
Optimizing the DFCN Broadcast Protocol with

a Parallel Cooperative Strategy of
Multi-Objective Evolutionary Algorithms

Carlos Segura1, Alejandro Cervantes2, Antonio J. Nebro3,
Maŕıa Dolores Jaráız-Simón4, Eduardo Segredo1, Sandra Garćıa2,
Francisco Luna3, Juan Antonio Gómez-Pulido4, Gara Miranda1,
Cristóbal Luque2, Enrique Alba3, Miguel Ángel Vega-Rodŕıguez4,

Coromoto León1, and Inés M. Galván2,�

1 Department of Statistics, O.R. and Computation, University of La Laguna
csegura@ull.es

2 Computer Science Department, University Carlos III of Madrid
3 Computer Science Department, University of Málaga

4 Department of Technologies of Computers and Communications,
University of Extremadura

Abstract. This work presents the application of a parallel coopera-
tive optimization approach to the broadcast operation in mobile ad-hoc
networks (manets). The optimization of the broadcast operation im-
plies satisfying several objectives simultaneously, so a multi-objective
approach has been designed. The optimization lies on searching the best
configurations of the dfcn broadcast protocol for a given manet sce-
nario. The cooperation of a team of multi-objective evolutionary al-
gorithms has been performed with a novel optimization model. Such
model is a hybrid parallel algorithm that combines a parallel island-
based scheme with a hyperheuristic approach. Results achieved by the
algorithms in different stages of the search process are analyzed in order
to grant more computational resources to the most suitable algorithms.
The obtained results for a manets scenario, representing a mall, demon-
strate the validity of the new proposed approach.

1 Introduction

Mobile ad-hoc networks (manets) [1] are fluctuating, self-configuring networks
of mobile hosts, called nodes or devices, connected by wireless links. This kind of
network has numerous applications because of its capacity of auto-configuration
and its possibilities of working autonomously or connected to a larger network.
No static network infrastructure is needed to support the communications be-
tween nodes, which are free to move arbitrarily. Devices in manets are usually
� This work has been supported by the ec (feder) and the Spanish Ministry of

Education and Science inside the ‘Plan Nacional de i+d+i’ (tin2005-08818-c04)
and (tin2008-06491-c04-02). The work of Gara Miranda has been developed under
grant fpu-ap2004-2290.

1

Cita bibliográfica
Published in: Evolutionary multi-criterion optimization: 5th International Conference, EMO 2009, Nantes, France, April 7-10, 2009. Proceedings. Springer, 2009 (Lecture notes in computer science, vol. 5467), pp. 305-319



laptops, pdas, or mobile phones, equipped with network cards featuring wireless
technologies. This implies that devices communicate within a limited range and
also that they can move while communicating.

Broadcasting is a common operation at the application level and also widely
used for solving many network layer problems. It is expected to be performed
very frequently, serving also as a last resort to provide multicast services. Hence,
having a well-tuned broadcast strategy results in a major impact in network per-
formance. The optimization implies satisfying several objectives simultaneously:
the number of reached devices (coverage) must be maximized, a minimum usage
of the network (bandwidth) is desirable, and the process must take a time as
short as possible (duration). These objectives are conflicting among them, so we
are dealing with a multi-objective optimization problem (mop).

Since exact approaches are practically unaffordable for real world mops, a
wide variety of approximated algorithms have been designed. Among them,
metaheuristics are a family of techniques which have become popular to solve
both single and multi-objective problems. They can be considered as high-level
strategies that guide a set of simpler heuristic techniques in the search of an opti-
mum [2]. Among these techniques, evolutionary algorithms for solving mops are
very popular [3] giving raise to a wide variety of algorithms, such as nsga-ii [4]
and spea2 [5]. Other family of metaheuristics widely applied in multi-objective
optimization is particle swarm optimization or pso [6].

This work presents an optimization of the broadcast operation for a real
manet instance. In order to provide an efficient, and robust approach, appli-
cable to a wide range of problem instances, a new parallel evolutionary model
has been applied1. The model is based on the hybridization of parallel island-
based evolutionary algorithms and hyperheuristics. In particular, eight different
multi-objective algorithms comprising genetic algorithms, differential evolution,
evolutionary strategies, and pso have been combined in the island scheme.

The remaining content is structured in the following way: Section 2 presents
the broadcast optimization problem in manets. The sequential approaches ap-
plied in this work are presented in section 3. The proposed parallel model for
multi-objective optimization is described in detail in section 4. The computa-
tional study is presented in section 5. Finally, the conclusions and some lines of
future work are given in section 6.

2 Broadcast Operation in MANETS

This work focuses on the study of the broadcast operation in a particular kind of
manets, the metropolitan manets. These manets have some specific features
that hinders the testing in real environments: the network density is heteroge-
neous and it is continuously changing because devices in a metropolitan area
move and/or appear/disappear from the environment. For this reason, many
simulation tools have been developed [7]. In this work the Madhoc simulator [8]
1 We will use the most familiar term evolutionary algorithm instead of metaheuristic

throughout the paper, although in the algorithms we study there is a pso.

2



was the choice. This tool provides a simulation environment for several levels of
services based on different types of manets technologies and for a wide range
of manet real environments. It also provides implementations of several broad-
cast algorithms [9]. From the existing broadcast protocols, the Delayed Flooding
with Cumulative Neighbourhood (dfcn) [10] has been selected because it was
specifically designed to deal with metropolitan manets.

dfcn is a deterministic and totally localized algorithm. It uses heuristics
based on the information from one hop. Thus, it achieves a high scalability.
The behaviour of each device when using dfcn is driven by three events: the
reception of a message (reactive behaviour), the expiration of the random delay
for rebroadcasting (rad) of a message, and the arrival of a new neighbour to its
covered area (proactive behaviour). Although dfcn has shown good behaviour
with metropolitan manets, the task of configuring such parameters is not trivial,
and the proper operation of the protocol is sensitive to such configuration. The
set of parameters that must be configured is:

– minG: minimum gain for forwarding a message.
– [lowerRAD, upperRAD ]: range values for the rad.
– proD : maximum density for which it is still necessary to use proactive be-

haviour for complementing the reactive behaviour.
– safeDensity: maximum density below which dfcn always rebroadcasts.

Given the values for the five dfcn configuration parameters and a manet
scenario, the Madhoc tool does the corresponding simulation and provides an
estimate for the three objectives: duration, coverage, and bandwidth. One pos-
sibility to find the most suitable configuration is to systematically vary each of
the five dfcn parameters. However, the possible parameter combinations are
too large and evaluations in the simulator are computationally expensive. So,
such technique is unable to obtain good quality solutions in a reasonable time.
Other alternative relies on deeply analysing the problem to extract information
to define a heuristic strategy, but the complexity and stochastic behaviour of
the given problem hinders it. For these reasons, one usual way of affording this
problem is through evolutionary techniques [11].

3 Applied Sequential Approaches

The aim of this section is to present the sequential algorithms used in this work
for solving the proposed broadcast optimization problem. Algorithms previously
used in [12], as well as other new alternatives has been applied. In this work, all
these algorithms were also used in parallel, following some standard island-based
models and applying the method explained in section 4.

3.1 Non-dominated Sorting Genetic Algorithm II (nsga-ii)

nsga-ii [4] is a non-dominated sorting based multi-objective evolutionary algo-
rithm. Two of the most important characteristics which differentiates nsga-ii of

3



nsga and other non-dominated sorting based approaches are the following. First,
a fast non-dominated sorting approach with reduced computational complexity
(O(mN2)). Second, a selection operator which combines previous populations
with new generated child populations, ensuring elitism in the approach.

The procedure is as follows: the two populations are sorted according to their
rank, and the best solutions are chosen to create a new population. In the case of
having to select some individuals with the same rank, a density estimation based
on measuring the crowding distance to the surrounding individuals belonging to
the same rank is used to get the most promising solutions.

Algorithm 1. nsga-ii Pseudocode
1: Initialization: Generate an initial population P0 with N individuals. Assign t = 0.
2: while (not stopping criterion) do
3: Fitness assignment: Calculate fitness values of individuals in Pt. Use the non-domination rank

in the first generation, and the crowded comparison operator in other generations.
4: Mating selection: Perform binary tournament selection on Pt in order to fill the mating pool.

5: Variation: Apply genetic operators to the mating pool to create a child population CP .
6: Combine Pt and CP selecting the best individuals using the crowding operator to constitute

Pt+1.
7: t = t + 1
8: end while

3.2 Evolution Strategy with NSGA-II (esn)

The esn algorithm is based on the hybridization of Evolution Strategies and
nsga-ii. The algorithm uses the standard Evolution Strategies’ steps [13], re-
placing the selection process by the nsga-ii [4] selection process. The main dif-
ference between Evolution Strategies and Genetic Algorithms is that crossover
operators are not used in ES, and each parent produces one offspring only by
mutation. The mutation process implemented was the standard (μ + λ) process
explained in [14], although in our case, λ = μ.

Algorithm 2. esn Pseudocode
1: Initialize population P of μ individuals
2: Initialize variance σ for each individual I ∈ P
3: while (not stopping criterion) do
4: P ′ = ∅
5: for each I = (x1, ..., xn, σ) ∈ P do

6: σ′ = σeN(0,Δ)

7: Create I′ = (N(x1, σ′), N(x2, σ′), ..., N(xn, σ′), σ′)
8: P ′ = P ′ ∪ {I′}
9: end for
10: P = P ∪ P ′

11: Calculate front F1 as Non-dominated individuals of P
12: for i = 2 to n do
13: Generate fronts Fi as Non-dominated individuals of P \ (F1 ∪ ... ∪ Fi−1)
14: end for
15: Sort solutions in each Fi (i = 1, . . . , n) using the crowding distance
16: Delete the worst μ individuals in population P
17: end while

4



3.3 Strength Pareto Evolutionary Algorithm 2 (spea2)

spea2 was proposed by Zitzler et al. [5]. This algorithm uses a population and an
archive. It assigns to each individual a fitness value that is the sum of its strength
raw fitness plus a density estimation. In each generation the non-dominated
individuals of both the original population and the archive are used to update
the archive; if the number of non-dominated individuals is greater than the
population size, a truncation operator based on calculating the distances to the
k-th nearest neighbor is used. All this procedure is known as Environmental
Selection. Then, the algorithm applies the selection, crossover, and mutation
operators to members of the archive in order to create a new population of
offsprings which becomes the population of the next generation.

Algorithm 3. spea2 Pseudocode
1: Initialization: Generate an initial population P0 and create the empty archive P 0.
2: while (not stopping criterion) do

3: Fitness assignment: Calculate fitness values of individuals in Pt and P t.
4: Environmental selection: Copy nondominated individuals in Pt and P t to P t+1. if |P t+1| > N

reduce P t+1; otherwise, fill P t+1 with dominated individuals in Pt and Pt+1.

5: Mating selection: Perform binary tournament selection on P t+1.

6: Variation: Apply crossover and mutation operators to the mating pool and set P t+1 to the
resulting population.

7: end while

3.4 Indicator-Based Evolutionary Algorithm (ibea)

The ibea algorithm [15] allows to define the optimization goal in terms of a per-
formance measure or quality indicator. This measure is used directly for fitness
calculation. The ibea algorithm allows the use of different binary quality indi-
cators. In this work the binary multiplicative ε-indicator [16] was used. There
exists two versions of ibea, the basic one and a more robust version known as
adaptive. In the adaptive version, objectives values are normalized, and the in-
dicator values are adaptively scaled. Both versions of the algorithm have been
implemented.

Algorithm 4. ibea Pseudocode (Adaptive Version)
1: Initialization: Generate an initial population P with N individuals.
2: while (not stopping criterion) do
3: Fitness assignment: calculate the fitness values using the quality indicator.

1. Calculate indicator values I(x1, x2) using the normalized objective values f ′
i and deter-

mine the maximum absolute indicator value c = maxx1,x2∈P |I(x1, x2)|.
2. ∀x1 ∈ P , F (x1) =

∑
x2∈P\{x1}−e−I({x2},{x1})/(c·k).

4: Enviromental selection: until the size of P does not exceed N , remove the individual with the
smallest fitness value, and recalculate the fitness value of the remaining individuals.

5: Mating selection: Perform binary tournament selection with replacement on P in order to fill
the temporary mating pool P ′.

6: Variation: Apply recombination and mutation operators to the mating pool P ′ and add the
resulting offspring to P .

7: end while

5



3.5 Multiple Objective Particle Swarm Optimization (mopso)

mopso [17] is an adapted version of Particle Swarm Optimization (pso) to multi-
objective optimization problems. mopso combines pso [18] with the archiving
strategy of paes [19]. In this work, we use the version available in the emoo
repository [20].

The algorithm uses an external repository that stores non-dominated solu-
tions in the swarm. The velocity and position of particles are updated using the
standard equations of pso but using a leader particle selected from the reposi-
tory, instead of best neighbor as it is usual. The mechanism of leader selection
is as follows: the fitness space is divided in hypercubic sectors, and one of the
positions in the repository is randomly selected using a roulette algorithm that
favors the sectors that are less populated. Therefore, particles are attracted by
leaders located in the areas where fewer non-dominated positions have been
found. The mechanism for inclusion in the repository ensures that it only stores
non-dominated solutions. If the new solution dominates some of the solutions in
the repository, those solutions are removed. The maximum number of particles
in the repository is fixed, so when this limit is reached, before the insertion, a
particle from the most-populated sector of the repository is removed. Upon com-
pletion of the specified number of iterations, the set of solutions in the repository
is reported as the Pareto front.

Algorithm 5. mopso Pseudocode
1: Initialize the swarm
2: Calculate fitness for each particle, store fitness and position as PBestFitness and PBestPosition

3: Store the position and fitness of non-dominated particles in the Repository
4: while (not stopping criterion) do
5: for Particle do
6: Select Leader from the repository
7: Update NewVelocity using standard equations and Leader as neighbor.
8: Update NewPosition using standard equations of PSO
9: Calculate NewFitness
10: if NewFitness dominates PBestFitness then
11: PBestFitness ← NewFitness and PBestPosition ← NewPosition
12: if NewFitness is not dominated by solutions in the Repository then
13: if Repository is full then
14: Remove one solution
15: end if
16: Insert NewPosition and NewFitness in the Repository
17: Remove from the Repository solutions dominated by the one just inserted
18: end if
19: end if
20: end for
21: end while

3.6 Multi-Objective Cellular Genetic Algorithm (mocell)

mocell [21] is a cellular genetic algorithm (cga). As other multi-objective meta-
heuristics, it includes an external archive to store the non-dominated solutions
found so far. This archive is bounded and uses the crowding distance of nsga-ii
to keep diversity in the Pareto front.

6



We have used here an asynchronous version of mocell, similar to the one called
amocell4 in [22], in which the cells are explored sequentially (asynchronously).
The selection is based on taking an individual from the neighborhood of the
current cell and another one chosen from the archive. After applying the genetic
crossover and mutation operators, the new offspring is compared with the current
one, replacing it if better; in the case of both solution be non-dominated, the
worst individual in the neighborhood is replaced by the current one. In this two
cases, the new individual is inserted into the archive.

Algorithm 6. mocell Pseudocode
1: population ← initialize()
2: archive ← NULL
3: while (not stopping criterion) do
4: for individual ← 1 to population.size() do
5: neighbours ←getNeighborhood(population, position(individual));
6: neighbours.add(position(individual));
7: parent1 ←selection(neighbours);
8: parent2 ←selection(archive);
9: offspring←recombination(Pc, parent1, parent2);
10: offspring←mutation(Pm, offspring);
11: evaluateFitness(offspring);
12: replacement(position(individual), offspring);
13: insertIntoArchive(offspring);
14: end for
15: end while

3.7 Non-dominated Sorting Differential Evolution (nsdemo)

Differential Evolution (de) [23,24,25] is an evolutionary algorithm introduced by
Storn and Price in 1995. de was designed to optimize (single-objective) problems
over continuous domains. In this paper, we extend de to solve multiobjective op-
timization problems. Like nsde [26], our approach is a multiobjective differential
evolution algorithm based on nsga-ii [4]. We call it nsdemo: Non-dominated
Sorting Differential Evolution for Multiobjective Optimization.

This algorithm replaces the crossover and mutation operators of the nsga-ii
with the de scheme. In particular, the de/rand/1/bin strategy has been applied.
The mutation is scaled using the factor f, while the crossover is controled with
the parameter cr.

Algorithm 7. nsdemo Pseudocode
1: initializeParameters
2: createPopulation
3: evaluate
4: assignRank
5: while (not stopping criterion) do
6: for i = 0 to PopulationSize − 1 do
7: selectThreeVectorsParents
8: mutationDE and crossoverDE
9: addChildToPopulation
10: evaluate
11: end for
12: assignRankCrowding
13: end while

7



4 Proposed Parallel Approach

Multi-objective metaheuristic approaches in general, and evolutionary algorithms
(MOEAs) in particular [3] are proven to be effective when solving multi-objective
optimization problems, but they can be time and domain knowledge intensive
when applied to solve real world instances. Several studies have been performed
in order to reduce the resource expenditure when using moeas. These studies
naturally lead to considering the moeas parallelization. In the parallel moea
(pmoea) island-based model [27] the population is divided into a number of in-
dependent subpopulations. Each subpopulation is associated to an island and a
moea configuration is executed over each of them. Usually, each available pro-
cessor constitutes an island. Each island evolves in isolation, but occasionally
some solutions can be migrated between neighbour islands. Island-based models
have shown good performance and scalability in many areas. Four basic island
variants are seen to exist: all islands execute identical moeas/parameters (homo-
geneous), all islands execute different moeas/parameters (heterogeneous), each
island evaluates different objective functions subsets, or each island represents a
different region of the genotype/phenotype domains.

If we were able of finding a particular moea that clearly outperformed the
other ones in solving a given mop, the homogeneous island-based model using
such moea would be the choice to consider. However, it is difficult to know a
priori which moea is the most appropriate to solve a problem. If we consider
that, when dealing with a real world problem, its objective functions can require
a significant amount of computing time to be evaluated, it can be hard to choose
the moea to be the basis of the homogeneous approach. As an alternative, the
heterogeneous models allow to execute different moeas and/or parameters on
the islands. By using heterogeneous models, the user avoids the selection of a
specific moea to solve the problem. However, if some of the used moeas are not
suitable to optimize the problem, the consequence can be a waste of resources.

The existence of a wide variety of moeas in the literature and the dependence
on the problem domain and instance in the performance of the approaches hin-
ders the user decision about the algorithm to be applied. For this reason, a
promising approach appears in the application of hyperheuristics [28]. The un-
derlying principle in using a hyperheuristic approach is that different algorithms
have different strengths and weaknesses and it makes sense to combine them in
an intelligent manner. A hyperheuristic solves the problem indirectly by recom-
mending which solution method to apply at which stage of the solution process.
One of the motivations is that the same hyperheuristic method can be applied to
a wide range of problems. The goal is to raise the level of generality of decision
support methodology perhaps at the expense of reduced - but still acceptable -
solution quality when compared to tailor-made evolutionary approaches.

The proposed pmoea model [29,30] breaks from the island-based model adding
an adaptive property behaviour to it. Such property allows, by applying a hy-
perheuristic, to change in an automatic and dynamic way the moeas and/or
parameters that are used in the islands along the pmoea run. To the best of
our knowledge, the application of hyperheuristics into parallel schemes aimed

8



at multi-objective optimization is a novelty. The architecture of the new hybrid
model is similar to the island-based model, i.e., it is constituted by a set of slave
islands that evolves in isolation by applying an evolutionary algorithm to a given
population. The number of islands and the different moeas to execute over the
local populations are defined by the user. Also, as in the island-based model, a
tunable migration scheme allows the exchange of solutions between neighbour
islands. However, a new special island, the master island, is introduced into the
scheme. It is in charge of maintaining the global solution achieved by the pmoea
and selecting the moea configurations that are executed on the slave islands.
The global solution is obtained by selecting the non-dominated solutions from
the ones locally achieved by the slave islands. Usually, it is not desirable to man-
age a global solution with unlimited size, so the nsga-ii crowding operator [4]
is proposed as the way to limit the size of the global solution set.

In standard island models, only a global stop criterion is defined. However, in
the proposed model, local stop criteria are also defined for the execution of the
moeas on the islands. When a local stop criterion is reached, the island execu-
tion is stopped and the local results are sent to the master island. The master
scores, according to a quality indicator, the different configurations defined by
the user taking into account their obtained results. A configuration is a moea
together with the set of parameters that define such moea, e.g. the mutation
and crossover rate, the population size, the archive size, etc. Based on such score,
the hyperheuristic is applied and the master selects the configuration that will
continue executing on the idle island. If the new selected configuration is the
same as the island current configuration, the local stop criterion is updated and
the execution continues. Otherwise, the configuration is changed and the new
selected moea begins its execution by randomly taking the initial population
individuals from the current global solution. Finally, when the global stop cri-
terion is reached, every island sends its local solution to the master and all the
local solution sets are considered to generate the global final solution.

One crucial point for the correct operation of the model is the selection process
performed by the hyperheuristic. Considering the results obtained through the
executions, it is beneficial to grant more opportunities to the configurations with
better expectations. The decision process must be light in order to avoid having
idle processes. One possibility to predict the behaviour of the configurations in
a fast way is to pay attention to the contribution [31] of every configuration to
the global solution. In this work, the score of each configuration is calculated
as the contribution metric of such configuration - considering the current global
solution as the reference front - divided by the number of evaluations that it has
performed. A probabilistic selection, based on the score of each configuration, is
used to decide the next configuration to execute. It is important to note that the
behaviour of the configurations can change along the execution. Moreover, the
stochastic behaviour of the evolutionary approaches may lead to variations in
the results achieved by each algorithm. Therefore, a non-promising configuration
must have a low probability of being selected, but not a zero probability. Prob-
abilistic selection methods are more conservative than elitist ones, tending to

9



distribute the resources in a more uniform way. Probabilistic selection methods
reduce the negative impact that a not accurate scoring method can introduce in
the results. Even when the scoring method fails, some resources will be granted
to good-behaved configurations, speeding up the optimization process. On the
other hand, when the scoring method works correctly, some resources will be
granted to non-promising configurations, slowing down the optimization. Pre-
liminary studies shows that, in general, the usage of probabilistic methods is
more suitable than the usage of elitist methods.

5 Experimental Evaluation

Initial experiments showed an irregular behaviour of different moeas when deal-
ing with different manet scenarios. In order to avoid the testing of many algo-
rithms for solving each instance the adaptive model can been applied. Results
for a mall manet scenario demonstrate the validity of the approach. All the
moeas presented in section 3 have been used inside the model. Tests have been
run on a Debian gnu/Linux cluster of 8 Intel R© XeonTM 3.20 Ghz bi-processor
nodes with 1Gb ram. The interconnection network is a Gigabit Ethernet. The
compiler and mpi implementation used were gcc 3.3 and mpich 1.2.7.

The new model has been compared with sequential moeas and with
other standard pmoeas. For each implemented moea a homogeneous scheme is
considered: “homo-spea2”, “homo-nsga-ii”, “homo-ibea”, “homo-adap-ibea”,
“homo-esn”, “homo-mopso”, “homo-mocell”, and “homo-nsdemo”. Also, a
heterogeneous scheme constituted by the eight implemented moeas is consid-
ered: “heterogeneous”. The new proposal, labelled as “8-adaptive”, also uses the
eight different moeas but following the adaptive behaviour.

Each tested pmoea is constituted by eight slave islands. The subpopulation
size on each island has been fixed to 15 individuals, while the population size for
every sequential execution has been fixed to 100 individuals. The maximum size
of the external set for those algorithms maintaining an archive was fixed to 100
individuals in the sequential experiments and to 15 individuals in the parallel
ones. The remaining parameterization of each moea was as follows:
– spea2: pm = 0.2, pc = 0.9
– nsga-ii: pm = 0.2, pc = 0.9
– ibea, adaptive-ibea: pm = 0.2, pc = 0.9, k = 0.002
– esn: σ = 0.1
– mopso: pm = 0.2, divisions in archive = 30
– mocell: pm = 0.2, pc = 0.9
– nsdemo: F = 0.5, CR = 1.0

For every algorithm not doing special emphasis on the mutation or crossover
operators, a polynomial mutation [32] (ηm = 20) and a simulated binary crossover
(SBX) [33] (ηc = 20) were applied. In every execution the same migration scheme
is specified. It consists in an unrestricted topology where the migration is per-
formed from a slave to a randomly selected partner. The migration probability has
been fixed to 0.05 and the number of individuals to migrate was limited to 4 each
time. The global stopping criterion for every execution was 25000 evaluations. The

10



Table 1. Average hypervolume achieved by the different pmoeas

Parallel Evaluations limit
Model 5000 10000 25000

8-adaptive 0.723 0.735 0.742
heterogeneous 0.711 0.721 0.729
homo-spea2 0.713 0.724 0.738
homo-nsga-ii 0.712 0.723 0.739
homo-ibea 0.715 0.724 0.733
homo-adap-ibea 0.716 0.725 0.733
homo-esn 0.707 0.718 0.726
homo-mopso 0.682 0.683 0.685
homo-mocell 0.690 0.702 0.712
homo-nsdemo 0.713 0.720 0.727

local stopping criterion in 8-adaptive executions was fixed to 15 generations. In all
cases, the final solution was limited to 100 elements.

The first experiment compares the different aforementioned pmoeas among
them. For each type of execution, 30 repetitions have been performed and av-
erage values considered. In order to detect differences between the algorithms
within short and long time ranges, three different number of individual evalua-
tion limits have been considered: 5000, 10000 and 25000 evaluations. The com-
puting time of a sequential execution with 25000 evaluations is approximately
50 hours. Table 1 shows the average hypervolume [34] achieved by each parallel
model at the given limits. The hypervolume indicator makes possible to combine
the quality information of convergence and diversity in a single value. The 8-
adaptive configuration achieves the best results in every case. The dynamic map-
ping of the moeas into the islands allows to give more computational resources
to the most suitable algorithms, thus improving the results of the heterogeneous
model. Moreover, the simultaneous usage of different evolutionary algorithms
makes possible to combine the benefits of each one, so that, the results of every
homogeneous island-based model is improved.

In order to provide the results with confidence, the following statistical analy-
sis has been performed [35,36]. First, a Kolmogorov-Smirnov test is performed in
order to check whether the results follow a normal (gaussian) distribution. Every
sample passes the normality test. The homogeneity of the variances for each pair
of samples is ensured through the Levene test. Finally, the anova test is passed
to check the confidence levels. As our interest is focused in the new model, it
has been statistically compared with the remaining pmoeas. Table 1 shows data
in bold when differences between such model and the new proposed model are
significant. The new model achieves a better hypervolume in every case. In the
case of 10000 evaluations, all differences are significant, except with homo-adap-
ibea, showing the good performance of the approach. Figure 1 presents, for each
model, the average hypervolume achieved along the executions.

The second experiment analyzes the run-time behaviour of the sequential and
adaptive models. The ideas presented in [37] were followed. Each moea, as well

11



 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0  5000  10000  15000  20000  25000

H
yp

er
vo

lu
m

e

Evaluations

MANETS-Parallel Models
8-adaptive

heterogeneous
homo-SPEA2

homo-NSGA2
homo-IBEA

homo-adap-IBEA

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0  5000  10000  15000  20000  25000

H
yp

er
vo

lu
m

e

Evaluations

MANETS-Parallel Models
8-adaptive
homo-ESN

homo-MOPSO
homo-MOCell

homo-NSDEMO

Fig. 1. Hypervolume achieved by the parallel models

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50  100  150  200  250  300  350

S
uc

ce
ss

 r
at

io

Time(m)

8-adaptive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000

S
uc

ce
ss

 r
at

io

Time(m)

IBEA

Fig. 2. Run length distributions

Table 2. Speedup of the proposed model and success ratio for sequential models

Sequential Models 8-adaptive Speedup Success Ratio

spea2 7.25 80
nsga-ii 8.8 86.6
ibea 5.57 100
adap-ibea 5.09 86.6
esn 9.75 83.3
mopso - 0
mocell - 0
nsdemo 11.59 36.6

as the new model, were executed using as finalization condition the achievement
of a certain level of hypervolume quality: the 95% of the average achieved by
the adaptive model in the first experiment. A second stopping criterion, consist-
ing in executing a maximum number of 25000 evaluations was also considered.
Figure 2 shows the run length distribution for the adaptive pmoea and for the
best behaved sequential moea (ibea). For the remaining models a summary of
the obtained information is presented in Table 2. For each sequential execution,
the table shows the average speedup of the new model when the required quality
is achieved, together with the success ratio, i.e. the probability of achieving the
required hypervolume value, considering a maximum of 25000 evaluations. The

12



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

E
va

lu
at

io
ns

IBEA_Adapt
IBEA

SPEA2
NSGA2

DE
EE

MOCell
MOPSO

Fig. 3. Distribution of evaluations for the 8-adaptive model

parallel model obtains an almost linear speedup even when compared with the
best moea, and a very high ratio of achieving the desired quality (96.6%).

Figure 3 shows, for the 30 executions of the 8-adaptive model, the average
number of evaluations executed by each configuration. By comparing it with
results in Table 2, it is clear that more computational resources are granted to
the algorithms with best behaviour. ibea and adap-ibea, the best-behaved se-
quential algorithms, are the most used configurations, while mopso and mocell,
the worst-behaved sequential algorithms, are the least used configurations.

6 Conclusions and Future Work

An optimization approach for the broadcast operation in manets based on the
dfcn protocol has been presented. In order to increase the level of generality of the
proposed solution - so it canbeapplied to anymanet scenario - a newhybridmodel,
whichaddsanadaptiveproperty to thewell known island-basedmodelsbyapplying
the operationprinciples of the hyperheuristics, was applied. The adaptive property
allows to dynamically grant more computational resources to the most promising
algorithms. Results achieved for a mall manet scenario demonstrate the positive
effect introduced by the hybridization. The new model provides high-quality so-
lutions without forcing the user to have a prior knowledge about each moea be-
haviourwhenapplied to any consideredproblem instance.Thedfcn configurations
obtained by the new parallel model clearly improve the ones obtained sequentially.

Future work is related to two different fields: the improvement of the broad-
cast in manets and the improvement of the designed optimization model. Other
broadcast protocols can be considered to solve the same problem instances. In
relation to the hybrid model, other moeas and even other kind of multi-objective
optimization algorithms could be incorporated to the scheme. Some further stud-
ies concerning the model self-adaptation can be performed. In particular, other
ways to measure the algorithms quality can be tested.

References

1. Macker, J., Corson, M.: Mobile Ad Hoc Networking and the IETF. ACM Mobile
Computing and Communications Review 2(1) (1998)

2. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys 35(3), 268–308 (2003)

13



3. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems (Genetic and Evolutionary Computation).
Springer, New York (2006)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6,
182–197 (2002)

5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm for Multiobjective Optimization. Evolutionary Methods
for Design, Optimization and Control, 19–26 (2002)

6. Reyes-Sierra, M., Coello, C.: Multi-Objective Particle Swarm Optimizers: A Sur-
vey of the State-of-the-Art. International Journal of Computational Intelligence
Research 2(3), 287–308 (2006)

7. Hogie, L., Bouvry, P., Guinand, F.: An Overview of MANETs Simulation. Elec-
tronics Notes in Theorical Computer Science 150(1), 81–101 (2006)

8. Hogie, L.: Mobile Ad Hoc networks: modelling, simulation and broadcast-based
applications. PhD thesis, Le Havre University and Luxembourg University (2007)

9. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proceedings of the ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pp. 194–205 (2002)

10. Hogie, L., Seredynski, M., Guinand, F., Bouvry, P.: A Bandwidth-Efficient Broad-
casting Protocol for Mobile Multi-hop Ad hoc Networks. In: 5th International
Conference on Networking (ICN 2006). IEEE, Los Alamitos (2006)

11. Alba, E., Dorronso, B., Luna, F., Nebro, A.J., Bouvry, P., Hogie, L.: A Cel-
lular Multi-Objective Genetic Algorithm for Optimal Broadcasting Strategy in
Metropolitan MANETs. Computer Communications 30(4), 685–697 (2007)

12. Alba, E., Cervantes, A., Gómez, J., Isasi, P., Jaráız, M., León, C., Luque, C.,
Luna, F., Miranda, G., Nebro, A., Pérez, R., Segura, C.: Metaheuristic approaches
for optimal broadcasting design in metropolitan mANETs. In: Moreno Dı́az, R.,
Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp.
755–763. Springer, Heidelberg (2007)

13. Bäck, T., Schwefel, H.: Evolutionary algorithms: Some very old strategies for op-
timization and adaptation. In: New Computing Techniques in Physics Research
II: Proceedings of the Second International Workshop on Software Engineering,
Artificial Intelligence, and Expert Systems for High Energy and Nuclear Physics,
pp. 247–254 (1992)

14. Bäck, T., Rüdolph, G., Schwefel, H.: A survey of evolution strategies. In: Proceed-
ings of the 4th International Conference on Genetic Algorithms, pp. 2–9 (1991)

15. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

16. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

17. Coello, C.A., Toscano, G., Salazar, M.: Handling multiple objectives with particle
swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 256–
279 (2004)

18. Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

19. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

14



20. Coello, C.A., et al.: EMOO Repository, http://www.lania.mx/~ccoello/EMOO
21. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: A cellular genetic

algorithm for multiobjective optimization. In: Pelta, D.A., Krasnogor, N. (eds.)
Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Opti-
mization (NICSO 2006), Granada, Spain, pp. 25–36 (2006)

22. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Design issues in
a multiobjective cellular genetic algorithm. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 126–140. Springer,
Heidelberg (2007)

23. Price, K., Storn, R., Lampinen, J.A.: Differential Evolution: A Practical Approach
to Global Optimization. Springer, Heidelberg (2006)

24. Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. J. of Global Optimization 11(4),
341–359 (1997)

25. Storn, R.: System design by constraint adaptation and Differential Evolution. IEEE
Transactions on Evolutionary Computation 1(3), 22–34 (1999)

26. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems us-
ing differential evolution. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI),
vol. 3339, pp. 861–872. Springer, Heidelberg (2004)

27. Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering
parallel multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Com-
putation 7(2), 144–173 (2003)

28. Burke, E.K., Landa, J.D., Soubeiga, E.: Hyperheuristic Approaches for Multiob-
jective Optimisation. In: Metaheuristics International Conference, pp. 11.1–11.6
(2003)

29. León, C., Miranda, G., Segura, C.: Parallel Hyperheuristic: A Self-Adaptive Island-
Based Model for Multi-Objective Optimization. In: Genetic and Evolutionary Com-
putation Conference, pp. 757–758. ACM, New York (2008)

30. León, C., Miranda, G., Segura, C.: A Parallel Plugin-Based Framework for Multi-
objective Optimization. In: International Symposium on Distributed Computing
and Artificial Intelligence, vol. 50/2009, pp. 142–151. Springer, Heidelberg (2008)

31. Meunier, H., Talbi, E.G., Reininger, P.: A multiobjective genetic algorithm for radio
network optimization. In: Congress on Evolutionary Computation (CEC 2000),
La Jolla Marriott Hotel La Jolla, California, USA, pp. 317–324. IEEE Press, Los
Alamitos (2000)

32. Deb, K., Goyal, M.: A combined genetic adaptive search (geneAS) for engineering
design. Computer Science and Informatics 26(4), 30–45 (1996)

33. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9, 115–148 (1995)

34. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

35. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

36. Sheskin, D.: The handbook of parametric and nonparametric statistical procedures.
CRC Press, Boca Raton (2003)

37. Hoos, H., Informatik, F., Hoos, H.H., Stutzle, T., Stutzle, T., Intellektik, F., In-
tellektik, F.: On the run-time behavior of stochastic local search algorithms for sat.
In: Proceedings AAAI 1999, pp. 661–666 (1999)

15

http://www.lania.mx/~ccoello/EMOO

	Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms 
	Introduction
	Broadcast Operation in MANETS
	Applied Sequential Approaches
	Non-dominated Sorting Genetic Algorithm II ({\sc nsga-ii})
	Evolution Strategy with NSGA-II ({\sc esn})
	Strength Pareto Evolutionary Algorithm 2 ({\sc spea2})
	Indicator-Based Evolutionary Algorithm ({\sc ibea})
	Multiple Objective Particle Swarm Optimization ({\sc mopso})
	Multi-Objective Cellular Genetic Algorithm ({\sc moc}ell)
	Non-dominated Sorting Differential Evolution ({\sc nsdemo})

	Proposed Parallel Approach
	Experimental Evaluation
	Conclusions and Future Work


