
RESEARCH ARTICLE

Optimizing the buckling characteristics and weight of functionally
graded circular plates using the multi-objective Pareto archived
simulated annealing algorithm (PASA)

Fatemeh Farhatnia1,*, S. Ali Eftekhari1, Alireza Pakzad1, and Soheil Oveissi2

1 Department of Mechanical Engineering, Islamic Azad University, Khomeinishar Branch, Khomeinishar, Iran
2 Department of Mechanical Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran

Received: 27 August 2018 / Accepted: 27 August 2019

Abstract. In this study for the first time, weight and critical buckling load in two kinds of functionally graded
(FG) circular plates, namely, aluminum–alumina of (Al/Al2O3) and aluminum–zirconia (Al/ZnO2), are
optimized using multi-objective Pareto archived simulated annealing algorithm (PASA). Material properties
are assumed to vary with the power law in terms of the volume fractions of the constituent in two forms of
symmetric and asymmetric with respect to the middle surface. The plate is subjected to uniform radial load and
is considered for two boundary conditions, namely, simply supported and clamped edges. Aim at obtaining the
Pareto archive is to achieve simultaneously the maximum buckling and the minimum weight concerning with
proposed constraints. The parameters include the radius, thickness and volume fraction that the certain range is
intended individually. The constraints are presented in form of the ratio of thickness to radius in category of the
thin plates as well as the critical buckling stress being in the elastic range. Proposed simulated annealing
algorithm is coded in MATLAB to obtain optimal non-dominated solution.

Keywords: Critical buckling load / functionally graded materials / multi-objective optimization /
simulated annealing algorithm / Pareto archive

1 Introduction

Nowadays, the development of intelligent systems inspired
the nature, is one of the most popular areas of artificial
intelligence. Methods such as simulated annealing algo-
rithms, genetic algorithms, ant colony optimization, are of
the issues that human beings could achieve them by
inspiring nature. On the other hand, plates are structures
that are commonly used in military, petrochemical,
aerospace industries, such as those found in turbine drive
system, wall of pressure vessels, nuclear reactors and
storage tanks floor. In recent years, functionally graded
materials are one of the efficient and modern composite
that are used in the abovementioned industry, especially
for using in the high temperature environments.

These kinds of materials are advanced nonhomoge-
neous microstructure composites whose mechanical prop-
erties change smoothly and continuously from one surface
to another. One of the most important phenomena in the
plates, which causes the inefficiency in performance, is the
buckling of the plate. In thin plates due to their low

thickness, the membrane stiffness of the plate is much
higher than its bending stiffness. Thus, it saves a large
amount of membrane strain energy without causing much
deformation. If the same amount of membrane energy is
stored in the form of bending energy in the plate, it will be
much deformed. Therefore, if the membrane strain energy
stored in the plate is converted to bending strain energy
under certain conditions, the plate is severely damaged
that this phenomenon is called the buckling. Study of
buckling behavior of plates have always been considered as
one of the most important subjects in the structure
analysis. Brush and Almorth [1] have comprehensively
analyzed the buckling problems of columns, plates and
shells and studied various methods for formulating the
governing nonlinear equilibrium equations in buckling. In
addition, many researchers have provided analytical and
numerical solution for study of the buckling behavior of
circular and annular FG plates based on thin, first and
higher order shear deformation theories [2–20].

In general, the optimization methods has been devel-
oped to improve the response to engineering demands in
the modern industrial world; objective functions are
selected depending to the performance criteria in engineer-
ing. For instance including weight loss, reduction of* email: zh_farhat@yahoo.com; farhatnia@iaukhsh.ac.ir
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residual stresses, increase of vibration frequency, improve-
ment of failure resistance, and increase of buckling load. So
far, many studies have been carried out to optimize the
behavior of the plates. Osaka et al. [21] examined the
optimization of thickness profile of solid and annular plates
in order to maximize critical buckling load using the finite
element method and taking into account the shear
deformation effects based on the first-order shear defor-
mation. Ootao et al. [22] optimized the fraction volume
index of FG plates by the neural network in the desired
temperature range. In the other work, Ootao et al. [23]
optimized the fraction volume index of FG hollow cylinder
under thermal loading using neural networks method.
Goupee and Vel [24] used the element-free Galerkin
method and the genetic algorithm for two-dimensional
optimization of the fraction volume index of functionally
graded materials in two separate model problems. In one
model, they minimized the residual stress by cooling down
a FGM component (Ni/Al2O3) and in another one, the
weight of the Al/zirconia (FGM components) was opti-
mized by restriction of the effective stress and maximum
temperature experienced by metal constituent. Mozaffari
et al. [25] optimized the critical buckling load of the FGM
rectangular plate using the Imperialist Competitive
Algorithm. Fereidoon et al. [26] used particle swarm-based
algorithms to optimize the volume fraction of functionally
graded materials. Juin-Der Duh and Brown [27] showed in
multi-optimization problems, the solutions suggested by
the knowledge-informed approach are more effective in
approximation the set of Pareto optimal solution than
those generated by the standard Pareto simulated
annealing. Sahin and Turkbey [28] obtained Pareto
solution for multi-objective facility layout using simulated
annealing algorithm.

As abovementioned, buckling behavior of plates has
been received the great deal of attention in scientific
publications and is always considered as one of the most
important subjects in structural analysis. Thus, the
scholars have been paid attention to the optimization of
buckling behavior. In the present study, two-objective
optimization of buckling of the plates has been studied. The
aim is to obtain the maximum critical buckling load
according to the existing constraints with the approach of
achieving the minimum weight. Thickening the plate to
increase the critical buckling load, beside increasing the
weight of the plate and consequently, more transverse
loading, as well as increasing the cost of consumables
materials. Therefore, it is important to determine the
appropriate thickness of the plate and appropriate
composition of volumetric fraction of ceramics and metal
can achieve to the optimal bending rigidity required to
maximize critical loads. Herein, the simulated annealing
algorithm (SA) is exploited as the optimization method.
The rationale behind SA extends to the annealing process
of physical systems applied in thermodynamics. In this
process, a physical system initially at a high-energy state is
gradually cooled down until its minimum energy level is
reached [29]. The idea is establishing a direct analogy
between minimizing the energy level of a physical system
and lowering the cost of an objective function. SA
algorithm takes CPU time less than genetic algorithm

(GA), due to find the optimal solution using point-by-point
iteration rather than a search over a population of
individuals [30]. The unique feature of SA accepts to move
towards a worse solution during the search, therefore it
prevents this method to trap in the local optima [31].

The aim of multi-objective optimization is to find a set
of compromise solutions with different trade-offs among
criteria, also known as Pareto optimal set; when this set is
plotted in the objective space, it is called the Pareto front
[32]. Serafini [33] presented the first version of the multi-
objective simulation algorithm, was similar to the simula-
tion algorithm of single objective optimization. The
difference with the main algorithm was in the method of
acceptance criteria. He investigated different alternative
criteria to increase the probability of non-dominated
optimal solutions that achieved to a special rule to obtain
the non-dominated Pareto solutions. Suman [34] presented
four simulated annealing based multi-objective algorithm
and showed they are robust with algorithmic parameters
and are capable of generating a large number of optimal
solution. Suppapitnarm et al. [35] presented a novel
implementation of the simulated annealing algorithm
designed to explore the trade-off between multiple
objectives. They suggested a new acceptance probability
formulation based on proposition multiple temperature for
multiple objectives in an annealing schedule. Czyzak and
Jaszkiewicz [36] presented a new algorithm for multi-
objective simulated annealing based on the Pareto optimal
that is called PSA. Ulungu et al. [37] proposed and tested a
multi-objective simulation algorithm (MOSA) to solve
problems. They used a cumulative weight function to
evaluate the objective function. The algorithm started with
an initial solution, but a massive non-dominated solutions
was obtained during the algorithm implementation.
Akbulut and Fazil [38] optimized the thickness of a
composite plate by simulated annealing algorithm (SA).
They considered orientation of the resin and the number of
sub-layers in each layer as the design variables and
predicted failure. Moreover, Gutjahr and Pichler [39] used
multi-dimensional optimization for studying non-compu-
tational methods as well as computational modeling to
solve the problems. Recently, Rangaiah [40] described the
process of engineering systems using multi-objective
optimization procedure in his book. Chen et al. [41]
compared the simulated annealing algorithm by using the
tabu-search algorithms through study of advanced pro-
gramming system for filtering color of TFT-LCD screens.
Deb [42] provided a brief introduction and research focus to
the field of multi-objective optimization based on evolu-
tionary algorithm (EO). He remarked the multi-objective
optimization methods give rise to set of Pareto-optimal
solution, which by using the modified EO, the preferred
region is provided on the Pareto-optimal front instead of
complete front. In the engineering design community, size,
shape, and topology optimization procedures are three
classes of extensively studied design methodologies with
assumed materials. Tang et al. [43] concerned with
simultaneous designs of material selection and geometry
optimization under static and thermal loads in a framework
of multi-objective optimization of tracking the Pareto
curve. Study of literature review reveals that this work is
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the first attempt to investigate the optimization of material
composition and geometrical parameters of a FG circular
plate by utilizing of a multi-objective simulation annealing
algorithm using Pareto archive. The present paper is
structured as follows. In Section 2, we give the expressions
for the present problem, Section 3 is devoted to introduce
Pareto archived simulated annealing algorithm. In
Section 4, we present the numerical example for validation
of the exploited algorithm. Finally, in Section 5, the
performance of the proposed algorithm is investigated by
studying the optimization in buckling and weight for two
kinds of FG circular plate namely, aluminum–alumina of
(Al/Al2O3) and aluminum–zirconia (Al/ZnO2).

2 Definition of the problem

A circular solid FG plate with radius R and thickness h
under a radially uniform pressure loading is considered.
The mechanical properties are assumed to be varied in the
direction of the thickness. Figure 1 shows the schematic
variation of the properties for symmetric and asymmetric
FG plates that they can be defined as follows:
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whereP(z),Pm andPc denote the mechanical properties for
the FG plate, the metal and the ceramic, respectively. fc
denotes the volume fraction of the ceramic and varies
between zero and one. Mechanical properties include

elasticity modulus, density and yield stress of the FG
material. Moreover, h and k are the thickness and the FG
volume fraction index, respectively.

As the critical buckling load and the weight of FG
plates are depended to geometrical parameters and the
volume fraction index of k, the purpose of this study is to
determine the optimal values of these variables, so that the
buckling load can be maximized, whereas the value of the
weight is minimized. The relations for determination of
the weight of solid circular plate and critical buckling load
are as follows.

The weight of circular FG plate:

wðR;h; kÞ ¼ pR2h rm þ
rc � rm

kþ 1

� �

: ð2Þ

The buckling load of circular plate [4]:
(A) Critical buckling load for clamped supported edge:

pcr R;h; kð Þ ¼ 14:68
D

R2
: ð3Þ

(B) Critical buckling load for simply-supported edge:

pcr R;h; kð Þ ¼ 4:2
D

R2
: ð4Þ

In the above equations, R and D are the radius and the
bending rigidity of the plate, respectively. For the
asymmetric and symmetric FG plates, the bending rigidity
is defined as follows:

(A) Bending rigidity of symmetric the FG plate:

D ¼
h3

4 1� m2ð Þ

Em

3
þ
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(B) Bending rigidity of the asymmetric FG plate:
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In order to deal with problem of optimization of
material and geometrical parameters to minimize weight
and maximize critical buckling load, the Z-energy function
is defined to estimate the metropolis criterion [44]:

Z ¼ bf1 � 1� bð Þf2: ð7Þ

In the above relation, f1 and f2 stand for log(w) and
log(Pcr), respectively. b denotes the weighting coefficient of
the weight of plate, therefore (1�b) evaluate the weighting
coefficient of the critical buckling load. Noteworthy is that
due to be not equal the scale of both objective functions, the
logarithm of the two objective functions is utilized. Herein,
b equal to 0.5, which means that both weight and buckling

Fig. 1. Profile of variation of the properties of FG plates of
(a) symmetric distribution, (b) asymmetrical distribution.
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coefficient containing the identical significance for designer
to make a decision among the optimal solutions according
to the design task and its constraints. The aforementioned
function is introduced as the sum of the two objective
functions, and the critical buckling load is indicated by a
negative sign in the energy function because the character-
istics of the two objective functions is not the same, one
function (plate weight)must beminimized and another one
(critical buckling load) would be maximized.

The constraints are expressed as: 0.1 < R < 1, 0 < k <
100, 0.0125 < h

R
< 0.1 and Pcr< sYh, where sY is the mean

yield stress. The latter constrain means that the design of
the optimum plate is remained in the elastic region; to this
end, critical buckling load should be less than sYh. The
problem is formulated as:

Max: P cr s:t: 0:1 < R < 1

Min: Weight 0 < k < 100

0:0125 <
h

R
< 0:1

P cr < sY h

:

By assuming that the ceramic constituent obeys linear
elastic behavior, whereas the metal constituent achieves to
the yield stress sYm, with respect to the rule of volumetric
mixture, the value of the mean yield stress at any arbitrary
point is determined as follows [45]:

sY ¼ fmsYm þ fcsc ¼ sYm fm þ
1� fmð ÞEc

#Emð Þ

� �

# ¼ q þ Ecð Þ= qþ Emð Þ 0 � q < þ∞: ð8Þ

It should be noted that the parameter q in equation (8)
is determined numerically by the finite element micro-
mechanics mode. Selecting a value of 500GPa for q is
appropriate in a wide range of volume fraction of FG plates
with ceramic-metal composition [45]. Herein, the mechani-
cal properties of metal–ceramic constituents of two kinds of
FG plate, namely aluminum–zirconia (Al/ZnO2) and
aluminum–alumina (Al/Al2O3) are given in Table 1.

3 Pareto archive of multi-objective annealing
simulation algorithm

It is noteworthy to mention that contrary to the single-
objective optimization problem, for the multi-objective
optimization problem, there is a set of non-dominated
solution called Pareto optimal set. Simulated annealing
(SA) is a stochastic search method, which initiates the
physical annealing of solid for finding solution to
combinatorial of annealing of solids [28]. This algorithm

is one of the few algorithms that have explicit strategies to
avoid local minima. For this reason, the solutions of
worse quality than the current solution is accepted in order
to escape from local minima [46]. The basic steps involved
in the PASA algorithm for the present problem are as
follows:
(a) Define the simulated annealing parameters, such as:

the initial temperature, cooling factor, weighting
coefficients for two objective function.

(b) Generate the initial solution in the prescribed range
(0.1 < R < 1, 0 < k < 100 and 0.0125 < h

R
< 0.1) and

evaluating the objective functions; if it is feasible,
adding into the Pareto archive.

(c) Store the initial solution as the current solution.
(d) Store the initial solution as the optimal solution in the

problem.
(e) Generate a new solution in the neighborhood of the

current solution randomly and evaluating the objective
function and check the constraint of Pcr< sYh. If it is
not satisfied with the aforementioned constraint,
algorithm generates a new point and perform the step
(b) again.

(f) Evaluate the objective functions. If the candidate
solution dominates any point in the archive, the
algorithm is proceeded by step h.

(g) If the new solution is dominated by any points of the
archive, evaluate the energy function based on the
equation (7). The energy function is determined to
check the Metropolis acceptance criteria and to
progress the algorithm. The probability of acceptance
is obtained according to the relation of u< e�∇Z/T,
where u is a random number between (0 and 1), ∇Z is
the energy difference for the new and the current
solutions, and T is also the temperature of the
algorithm. If Metropolis is not satisfied, go to step i.

(h) The Pareto archive is updated, that means: the current
solution is discarded and the new solution is added.

(i) The stop condition of inner loop is checked.
(j) If the stop condition is met, decrease temperature

as much as the inner loop. In the otherwise, go to
step b.

(k) The stopping criteria of the outer loop is considered.
If it is met, the algorithm is finished. If the stopping
criteria are not fulfilled, the algorithm goes to step b.

According with the aforementioned relationship, when
the temperature is high, most of points are accepted so
that the algorithm can search the entire target space and,
with the progress of the algorithm, the probability of
accepting the points that worsen the situation is reduced,
and only the points that cause improvement of the
algorithm are accepted.

Table 1. Properties of aluminum, zirconia and alumina [7].

Material Specific weight (kN/m3) Yield stress (MPa) Poisson ratio Young modulus (GPa)

Aluminum 2700 140 0.3 70

Zirconia 6000 248 0.3 207

Alumina 3700 260 0.3 394
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In the first step, after entering the initial parameters,
initially the algorithm starts with a primary random point
in the feasible range and evaluates this point, then the
initial point is saved as the current point of the problem to
Pareto archive as well as the optimal point. The parameters
used in the simulation annealing algorithm are included of
the initial temperature, the final temperature, the
predefined number of iterations, the length of decrement,
the relationship between the step of reducing the
temperature and the initial solution. Herein, the initial
temperature is determined by getting the average of

50 energy functions selected randomly T i ¼

Xn¼50

i¼1
Z

n

 !

.

Moreover, according to the stopping criteria of the
algorithm, the final temperature is obtained using the

equation of Tf=0.01Ti. The number of iterations for the
current temperature level chosen to be 200. Using the
relation of the cooling function (Tk+1=aTk), the tempera-
ture is decremented, in which a is the cooling coefficient,
which is considered between zero and one. In this paper, a is
chosen to be 0.98. The flowchart of the present method is
described in Appendix A.

4 Providing a numerical example
for validation

In this section, two objective functions are minimized
multi-objective Pareto archived simulated annealing
algorithm and compared the results with genetic algorithm
using uniform genetic algorithm (UGA), hybrid genetic

Fig. 2. Critical buckling load-weight diagram, accepted dominated solution, non-dominated solution (Pareto archive) and GA
solution of the Al/ZnO2 plate inR=1m for (a) the asymmetrical-clamped edge, (b) asymmetrical-simply supported, (c) symmetrical-
clamped edge, (d) symmetrical simply supported.
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algorithm (HGA) [47–48]. The test objective functions are
defined as follows [49]:

min f1 x; yð Þ ¼
1

x2 þ y2 þ 1
ð9aÞ

minf2 x; yð Þ ¼ x2 þ 3y2 þ 1 ð9bÞ

So that ‒3 < x < 3, ‒5 < y < 5. In addition, Table 2 shows
the number of generated solutions and the number of
Pareto solutions using by different algorithms.

Table 2. Performance comparison of the present method
with HGA and UGA

Method Number of function
evaluations

Number of found
Pareto solutions

Present work 3977 253

HGA [47] 1842 298

UGA [48] 11,975 112

Fig. 3. Thickness-volume fraction diagram, accepted dominated solution (light blue points) and non-dominated solution (dark blue
points) of Al/ZnO2 plate in R=1 for (a) the asymmetrical-clamped, (b) asymmetrical-simply supported, (c) symmetrical clamped,
(d) symmetrical simply supported edge.
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As shown in Table 2, the number of solutions obtained
from the Pareto archive is more than the total evaluated
solutions by the HGA algorithm. According to the results,
the scattering of the results of the simulation annealing
algorithm is greater, the optimal Pareto solution are
searched in greater space.

5 Results

Herein, for the present problem, three approaches are
represented. The results are demonstrated for the two
metal- ceramic constituents of FG plate, as: aluminum–

zirconia (Al/ZnO2) and aluminum–alumina (Al/Al2O3).

Fig. 4. Critical buckling load- weight diagram, accepted dominated solutions and non-dominated solution (Pareto archive) of the
Al/Al2O3 plate in R=1 (a) asymmetrical-clamped, (b) asymmetrical-simply supported, (c) symmetrical-clamped, (d) symmetrical-
simply supported edge.
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5.1 The first approach: constant radius

In the first case, the radius is assumed to be constant,
and the volume fraction and thickness of the plate
is considered as variables that would be optimized.
Figures 2–5 show the distribution of all dominated
accepted and Pareto optimal solutions (Pareto optimal
front) for asymmetric and symmetric FG plates with
two boundary conditions, namely, simply-supported and
clamped edges for radius of R=1m. In all figures, the
bright blue and dark blue points indicate all the

acceptable dominated and non-dominated optimal sol-
utions (Pareto front), respectively.

Figure 2 shows the results of the implementation of
algorithm for Al/ZnO2 plate with simply supported and
clamped edges in the asymmetric and symmetric cases.
When the radius of the plate is specified and the aim is to
achieve optimum critical buckling load and weight, thus
Figure 2 can be used. As sketched, firstly, the graph raises
continuously, then a rough trend is occurred due to
difference between the properties of two constituents of FG
plate. In addition, in Figure 2, the results obtained by the

Fig. 5. Thickness-volume fraction diagram, accepted dominated solution (light blue) and non-dominated solution (dark blue) of
Al/Al2O3 plate in R=1 (a) the asymmetrical-clamped, (b) asymmetrical-simply supported, (c) symmetrical-clamped,
(d) symmetrical-simply supported edge.

8 F. Farhatnia et al.: Int. J. Simul. Multidisci. Des. Optim. 10, A14 (2019)



present method are compared with those of Genetic
algorithm. As seen, the results indicate a very good
agreement between them.

As illustrated in Figure 3, at the left side of boundary of
the thickness, the optimal dark points indicate to the
maximum volume fraction and the minimum value of the
weight of the plate. In Figure 3a, while being far from the
left side border, Pareto archive converge to a volume
fraction index of 10–50 (that means a FG plate with a
higher metal percentage). This trend continues until
toward the end of the border on the horizontal axis labeled
thickness. These points are not dominated by the greater

value of thickness and the volume fraction index, due to the
fact that the thickness limitation does not permit to
proceed more; hence the volume fraction index tends to be
zero to maximize the buckling load and minimize the
weight. Those points are not added into Pareto archive if
they violate the elasticity relation for calculation critical
buckling forces.

The results of the algorithm are presented for Al/
Al2O3 plate with a simply supported and clamped edges
in asymmetric and symmetric cases in Figures 4 and 5.
Figure 5a–d shows the corresponding points in
Figure 4a–d. As shown in Figures 4 and 5, due to the

Fig. 6. Critical buckling load-weight diagram with regarding to the optimum ratio of thickness to radius for Al/Al2O3 plates: (a) the
asymmetrical-clamped, (b) asymmetrical simply supported, (c) symmetrical-clamped, (d) symmetrical simply supported edge.
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mechanical properties of aluminum and alumina, as well
as aluminum and zirconia, there is no convergence of the
algorithm towards pure metal, and the optimal Pareto
points are in the form of ceramic and metal mixture and
tend towards ceramic properties.

As sketched in Figure 5, at the initiation and the end
of the thickness boundary, the volume fraction index
converges to the upper boundary of the volume fraction
index (pure metal). This is due to the fact that the
weight of the plate in the boundary thickness is
minimized at the beginning and end of the thickness
boundary with high volume fraction index; these points
do not violate clause i of the algorithm, therefore are
added to the Pareto archive and is not dominated by any
point.

In the upper part of Figure 4c and d, some dispersed
distribution of Pareto optimal points is seen, this is due to
achieving to the upper boundary of the thickness. As the
constraint for thickness does not permit to be increased this
parameter in the upper bound, the volume fraction index
increases and if it does not violate part I of the algorithm, it
is added to the Pareto archive due to containing the lowest
weight. This can be observed for the corresponding points
in diagrams (c) and (d) of Figure 5.

5.2 Second approach: constant volume fraction index

In this case, the volume fraction index is assumed to be
constant, whereas the radius and thickness are variable.
The range of variables in this case is 0.0125 < h

R
< 0.1 and

Fig. 7. Critical buckling load-weight diagramwith regarding to the optimum ratio of thickness to radius for the FGAl/ZnO2 plates: (a)
asymmetric-clamped support, (b) asymmetrical-simply supported, (c) symmetrical-clamped, (d) symmetric-simply supported edge.
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0.1< R< 1. In this approach, the purpose is to estimate an
optimum ratio of thickness to radius in the desired volume
fraction index. Figures 6 and 7 show the results of an
optimal ratio of thickness to radius for (Al/Al2O3) and
(Al/ZnO2) FG plates corresponding to the prescribed
volume fraction index, respectively.

Through Figures 6 and 7, the volume fraction index is
assumed to be taken of 0, 0.5, 2 and 10 for the optimal ratio
of thickness to radius. For instance, if the volume fraction

index of 10 is selected in Figure 7d, thus h
R

would be
0.061824 to be achieved to the maximum critical buckling
load and the lowest weight. In the following, Figure 8 is
sketched to present the Pareto archive corresponding to
Figure 7d for aforementioned quantities of volume fraction
index and thickness to radius ratio.

In Figure 8, the brighter area represents all the
acceptable points and the darker curved lines represent
the Pareto archive of non-dominated solution, which are

Table 3. The closest optimal Pareto point to the objective function of the weight of 100 kg for Al/ZnO2 plate.

Type of plate Type of B.C*. Solution Specifications of the closest Pareto optimal point

Buckling
load �106 (N/m)

Weight (kg) Radius (m) Volume
fraction
index

Thickness (m)

Asymmetric Simply-supported 1 3.794 93.54 0.59 1.088 0.0199

Asymmetric Clamped edge 1 5.51 98.625 0.48 0.477 0.0278

Symmetric Simply-supported 1 3.44 94.95 0.57 0.0557 0.0159

Symmetric Clamped edge 1 5.31 102.45 0.52 1.1298 0.0281

Asymmetric Simply-supported 2 3.51 99.8 0.66 5.658 0.0226

Asymmetric Clamped edge 2 5.83 95.7 0.48 1.1085 0.0305

Symmetric Simply-supported 2 3.5 97.56 0.59 0.278 0.0167

Symmetric Clamped edge 2 5.52 101.22 0.51 0.7445 0.0274

Asymmetric Simply-supported 3 3.794 92.9 0.57 0.3226 0.0177

Asymmetric Clamped edge 3 6.195 105.54 0.47 0.161 0.0271

Symmetric Simply-supported 3 3.37 98.96 0.68 13.66 0.023

Symmetric Clamped edge 3 5.95 101.9 0.47 0.124 0.0258

B.C.*: Boundary condition.

Table 4. The closest optimal Pareto point to the objective function of the weight of 100 kg for Al/Al2O3 plate.

Type of plate Type of B.C*. Solution
Procedure

Specifications of the closest Pareto optimal point

Buckling
load �106 (N/m)

Weight (kg) Radius (m) Volume
fraction
index

Thickness (m)

Asymmetric Simply-supported 1 3.786787 96.664 0.71 0.7649 0.0187

Asymmetric Clamped edge 1 5.86356 99.542 0.58 1.0629 0.0299

Symmetric Simply-supported 1 3.4376 114.84 0.79 0.1403 0.0162

Symmetric Clamped edge 1 6.24015 96.61 0.58 0.0075 0.0242

Asymmetric Simply-supported 2 3.857 102.25 0.72 1.1263 0.0199

Asymmetric Clamped edge 2 5.97923 99.225 0.58 0.4316 0.0271

Symmetric Simply-supported 2 4.0216 107.7 0.76 0.1443 0.0166

Symmetric Clamped edge 2 5.8395 102.77 0.61 0.2008 0.0248

Asymmetric Simply-supported 3 4.0834 98.385 0.72 0.1874 0.0169

Asymmetric Clamped edge 3 6.04143 100.68 0.58 0.631 0.0284

Symmetric Simply-supported 3 4.01078 93.52 0.72 0.0195 0.0157

Symmetric Clamped edge 3 5.65533 110.13 0.63 0.1078 0.0247
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obtained for h
R
of 0.061824. As depicted in Figures 7 and 8,

as the volume fraction index increases, the critical buckling
load decreases; whereas the optimal ratio of thickness to
radius increases; which consequently raises the weight of
the plate.

5.3 Third approach: variable radius, thickness and
volume fraction

In this case, the radius, thickness, and volume fraction of
metal-ceramic constituents, are assumed to be varied. For
instance, as presented in Tables 3 and 4, the weight of
100 kg is chosen as the target and the closest non-
dominated points for aluminum–zirconia and aluminum–

alumina plates are presented in Tables 2 and 3,
respectively.

By running computer code in Matlab for three times,
the solutions are tabulated in Tables 3 and 4. As shown, the
objective is to obtain the closest non-dominated point to
the specified weight; in fact, the obtained points containing
the maximum buckling load. On the other hand, the aim
can be considered as the closest non-dominated solution to
a specified buckling load. In Tables 5–8, according to the
buckling load of 5� 106 (N/m), the nearest non-dominated
Pareto point is represented.

Fig. 8. Critical buckling load-weight diagram, accepted
dominated solutions and non-dominated solutions for symme-
trical Al/ZnO2 plates with the simply supported edge for volume
fraction of 10.

Table 6. The closest Pareto optimal point to the objective function of the buckling load equals to 5� 106 (N/m) for the
symmetric Al/ZnO2 plate.

Type of support Buckling
load � 106 (N/m)

Weight (kg) Radius (m) Volume fraction
index

Thickness (m) Solution
procedure

Simply-supported 4.99 87.16 0.53 19.114 0.0345 1

Simply-supported 4.963 67.1 0.42 0.3335 0.0229 2

Simply-supported 5.3164 71.3 0.41 0.003 0.0224 3

Clamped edge 4.883 250.7 0.85 0.811 0.0245 1

Clamped edge 5.114 216.2 0.73 0.0085 0.0214 2

Clamped edge 5.24 240 0.79 0.1642 0.0228 3

Table 5. The closest Pareto optimal point to the objective function of the buckling load equals to 5� 106 (N/m) for the
asymmetric Al/ZnO2 plate.

Type of B.C*. Buckling
load �106 (N/m)

Weight (kg) Radius (m) Volume
fraction
index

Thickness (m) Solution
procedure

Simply-supported 4.96 63.97 0.40 0.1622 0.0226 1

Simply-supported 5.056 70.985 0.44 0.903 0.0268 2

Simply-supported 5.04 62.71 0.41 0.468 0.0243 3

Clamped edge 5.068 202.71 0.74 0.54 0.0242 1

Clamped edge 4.978 206.7 0.75 0.5824 0.0244 2

Clamped edge 5.085 229.12 0.79 1.06 0.0267 3
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6 Conclusion

In the present article, the critical buckling load as well as
the weight of the plate was optimized by the multi-
objective annealing simulation algorithm using the Pareto
archive. The aim is to find a non-dominated Pareto archive,
so that the critical buckling load is maximized whereas the
amount of plate weight is minimized. The optimization of
the asymmetric and symmetric functionally graded
aluminum–zirconia (Al/ZnO2) and aluminum–alumina
(Al/Al2O3) plates under simply supported and clamped
edge conditions have been considered. As the mechanical
properties of traditional functionally graded materials
depend on the volume fraction index of ceramic-metal
composition, it is noteworthy to mention that which
volume fraction index and thickness can satisfy all the
constraints of the problem, and optimize the critical
buckling load and weight. Herein, the solution based on the
multi-objective annealing simulation algorithm is obtained
using programming in MATLAB. The results are pro-
ceeded in three approaches and the solutions are extracted
in three categories, as exhibited in tables and figures. The
solutions are demonstrated as the non-dominated Pareto
archive as well as the optimal solutions of the problem, In
fact, it provides the decision-maker with a Pareto solution
set and permit her or him to make a choice depending on
design preferences. The closest and best solution of the
Pareto archive solutions can be selected by accessing the

Pareto archive and having enough information about it.
Herein, the following conclusion can be outlined:

I. By assuming that the maximum weight/ minimum
critical buckling load is specified, the second
approach can be used to obtain optimal state.

II. By considering the necessities of the problem and
using the third approach, and with the implementa-
tion of the algorithm for several times, the solutions
based on the other two approaches can be obtained.

III. As shown for Al/ZnO2 plate, optimization of critical
buckling load and weight is achieved from a plate
containing a higher volume percentage of metal
constituent; whereas, for Al/Al2O3 plate, this trend is
reverted and is resulted from a plate containing a
higher volume percentage of ceramic constituent.

IV. The present result is utilized as a new reference for the
designers in the field of aerospace and marine
structures industries. For future studies, optimiza-
tion of critical temperature of thermal buckling,
critical frequency of vibration of FG plate are
interesting subjects to be considered.
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Appendix A

The flowchart of Pareto archived Annealing simulation is described as follow:

Cite this article as: Fatemeh Farhatnia, S.Ali Eftekhari, Alireza Pakzad, Soheil Oveissi, Optimizing the buckling characteristics
and weight of functionally graded circular plates using the multi-objective Pareto archived simulated annealing (PASA) algorithm,
Int. J. Simul. Multidisci. Des. Optim. 10, A14 (2019)

Figure A. 1. Flowchart of present method.
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