for &i,.., tkyi-i , ^ + 1 , . . . ,A:j\r

* Multiply: ^' = z x A^[A. i , . . . ,A;t_i}ki,... ,/c^r]

* index = fea^e -f j ;
* For i = 1,2,... ,nTi do

* %index ^ Z\\ index = : îfjc?ejr + nright]
o &ase ~ 6a3e -f jump;

Figure 2. - Basic algorithm (A)

the positioning order of the automata, the fonction call "Automata-state",
which computes the individual state of each automata from an index into
the global state vector, must be performed before any multiplication with
A^[ki,..., fc7._i, kry.,..., fcjy]. This means that the individual states of all
automata are computed, even if only a subset is required for the fonction
évaluation. This version has no permutation cost, but may be expensive in
terms of fonction évaluations. We show next that the cost of part 3 can be
reduced by choosing an appropriate positioning order. When a normal factor
within this term has no fonction, part 3 is removed for this factor.

Algorithm using two permutations (B): One idea to reduce the number
of fonction évaluations is to use an appropriate positioning order and the
expression of the problem given in équation (3). In the algorithm of Figure
2, this means moving Part 3 from the loop in j to the loop in k. For that
purpose, we need to choose a positioning order a such that the automata
parameters are ranked before the functions. This is always possible as we
deal with tensor terms with acyclic dependencies. As a conséquence, a trivial
légal processing order is the reverse of the positioning order. Note that the
processing order does not have any influence on the fonction évaluation
performance issue. The algorithm to perform the following multiplication

Recherche opérationnelle/Opérations Research

OPTIMIZÏNG TENSOR PRODUCT COMPILATIONS 335

x" = P"x

2. For i= Nt...,l do
2. n;j
2.

2. n^f n
2. • 5a5e = 0
2. • For A: = 1,2,... ,nleft do
3.
3.

2.
2.
2.
2.

o Automata-state (&<n >• * • • »fc<
o Evaluate ,4 (<J i)[.4 (<7l>,... rA

o For i = 1,2,... ,nright do
* index = 6a^e + j ;
* ForZ = l , 2 r . . . , n < r i do

• zi — Xindex; index =

* Multiply: zf - z x Ai<Ti)

^-^Ifor^,"-,^.,)

index + nright;

2. * mcfea: = base + j ;
2. * For ? = 1,2,... jOff- do
2. • xfndcx = >?/; index = index + nright;
2. o 6ase = 6öse -f- jump;

Tx*4. x = (P*)Tx

Figure 3. - Algorithm using two permutations (B).

is given in Figure 3.

In this version, the fonction "Automata-state" may be called from the
loop in k, and the matrix A ^ ^ & i , . . . , kai_^ is a constant for all the
included j-loops. This optimization always saves computation, by reducing
(a) and (c): the set of parameters is better identified so the cost of a
call to "Automata-state" is smaller, and the number of évaluations usually
significantly decreased, which is the main source of performance gain. When
a normal factor within this term is constant, part 3 is omitted for this factor.

It is possible to try to reduce further the number of calls to "Automata-
state" and to "Evaluate". For a set of functional automata F , thîs global

vol. 32, n° 3, 1998

336 P. FERNANDES, B. PLATEAU, W. J. STEWART

number of calls is J2ieF YYiZi n^i and w e n o w suggest a heuristic which
can decrease this number4.

Defining this order requires some notation: Let F be the set of functional
automata, P the set of automata which are parameters of the functions
and not functional themselves and C be what remains, i.e., the set of
automata with constant entries and which are not parameters of functional
automata. Consider an itérative process to détermine a positioning order for
the automata. If a subset S of automata has been ranked, an automata i in F
and not yet ranked is eligible if and only if all its parameters are either aiready
ranked or in P. Let Si be the set of its parameters aiready ranked, and T$yi
the others (thus in P). In this situation, the weight of an eligible automata is
defined as w^s = YlieTs

 n<Ji * Given two eligible automata i and j in F, i is
"smaller" than j if and only if m < UJ or (nz = UJ and Wiys < wj,s) •

Heuristic
* Initially, 5 — 0, and P, P and C are defined as above
* While there are eligible automata in P, choose any "smallest" eligible

automata i, and rank first its arguments Tsi, in any order, then rank z, i.e.,
S <- S, Ts,u i, F <- F - {il P^P~ {T5;ï}.

* Lastly, rank the automata in C in any order.

The basic idea is that, given a set of integers ni,. . . ,nyy, the
non decreasing ranking ni < . . . < nyy minimizes the expression
E N T-p-1

t=l Il/=1 nl'
In our context, this order does not respect the constraint "parameters

before functions" and the summation is not on [1...7V] but on P. Our
intuition relies on the adaption of this idea. It is trivially true that the
algorithm gives the minimum cost if P consists of a single element, on
any set of N automata and for any set of dependencies. Assume now
that the algorithm has ranked automata S = ai,..., ai. This ranking has
the partial cost Cs- Adding the next fonction f to S gives the partial cost
C = Cs +prodi:i x Wf^s where prodi-j = Ili=i n^> an(^ * e ^na^ c o s t

is of the form C = Cs -{-prodi-j x Wf^+produ x Wfts x n/ x Cadditi<mai
where Cadditionai wiU depend on the décisions taken later. A good guess is
to make n/ minimum as it is multiplied by a large number, and for equal
sizes, Wf^s minimum.

4 We conjecture that the optimization of this function is an NP-hard problem.

Recherche opérationnelle/Opérations Research

OPTIMïZING TENSOR PRODUCT COMPUTATIONS 337

This heuristic is used for this version of the algorithm to compute the
positioning order (and the processing order) of a tensor term. It is an attempt
to reduce the number of function évaluations using only two permutations
per tensor term.

Algorithm using N + 1 permutations (C): In the preceding case, our
concern was in finding a single positioning order which reduces the number
and cost of fonction évaluations. Of course, this does not neeessarily find
the minimum number and cost of function évaluations for a single normal
factor of the tensor term. To perform this optimization, we need, in gênerai,
one permutation per normal factor. To do this, we use expression (4).

If we follow the same reasoning as in the previous case, the optimum
is reached by a permutation which, for each nornal factor, ranks first the
parameters of the functional term, then the functional term, and finally
the rest. If we do that, part 2 of the algorithm would be as before,
fetching subvectors with non-contiguous components in x. Instead, we use a
permutation eW which ranks first the parameters of matrix A^ from rank 1
to rank p^*) and 7̂ in the last position. Thus, not only do we minimize the
number of function évaluations but also, in part 2, contiguous subvectors are
fetched. This may decrease the cost of the algorithm in terms of memory
management and is a little less expensive in term of computation time. The
algorithm is given in Figure 4.

Notice that the loop management is slightly different and the subvectors
to be multiplied are composed of contiguous entries in x. The permutation
(P€%))T Pe%+1 is performed in one step and the last permutation Pe

recovers the initial ordering of the automata. If A^ has no function, eW
is the identity permutation (and is skipped) and a regular loop management
like that of Figure 2 is used.

In this version of the algorithm, the cost of the function évaluations is
minimized. The price to pay is the N + 1 (at most) permutations per tensor
term.

Heuristic for choosing an algorithm: The choice of the multiplication
procedure may be different for each tensor term. In some cases, the best
method may be chosen a priori, while in some others, experiments may
décide if the réduction of the function évaluation cost is worth the price of
the permutations. We would like to suggest the following rules:

* If the term is constant, the algorithm of Figure 2 with part 3 omitted, is used.

vol. 325 n° 3, 1998

338 P. FERNANDES, B/PLATEAU, W. J. STEWART

4.

2.

2.

2,

2.
2.

3.
3.

2.
2.
2.

1.

2.
2.

4,
4.

For î = 7i»72i..-»7w do

• base = 0
• For fc = 1,2,..- rnie ƒ i do" :

• Automata-state (ki,.... ,fc (Ti))
• Evaluate A&IA™, A*1*1] &r fci,. - - ,fc^)

o For j = 1,2,... >nright do
• index = 6<3se + (i — l)nTi ;
* z = ^[mdea;,.,. ,i»dex -h n7i];

* Multiply: V = z x i4<^[*!,... ̂ , .)] ;

.*' x^iindex,...,index + «7J = ̂ [;
0 ̂ a3€ = base 4 nright

0 if i 7& 7N tfaen ^ = (P e <°) T P c < i + 1) a;c

x = P*x€

Figure 4. - Algorithm with iV + 1 permutations <C).

* If the number of function évaluation cannot be reduced using permutations,
use algorithm (A). The cases where the number of function évaluations
cannot be reduced are for example: if the ranking 1 , . . . , JV is the best or
ïf there is a single functional normal factor whose parameters are ail the
other automata. This is the case in the Mutex example where there is only
one matrix with functional entries per tensor term and these functions have
all the other automata as arguments: the number of function évaluations
cannot be reduced, as the functional matrix has to be placed in the last
position, anyway.
* If the number of function évaluations is the same using N + l permutations
or 2 permutations, then use algorithm (B). This is the case if the positioning
order computed in method B is optimal, that is to say such that for ail
automata with functions (in this term), it is preceded onïy by its parameters.
* For a tensor product reduced to a single functional normal factor and
that we are not in the case of item 2, algorithms (B) and (C) have two
permutations, but with different positioning order. Experirnents show (as
noted before) that (C) is better (although sometimes only slightly).

Recherche opérationnelle/Opérations Research

OPTÏMIZING TENSOR PRODUCT COMPUTATIONS 339

* If the tensor product has more than one function, version (A), (B) or (C) are
viable. The best one will be obtained as a trade-off betwen the permutation
cost and the function évaluation cost.

In PEPS» a procedure is available, which détermines experimentally, the
best procedure to use. The next section shows comparative experiments with
these 3 methods. The time to compute this heuristic and the various orderings
is negligible compared to the time of one itération. These steps manipulate
small data structures, typically of the size of the number of automata.

4.1. Implementation Details

The various versions of vector multiplication with a generalized tensor
product have been implemented in the software package PEPS, version 3.0
[16]. This version of PEPS is written in C++. Experiments have lead us
to introducé some basic optimizations in the algorithm skeleton presented
above,

Sparsïty : Notice that the number of multiplications in the innermost
loop of the algorithm may be reduced by taking advantage of the fact
that the small block matrices are generally sparse. Previous complexity
results were computed under the assumption that the matrices are full. In
the implementation presented here, sparsity of individual small matrices
is exploited by an appropriate multiplication algorithm (part 1), The same
is true for certain highly structured block matrices such as those that are
diagonal, contain a single row or column and so on.

Particular normal factors : In the décomposition of a tensor product
into normal factors,

there might be factors where A^[A^\... rA^] is simply an identity
matrix. In this case, the processing of the factor is simply skipped. For
example, tensor products which comes from the local transition matrix (see
the Mutex example) are reduced to a single normal factor.

Diagonal éléments : The descriptor formulation (1) as the summation
of N + 2E terms (each term processed using the algorithm above), implies
that the diagonal éléments of the global transition matrix are obtained as
a sum of N + 2E multiplications, when executing the algorithm N + 2E
tirnes. It is always better, in terms of computation time, to handle only
the nondiagonal éléments of the descriptor by this algorithm. The diagonal
entries of the descriptor are pre-calculated once and stored in a vector. This

vol. 32, n° 3, 1998

340 P. FERNANDES, B. PLATEAU, W. J. STEWART

means that the descriptor is now in the form D + E j = i E ®&i=iQf*- T h e

vector-matrix multiplication includes a dot product with the diagonal entries.
This requires additional memory, which may however be reduced using the
techniques introduced in [21],

Automata state évaluation : In order to evaluate the fonctions, the
algorithm must compute the state of each individual automata using a
global index in the global state vector. This function, "Automata-state", is a
simple base décomposition as shown in [Davio] and can be implemented as
such, using integer division and remainder (as in part 3 of Figure 1). A less
expensive implementation is obtained, for any positioning order a, by keeping
track (in an array) of the current state of the automata (cri,<72,..., (JJV)* At
each loop itération, when k is incremented by 1, the current state array
(cri, o"2,..., (Tjsf) is changed by the next state. The nexî state is defined by
the lexical order on automata states, when automata are ranked by a. The
change in the state array amounts to a few (maximum N) additions or
settings to 0 and tests. This means that the function "Automata-state" has a
relatively cheap itérative implementation, for any positioning order a, and
for ail subsets of automata (<ri,crç,«.., <J2).

Permutations : Permutations, when required, are implemented in PEPS as
foliows: given a copy of the vector xe according to the automata positioning
order e, we want the permuted copy xa according to <r. The basic steps
of the permutation algorithm are, starting from index 0 in x€ and x°', and
visiting all entries of xe in séquence (index i€), the current state array being

* for each incrément of i€, compute the "next" state array of k€lJ..., ktN.
Accordingly, compute the new index ia from its previous value, knowing
that ia — É/fLi (nr=o-i+1

 n<Ti)k<n* As the "next" function for feÊlï...,k€N

amounts to a few incréments or setting to 0, this is indeed also true for
computing the "next" ia.
* copy xe

l£ into xf^.

Number of vector copies: We consider now the cost, in terms of
number of vector copies, within an itérative scheme of the basic step

= 7TnD + WnJ2fJïE ®&i=iQj • Permanent copies of wn+i and iïn

are always required. In Method B, an additional vector is needed if there is a
tensor product term which cannot be reduced to a normal factor. Indeed, for
a normal factor, the input can be directly TÏU and the result can be directly
added into 7rn+i. In Method C, when a tensor term is not reduced to a normal
factor, two additional vectors are needed. One is required as in Method B

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPUTATIONS 341

to store the temporary results of each multiplication by a normal factor, the
other to perform each intermediate permutation.

4.2. Implementation Measurements

All numerical experiments were conducted on an IBM RS 6000/370
workstation running AIX version 3.2.5. For each model, 20 itérations of
each vector-descriptor multiplications were performed, and the CPU time in
seconds for one itération and for each part is reported here and compared
with the sparse method. The sparse method is inspired from the version in
MARCA [19]. The models are:

(1) The Mutex example with numerical values A^ = 1.0 and // ') = 0.4
for all i. The values of N and P vary and are reported in the column
"Models".

(2) The queueing network example with numerical values Ai = 1.0,
A2 = 1.0, /ii = 3.0, ji2 = 2.0 and /x3l = /x32 = 2.0. The values of Ci, C2

and Cs are respectively 10, 40 and 50.
In order to cover various cases of functional dependencies, two variations

are added to the second model. In the first variation, the rate \i<i becomes
a function ffi2 — 1 + ^ (3 2) . This means that queue 2 is slowed down
if there are many type 2 customers in queue 3. In the second variation,
the service rate of queue 2 is the same function, but in a tabulated form
gix2 — M2 YAZÖ1 ï^ï^i8^3^ — 0- T ° i s w a s t o introducé a more complex
formula to test the capabilities of the methods when handling functions.
Table 1 shows the results for the mutex example5.

First we should compare the performance of PEPS with the sparse method:
PEPS has roughly the same performance when the number of resources is
equal to the number of processes. The SAN model has no functions and the
state space is the product of the local spaces. In other cases, when the SAN
has functions, the cost of the function évaluations and of the permutations is
the main overhead, the other parts remaining unchanged. Version (A) of the
algorithm is the best in this case, because the descriptor is a sum of tensor
product which are reduced to normal factors, and because the functions
have all automata as parameters. This function évaluation cost cannot be
decreased. Note that version (C), which has the same permutation cost as
(B), has a lower cost on Part 2 (loop management). Finally notice that PEPS

5 The value 0.0 in the table indicates that the actual value is smaller than 0.05

vol. 32, n° 3, 1998

342 P. FERNANDES, B. PLATEAU, W. J. STEWART

TABLE 1
Resource Sharing Model.

Models Method

A
16-16 B

C

A
16-15 B

C

A
16-08 B

C

A
16-01 B

C

total

1.6
1.6
1.6

17.2
23.3
23.1

17.2
23.3
23.1

17.2
23.3
23U

mult(l)

1.0
1.0
1.0

1.0
1.0
1.0

1.0
1.0
1.0

1.0
1.0
1.0

loops(2)

0.5
0.5
0.5

0.5
0.5
0.3

0:5
0.5
0.5

0.5
0.5
0.3

funcs(3)

0.0
0.0
0.0

15.7
15.7
15.7

1 15.7
15.7
15.7

15.7
15.7
15.7

perm(4)

o!o
0.0
0.0

0.0
6.1
6.1

0.0
6.1
6.1

0.0
6,1
6.1

diag

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

sparse

3.9
3.9
3.9

3.9
3.9
3.9

1.0
1.0
1.0

0.0
0.0
0.0

TABLE 2
Queueing Network Model.

Model Method

A
fj, B

C

A
ffJ-2 B

C

A
9/^2 B

C

total

64.8
21.1
18.7

79.6
22.6
20.0

259.4
40.6
20.4

mult(l)

5.1
5.1
5.1

5.1
5.1
5.1

5.1
5.1
5.1

loops(2)

2.0
2.0
1.9

2.0
2.0
1,9

2.0
2.0
1.9

funcs(3)

57.5
0.1
0.1

: 72.3
1.6

: °-2
252.1

19.6
0.6

perm(4)

0.0
13.7
11.6

0.0
. 13.7

12.6

0.0
13.7
12.6

diag

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

sparse

15.7
15.7
15.7

15.7
1:5.7
15.7

15.7
15.7
15.7

requires exactly the same amount of time even though the reaehable state
space ranges from large to small.

Table 2 shows the results for the queueing network example. The descriptor
is composed of 3 tensor terms without functions, and 3 tensor terms with
a single functional factor when /i2 is constant. When it is replacée by a
fonction, the tensor term of synchronizing event 52 has two functions. In
this example, version A has the worst performance. In the first experiment,
methods B and C perform the same number of permutations (but differently)
and have the same number of fonction évaluations. In the second experiment,
method C optimizes the number of fonction évaluations and performs

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPUTATIONS 343

more permutations, but the différence is not really significant. In the third
experiment, the function évaluation cost is larger and C is the best method.

This concludes the first set of experiments in which our goal was to test
the benefits of reducing the number of function évaluations. We note from
these experiments that the overhead due to fonctions (parts 3 and 4) of
the algorithm is high compared to part 1 and part 2. In genera! the time
taken by parts 1 and 2 is of the same order as the time it takes to perform
the sparse algorithm (remember that the complexity result proves that part
1 has favorable complexity compared to a regular matrix vector multiply
and that we use a sparse format for the function "Multiply"). One way to
further reduce the number of function évaluations is to reduce the number
of automata in a model Note that reducing the SAN to one automata is
equivalent to solving the model as a regular sparse matrix.

5. GROUPING OF AUTOMATA

The objective in this section is to show how we can reduce a SAN
to an "equivalent" SAN with fewer automata. The équivalence notion is
with respect to the underlying Markov chain and Is defined below. Our
approach is based on simple algebraic transformations of the descriptor and
not on the automata network. Consider a SAN containing N stochastic
automata A i , AJ\T of size m , . . . , TIN' respectively, E synchronizing
events s i , • • . ,§£, and functional transition rates. lts descriptor may be
written as

N+2E

Let 1 , . . . , AT be partitioned into B groups named b\,... T bs, and, without
loss of generality, assume that bj — [ei = 1 , . . . , c%\, &2 = [c2 + 1 , . . . , c^},
etc, for some increasing séquence of a, cg+i — N. The descriptor can be
rewritten, using the associativity of the generalized tensor product, as

2E+N+

l

f
}
 =The matrices Rf} = (8)^ C f c + 1 Qf, for j G 1, , 2E + Nr are, by

définition, the transition matrices of a grouped automaton, named Gk of size

vol. 32, n° 3, 1998

344 P. FERNANDES, B. PLATEAU, W. J. STEWART

hk — n î = ^ + i n^• Hence the descriptor may be rewritten as

2E+N _

This formulation is the basis of the grouping process.
First simplification: Removal of synchronizing events and functional
terms

Assume that one of the synchronizing event, say 51, is such that it
synchronizes automata within a group, say 61. Indeed, this synchronized
event becomes internai to group b\ and may be treated as a transition that
is local to G\. In this case, the value of R\ may be changed in order to
simplify the formula for the descriptor. Replacing Rj * 4- R&J + RSJ by
R\ , the descriptor may be rewritten as

E \ g,i=l
j=2 x

The descriptor is thus reduced (two terms having disappeared). This
procedure can be applied in all situations where a synchronized event
becomes "internai" to a group.

Following this same line of thought, assume that the local transition
matrix of Gi is a tensor sum of matrices that are functions of the states of
automata in 61 itself. Then the functions in Q\I) of R\1>} = 0 ^ i = C l Q | ^

are evaluated when performing the generalized tensor operator and R\
is a constant matrix. This is true for all situation of this type, for local
matrices and synchronized terms. However, if RSJ is the tensor product of
matrices that are functions of the states of automata, some of which are in
61 and some of which are not in 61, then performing the generalized tensor
product R\J — ^^fl-ClQsJ allows us to partially evaluate the functions
for the arguments in 61. Other arguments cannot be evaluated. These must
be evaluated later when performing the computation (%) l-iRj3 and may in
fact, result in an increased number of function évaluations. Some numerical
effects of this phenomenon are illustrated in the next section.
Second simplification: Réduction of the reachable state space

In the process of grouping, a situation might arise in which a grouped
automata G?; has a reachable state space smaller than the product state

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPUTATIONS 345

space [l,-.-,Tl<i=ç.+ini].'Thi$ happens after simplifications one and/or
two have been performed. For example, fonctions may evaluate to zero,
or synchronizing events may disable certain transitions. In this case, a
reachability analysis is performed in order to compute the reachable state
space. This analysis is conducted on the matrix R\f +Ylf=i &h +^s* where
F is the set of remaining synchronizing events for the SAN G\,..., GB • In
practice, in the SAN methodology, the global reachable state space is known
in advance and the reachable state space-of a group may be computed with
a simple projection.

6. THE NUMERICAL BENEFITS OF GROUPING

Let us now observe the effectiveness of grouping automata on the two
examples discussed in Section 2. In particular, we would like to observe
the effect on the time required to perform one multiplication (in seconds)
of the descriptor by a vector and on the amount of main memory (in
Megabytes) needed to store the descriptor itself. Intuitively we would expect
the computation time to diminish and the memory requirements to augment
as the number of automata is decreased. The experiments in this section
quantify these effects. We first consider the resource sharing model with
parameter values N = 12,16 and 20 for both P = 1 and P = N - L

The models were grouped in various ways, varying from the original (non-
grouped) case in which B = N to a purely sparse matrix approach in which
B — 1, where B of course, dénotes the number of automata that remain
after the grouping process. In the examples with a single resource (P = 1)
we differentiate between two distinct cases; the first when the automata are
grouped but the state space in each of the larger automata that result from
the grouping is not reduced and the second when the state space of the
resulting automata is reduced (by the élimination of non-reachable states
from each new block of automata). The latter is indicated by the label (!R)
in the tables. The élimination of non-reachable states only affects the states
inside a grouped automaton and not all the states of the global model. This
réduction is not possible in models with N — 1 resources.

The results presented in Table 3 illustrate the substantial gain in CPU time
as the number of automata is reduced, and this with relatively little impact
on memory requirements. Furthermore, this is seen to be true even when the
state space within the grouped automata are not reduced. A more complete set
of results for the reduced case is graphically displayed in Figure 5. However,
no results are presented for the two cases JV = 2O; P = 8, 19; B — \

vol. 32, n° 35 1998

346 P. FERNANDES, B. PLATEAU, W. J. STEWART

TABLE 3

Resource Sharing Model.

Models

N = 12 B = 12
N = 12 S = 6
AT = 12 - B = 4
JV = 12 B = 2
N = 12 B = 1 [

N = 16 B = 16
N = 16 5 = 8
JV = 16 B = 4
JV = 16 5 = 2
JV = 1-6 B = 1

JV = 20 B = 20
AT = 20 B = 10
JV = 20 B = 5
AT = 20 5 = 2
JV - 20 B - 1

P

CPU

•0.8

0.5
•0.3

0.2
0.0

20.8
1-0.4
2.9
0.7
0.0

496.7
293.2

67.3
11.7
0.0

Mem

33
33
33
42

0

513
513
516
564

i

8193
8194
8197
8440

1

P =

CPU

0.8
0.1
0.0
0.0
0.0

20.8
1.6
0.1
0.0
0.0

496.7
20.7

0.6
0.0
0.0

L(ÏH)

Mem

33
6
2
1
0

513
52
5
1
1

8193
462

25
2
1

P =

CPU

0.8
0.5
0.2
0.1
0.0

20.8
12.1
3.3
1.1
0.4

496.7
283.0

73.8 .
19.8

J V - 1

Mem

33
33
34
50

1087

513
514
518
593

22 527

8193
8 194
8 200
8 640

since the amount of memory needed exceeded that available on our machine.
Estimâtes are presented by a dotted line. When reading these graphs, be
aware that the scale varies with increasing values of N,

These graphs display both CPU curves and memory curves. Consider
first the memory curves. Two contrasting effects are at work hère. First
there is the réduction in the reachable state space which entails a subséquent
réduction in the size of the probability vectors and hence an overall réduction
in the amount of memory needed. On the other hand, the size of the matrices
representing the grouped automata is increased thereby increasing the amount
of memory needed. This Iatter effect becomes more important with increasing
value of P , and indeed becomes the dominant effect, as may be observed
from Figure 5. As for the CPU curves, observe that these always decrease
with decreased number of blocks of automata. This is a combined effect of a
réduction in the reachable state space, and the number of fonctions that need
to be evaluated. Notice also that the réduction in the number of fonctions
evaluated only occurs when the number of automata in a group is greater
than the number of resources. Finally notice that although the gains obtained
in models with very few reachable states (those cases in which P = 1) are
impressive, we must keep in mind the fact that the SAN approach is not

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPILATIONS 347

jV=12 P=l iV=16 P= l T=20 P= l

Number or BEocki

1 1 T 1

NnmbcrofBloctï

iV=20 P=4

4 1 1 T

NunlierflfBloeki

AT=16 P=8 7V=2O P - 8

i] i i "
II 6 4 2 1

Number of Blocb

tf=12 P=ll

r i i i
Number of W f a

Figure 5. - Reduced Models: Computation Time and Memory requirements.

realistic in these cases. It is much better to generate the small number of
states using a Standard sparse matrix approach [18, 19].

It may be argued that the best approach (at least for this particular example)
is to combine all the automata into just two groups, for this allows us to
avoid the state space explosion problem with just a minimal increase in CPU
time over a purely sparse approach.

Let us now turn our attention to the queueing network model. We analyzed
two models with parameters Ci, C2 = 5,10 and 20 and C3 = 10,20,30
and 50. With these models, experiments were conducted using two different
kinds of grouping: a grouping of the automata according to customer class
(Ai and A3J and (A2 and As2) and a grouping of the automata according
to queue (Ai and A2) and (A31 and A32). The second grouping allows for
the possibility of a réduction in the state space of the joint automata, (A^
and As2), since the priority queue is now represented by a single automaton.

vol. 32, n° 3, 1998

348 P. FERNANDES, B, PLATEAU, W. J. STEWART

The results obtained are presented in Table 4 and Figure 6. The last column
of Table 4 shows the results for 1 group, thus the sparse method.

TABLE 4
Queueing Network Model.

Models

C\ C% Os

5 5 10
5 5 20

10 10 10
10 10 20
10 10 30
10 10 50

20 20 50

(l)(2)(30(32)

CPU

0.2
0.2

0.2
0.7
1.6
4.5

17.4

Mem

21
82

81
317
709

1963

7 824

(1,3:0(2,32)

CPU

0.7
0.7

0.9
3.2

10.2
29.3

88.4

Mem

27
94

94
346
754

2 039

7 989

(l , 2) (3 l ï 3 2)

CPU

0.0
0.1

0.1
0.2
0.6
1.6

12.7 .

Mem

32
118

101
364
801

2 200

8 106

(l I2)(3 l ï3 2) ïR

CPU

0.0
0.0

0.0
0:2
0.5
1.4

6.6

Mem

16
67

63
201
429

1 153

4 186

(1,2,3!,32)ÏH

CPU

0.0
0.0

0.0
0.1
0.4
1.2

Mem

87
376

395
1464

3 096
8 156

i=5 C2^5
:m(Kh) _ m ls _

Ci=5 C2=5 C3=20

—I 1 1 1 F"

=10 C2=10 C3=10

C1=10C2=10C3=20' Ci=10 C2=10 C3=30 " Ci=10 C2=10. C3=50

Figure 6. - Reduced Models: Computation Time and Memory requirements.

The gains with this example are not as impressive as they were with the
resource sharing model, but it should be remembered that there are relatively
few automata (just four) in this example. Notice also that the CPU times
obtained with the first grouping are worse than in the non-grouped case.
This is a resuit of the fact that this model incorporâtes synchronizing events
combined with functions that cannot be removed using simplification 2.
The first grouping éliminâtes these events, but this results in an increase in

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPUTATIONS 349

the number of functions that must be evaluated. In all models that possess
synchronizing events, a grouping procedure that includes a subset of these
events must incorporate the évaluation of tensor products (and not only
tensor sums). The évaluation of tensor products can increase the complexity
by increasing the number of nonzero éléments to be multiplied by the vector.
Especially if the tensor products contain functional éléments, the number of
functions to be evaluated will increase. This effect is apparent in the table of
results. Elimination of synchronizing events may prove useful in certain very
large problems since descriptors that include synchronizing events require
an additional probability vector of size equal to the global number of states.

The CPU time gains obtained from the second grouping result from the
élimination of functional éléments from the grouped descriptors. All functions
depend on the states of automata A%1 and A%2. Additionally, the élimination
of non-reachable states reduces the CPU time and also saves memory.
Observe that the curves for memory requirements display an important point
of inflexion in the grouping (l,2)(3i,32)5ï. This behaviour is due to the
réduction in the size of the state space that is possible at this point and at
the global grouping ((1, 2,3i, 32)5R). Notice also that the CPU time gains
after this point are relatively small. This second phenomena is due to the
absence of additional function élimination from the case (l,2)(3i,32)5ï to
the case (1,2,31,32)3?. We were unable to generate the results for the final
two entries of this table because of the excessive amount of memory needed.

The experiments clearly show that the benefits that accrue from grouping
are non-negligible, so long as the number of function évaluations do not rise
drastically as a result. In fact, it seems that function évaluation should be
the main concern in choosing which automata to group together. Indirectly,
functions also play an important role in identifying non-reachable states, the
élimination of which permit important réductions in CPU time and memory.
The cost of the grouping itself is model dépendant. Basically, for the Mutex
example, it corresponds to 10% of the cost of one multiplication of the
grouped model (B — 2) and for the queueing example to 20%. The major
part of this cost is the génération of new functions, if any.

Some rules of thumb for grouping states :
* Memory availability is the primary factor that limits grouping.
Subject to this constraint, the smaller the number of groups the better.
* For any synchronizing event with functional rates or routing probabilities,
group functional automata with their arguments.

vol. 32, n° 3, 1998

3 5 0 P. FERNANDES, B. PLATEAU, W. J. STEWART

* If the number of groups can be reduced still further, group other (not in a
synchronizing event) functional automata with their arguments.
* If the number of groups can be reduced even more, group automata that
are synchronized by the same synchronizing event(s).

7. CONCLUSIONS

To conclude, the implementation of the vector-descriptor multiplication
that we suggest should conform to the following steps:
* Group the automata of the SAN according to the rules given above, with
a few possible alternatives.
* Test the performance of the vector descriptor multiplication for each
alternative and choose the best.
* Use this grouping in an itérative solution procedure.
In the current version of PEPS, the grouping décisions are to be suggested by
the user. PEPS computes automatically the descriptor of the grouped SAN,
reduces the state space accordingly and décides on which multiplication
procedure to use for each term of the descriptor. Before solving the model
for many parameters values, the user should test the efficiency of the vector
descriptor multiplication for various groupings.

ACKNOWLEDGEMENTS

Paulo Fernandes' research is supported by the (CNRS - INRIA - INPG -
UJF) joint project Apache, CAPES-COFECUB Agreement (Project 140/93)
and PUC/RS, Brazil. Brigitte Plateau's research is supported by the (CNRS
- INRIA - INPG - UJF) joint project Apache. William J. Stewart's research
is supported in part by NSF (DDM-8906248 and CCR-9413309).

REFERENCES

1. K. ATIF, Modélisation du Parallélisme et de la Synchronisation. Thèse de Docteur
de l'Institut National Polytechnique de Grenoble, 24 September 1992, Grenoble,
France.

2. pF. BACCELLI, A. JEAN-MARIE and I. MITRANI, Eds., Quantitative Methods in Parallel
Systems, Part I: Stochastic Process Algebras; Basic Research Series, Springer, 1995.

3. P. BUCHHOLZ, Equivalence Relations for Stochastic Automata Networks. Commu-
tations with Markov Chains; Proceedings of the 2nd International Meeting on the
Numerical Solution of Markov Chains, WJ. Stewart, Ed., Kluwer International
Publishers, Boston, 1995.

4. P. BUCHHOLZ, Hierarchical Markovian Models - Symmetries and Aggregation;
Modelling Techniques and Tools for Computer Performance Evaluation, Ed. R.
Pooley, J.Hillston, Edinburgh, Scotland, 1992, pp. 234-246.

Recherche opérationnelle/Opérations Research

OPTIMIZING TENSOR PRODUCT COMPILATIONS 351

5. M. DAVIO, Kronecker Products and Shuffle Algebra. IEEE Trans. Comput, C-30,
No. 2, 1981, pp. 1099-1109.

6. S. DONATELLI, Superposed Stochastic Automata: A Class of Stochastic Pétri Nets
with Parallel Solution and Distributed State Space. Performance Evaluation, 18,
1993, pp. 21-36.

7. P. FERNANDES, B. PLATEAU and W. J. STEWART, Numerical Issues for Stochastic
Automata Networks. Proceeding of the Fourth Process Algebras and Performance
Modelling Workshop. Edited by Marina Ribaudo, Published by CLUT, Torino, July
1996.

8. P. FERNANDES, B. PLATEAU and W. J. STEWART, Efficient Vector-Descriptor
Multiplications in Stochastic Automata Networks. INRIA Report # 2935. Anonymous
ftp ftp ftp.inria.fr/INRIA/Publication/RR.

9. J.-M. FOURNEAU and F. QUESSETTE, Graphs and Stochastic Automata Networks.
Computations with Markov Chains; Proceedings of the 2nd International Meeting on
the Numerical Solution of Markov Chains, WJ. Stewart, Ed., Kluwer Int. Publishers,
Boston, 1995.

10. H. HERMANNS and M, RETTELBACH, Syntax, Semantics, Equivalences, and Axioms for
MTIPP. Proc. of the 2nd Workshop on Process Algebras and Performance Modelling,
U. Herzog, M. Rettelbach, Ed., Arbeitsberichte, Band 27, No. 4, Erlangen, 1994.

11. J. HiLLSTON, Computational Markovian Modelling using a Process Algebra.
Computations with Markov Chains; Proceedings of the 2nd International Meeting on
the Numerical Solution of Markov Chains, W.J. Stewart, Ed., Kluwer Int. Publishers,
Boston, 1995.

12. P. KEMPER, Closing the Gap bet ween Classical and Tensor Based Itération Techniques.
Computations with Markov Chains; Proc. of the 2nd International Meeting on the
Numerical Solution of Markov Chains, W.J. Stewart, Ed., Kluwer Int. Publishers,
Boston, 1995.

13. B. PLATEAU, On the Stochastic Structure of Parallelism and Synchronization Models
for Distributed Algorithms. Proc. ACM Sigmetrics Conference on Measurement and
Modelling of Computer Systems, Austin, Texas, August 1985.

14. B. PLATEAU and K. ATIF, Stochastic Automata Network for Modelling Parallel
Systems. IEEE Trans, on Software Engineering, 17, No. 10, 1991, pp. 1093-1108.

15. B. PLATEAU and J. M. FOURNEAU, A Methodology for Solving Markov Models of
Parallel Systems. Journal of Parallel and Distributed Computing. 12, 1991, pp.
370-387.

16. B. PLATEAU, J. M. FOURNEAU and K. H. LEE, PEPS: A Package for Solving Complex
Markov Models of Parallel Systems. In R. Puigjaner, D. Potier, Eds., Modelling
Techniques and Tools for Computer Performance Evaluation, Spain, September 1988.

17. M. SiEGLE, On Efficient Markov Modelling, In Proc. QMIPS Workshop on Stochastic
Pétri Nets, pp. 213-225, Sophia-Antipolis, France, November 1992.

18. W. J. STEWART, An Introduction to the Numerical Solution of Markov Chains, Princeton
University Press, New Jersey, 1994.

19. W. J. STEWART, Marca: Markov Chain Analyzer. IEEE Computer Repository No. R76
232, 1976. Also IRISA Publication Interne No. 45, Université de Rennes, France.

20. W. J. STEWART, K. ATIF and B. PLATEAU, The Numerical Solution of Stochastic
Automata Networks. European Journal of Opérations Research, 86, No. 3, 1995,
pp. 503-525.

21. P. KEMPER, Numerical analysis of superposed GSPNs. IEEE Trans, on Software
Engineering, Vol 22(9), Sept. 96.

vol. 32, n° 3, 1998

