Optimizing the Degree of Minimum
Weight Spanning Trees

Ted Fischer*

TR 93-1338
April 1993

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Department of Computer Science, Cornell University, Ithaca, NY 14853. Research
supported by ONR Graduate Fellowship.

Optimizing the Degree of Minimum Weight Spanning
Trees

Ted Fischer*

April 15, 1993

Abstract

This paper presents two algorithms to construct minimum weight spanning trees with ap-
proximately minimum degree. The first method gives a spanning tree whose maximum degree
is O(6* + logn) where §* is the minimum possible, and n is the number of vertices. The second
method gives a spanning tree of degree no more than k- (6* + 1), where k is the number of
distinct weights in the graph. Finding the exact minimum is NP-hard.

*Department of Computer Science, Cornell University, Ithaca NY 14853. Research supported by ONR Graduate
Fellowship.

1 Introduction

While it is easy enough to optimize the weight of a spanning tree, it is often more difficult to satisfy
constraints which involve the degrees of the vertices. The problem of minimizing the maximum
degree of a spanning tree is known to be NP-complete, as the Hamiltonian path problem is merely
a special case of this problem. Other related NP-complete problems include finding a spanning tree
with the maximum number of leaves [3], one that is isomorphic to a given tree [3], or one where
the paths between all pairs of vertices produces the minimum congestion [1]. More NP-complete
spanning tree problems can be found in [3] and [5]. Other related problems involve the simultaneous
optimization of two parameters, such as the problem of finding the cheapest tree bounded by a
given diameter [3].

Approximation algorithms are known for some of these problems. Goemans and Williamson
developed a technique that applies to a variety of constrained forest problems, including the gen-
eralized Steiner tree problem, and the non-fixed point-to-point connection problem [4]. A result of
Khuller, Raghavachari, and Young balances the cost and diameter for spanning trees [6].

Fiirer and Raghavachari recently published an polynomial time approximation algorithm which
constructs a spanning tree of degree no more than 6* + 1, where §* is the optimum degree [2]. In
the same paper, they give a second algorithm for the same problem; this algorithm only produces
a tree of degree O(6* + logn) (where n is the number of vertices in the graph), but the techniques
may be more generally applicable.

We consider a generalization of the problem addressed by Fiirer and Raghavachari. Let G =
(V, E) be a graph with weights w(e) on the edges e € E. If there exists a minimum weight spanning
tree of degree 6*, the first algorithm presented here will construct a minimum weight spanning tree
(MWST) of degree O(6* + logn), extending the second algorithm of Fiirer and Raghavachari.

Also presented here is an algorithm to construct a MWST of degree at most k(6* + 1) where &
is the number of different weights in the graph. This method uses the first algorithm of Fiirer and
Raghavachari as a subroutine.

2 An Additive logn Approximation

Definition 2.1 Define the rank of a tree T to be the the ordered n-tuple (tn,...,t1) where t; is
the number of vertices of degree i in T. Define a lezicographic order on these ranks; a tree S is of
lower rank than tree T if s; < t; for some j and s; =t; fori=j+1,...,n.

When an edge is added to a spanning tree, it creates a cycle. Removing any edge from the
induced cycle, we are again left with a spanning tree. Define a swap to be any such exchange of
edges. A swap is cost-neutral if the edges exchanged are of equal weight.

Consider a swap of the tree edge (z,w) € T for the edge (u,v) € T, with z distinct from u, v.
Such a swap may increase the degree in T' of both u and v by one, but it will decrease the degree of
z. This will decrease the rank of T if the degree of z in T is at least two more than the maximum
degree of u and v.

Definition 2.2 A locally optimal minimum weight spanning tree is a MWST in which no cost-
neutral swap decreases the rank of the tree.

Theorem 2.3 IfT is a locally optimal MWST, and 6 is the degree of T, then § < b-6* + [log, n]
for any constant b > 1.

Proof:

Consider a locally optimal MWST, T. Let S; denote the set of vertices of degree i in T,
U; = Uj=: Sj, and o; = |U;|. By definition, Us is non-empty, so o5 > 1. Since o; < n for all i, the
ratio 0;_1/0; can not be greater than b for log, n consecutive values of i.

Claim 2.4 For any constant b > 1, there exists some z in the range § — [logyn] < z < § such that
Um—l/aa: <b.

Suppose we choose x to satisfy this property, and remove from T' the edges adjacent to vertices
of U;. Let T;; denote the remaining edges of . How many connected components (counting isolated
vertices) are there in the subgraph T,? Initially, T' is entirely connected, and each edge removed
creates a new connected component. There are at least z edges adjacent to each vertex of U, and,
since there are no cycles, we have at most o, — 1 edges which are adjacent to two vertices of U,
and counted twice. Therefore there must be at least 1+ -0, — (0, — 1), or (z —1)o, +2 connected
components in Tg.

Consider the graph G formed by contracting every component of T,. Since any MWST of G
must contain a MWST of G, any MWST must include at least (z —1)o, + 1 edges from G.

Consider an edge, (v,w) € E — T, between two components of T,. Let PT ») denote the path

from v to w in T, and P(T v) denote those edges of P(w) which appear in G, the edges on the path
which are adjacent to a vertex in U;. Suppose neither v nor w is in U,_;. Since T is locally optimal,
no cost- neutral swap can reduce the rank of T', so (v,w) must be more expensive than any edge in

(v w)* Since (v,w) and P, form a cycle in G, this implies that (v, w) may not participate in a

(v w)
MWST of G. Therefore only those edges which are adjacent to U,—; may participate in a MWST
of G, and any MWST of G must contain at least (z — 1)og + 1 edges that are adjacent to U,_;.

Earlier we chose z to satisfy the inequality o,—1/b < 0,. Substituting, we see there must be at
least ((z —1)o,—1/b) +1 edges adjacent to X,_;. Therefore the average degree of a vertex in Uy_;
must be at least @—Q”—’ﬁ'— Therefore §* > 271,

Combining this w1th the possible range for z, we find § < b-6* + [logyn]. |

Now constructing a locally optimal tree might take exponential time, but in the proof we only
used the local optimality condition for the high degree vertices: those in Uy with k = 6§ — [log, n].
Say that such a tree is pseudo-optimal for parameter b. We can compute a pseudo-optimal tree
in polynomial time with the algorithm on the next page.

Algorithm 2.5 How to construct a pseudo-optimal MWST.

0 Start with any MWST, T. Let b > 1 be the desired approximation parameter. Let | < n be
the number of distinct edge weights, w1 ... w;, in T

1. Let d be the current mazimum degree in T'.

2. For every vertez, v, in G, check for appropriate improvements. Conduct a depth first traversal
of T starting from v.

(a) Let w be the current vertez on the traversal of T, and P, be the path in T between v and
w.

(b) Assign variables My ... M; such that M; denotes the mazimum degree of those vertices
adjacent to edges of weight w; in P,,. For a depth first traversal, this is easily maintained
using stacks.

(c) If there is an edge (v,w) € E, let w; be its weight. If M; is at least two greater than
the degree of v and w, and M; is at least 6 — [log,n], then the edge (v,w) can be used
to reduce the high-degree rank of T. Conduct the appropriate swap on T, and repeat to
step (1) for the next iteration.

(d) If no appropriate cost-neutral swap was found involving v and w, continue the traversal.

3. If no appropriate cost-neutral swap was found in any of the traversals, terminate.

The tree produced, T, is clearly pseudo-optimal; any cost-neutral swap that can reduce the high-
degree rank will be found. Since we are conducting O(n) depth first traversals, and can maintain
the M; variables in constant time per step of the traversal, no more than O(n?) time will be spent
on any iteration.

Lemma 2.6 Algorithm 2.5 will terminate in O(n2t1/1n8) jterations.

Proof: We use a potential function identical to that of Fiirer and Raghavachari. Define the poten-
tial of a vertex v to be % for some fixed base 3 > 2 where d,, is the degree of v in the current tree.
Define = ¥,y f%. Let i = 6 — [log, n], the lower limit on the degree for our improvements.

Since we only perform swaps which improve the degree of some vertex in U;, the reduction in
& resulting from a swap is at least:

B+2-872-3.8"1=(B-1)-(8-2)-8"2>c- B for some constant c.
Now ® < n - 3%, so each swap reduces ® by at least a fraction of:

c- ﬂi _ c- ,6_“08" n] cl

= for some constant ¢'.
n- 30 n < 1+log, B

Since this argument holds for any 3 > 2, we can choose 3 = e. Therefore in O(n!*1/12%) jtera-
tions, the potential reduces by a constant fraction, and after O(n?+1/1n?) iterations, the algorithm
must halt. |}

This completes the proof of the main theorem:

Theorem 2.7 The above algorithm computes, in O(n*t1/18%) time, o minimum weight spanning
tree of degree no more than b-6*+[log, n|, where 6* is the minimum possible degree of any minimum
weight spanning tree.

3 A k-factor Approximation

A MWST can be described as a tree containing an edge of minimum cost in any cut. Those nodes
that can be connected by edges of cost c or less, must be connected by such edges. This property
is applied to build a MWST of low degree.

Notation 3.1 Let k be the number of distinct weights used in a MWST. Let wy ... wy denote the
different weights in increasing order, and E; be the set of edges of weight w; or less. Let the w;-
degree of a node, v, in a tree denote the number of edges adjacent to v in the tree which are of
weight w;.

In phase %, we will use the edges of weight w; to join the components already spanned by edges
of lesser weight. Using an algorithm for the following claim as a subroutine, we approximately
minimize the maximum number of weight w; edges adjacent to any given node.

Claim 3.2 Given a forest, F, in a graph G = (V, E), we can extend F in polynomial time to a
forest F' such that F C F', F' is a spanning forest of G, and the number of edges in F' — F adjacent
to any given node of V is at most one more than the minimum possible.

This result follows immediately from the techniques used to prove the second algorithm of Fiirer
and Ragavachari [2].

In the first phase, we merely run the subroutine to find an approximately minimum degree
spanning forest, Fy, for the graph G; = (V, E1). In phase i, for ¢ = 2...k, we run the subroutine
on the graph G; = (V, E;) with initial forest F;_;. Note that this guarantees that any subgraph
of G that can be spanned by edges in E; *will* be spanned by edges of weight E; in the forest
generated. Since we know that the edges Ej span G, the tree produced is a MWST.

Theorem 3.3 The MWST produced by the above algorithm has mazimum degree § < k - (6* +1).

Proof: Suppose there there is a MWST 7" of degree 0*, yet the tree T produced by our algorithm
has some vertex of degree greater than k - (6* + 1). By the pigeonhole principle, there is some i
such that the w;-degree of that vertex is at least 6* + 2.

Now, any vertices connected by edges in F;_; are also connected in F;_1, since F;_; spans G;_;.
And any MWST must span G; with edges in E;. Since our subroutine uses 6* + 2 edges of weight
w; adjacent to a single vertex, any MWST must have some vertex with w;-degree at least 6* + 1,
implying that no MWST of degree 6* is possible. By contradiction, the degree of T is no more than
k-(6*+1). 1

4 Acknowledgements

I would like to thank Eva Tardos for her advice and direction.

References

(1] P.M. Camerini, G. Galbiati, and F. Maffioli. Complexity of spanning tree problems: Part i.
European J. Op. Res., 5:346-352, 1980.

[2] M. Furer and B. Raghavachari. Approximating the minimum degree spanning tree to within
one from the optimal degree. In Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 317-324, 1992.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory of NP-
completeness. W. H. Freeman, San Francisco, 1979.

[4] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained forest
problems. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 307-316, 1992.

[5] D.S. Johnson. The np-completeness column: An ongoing guide. J. Algorithms, 6:145-159, 1985.

[6] S. Khuller, B. Rachavachari, and N. Young. Balancing minimum spanning and shortest path
trees. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 243-250, 1993.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif

