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Abstract

Current CNN-based solutions to salient object detection

(SOD) mainly rely on the optimization of cross-entropy loss

(CELoss). Then the quality of detected saliency maps is

often evaluated in terms of F-measure. In this paper, we

investigate an interesting issue: can we consistently use

the F-measure formulation in both training and evalua-

tion for SOD? By reformulating the standard F-measure,

we propose the relaxed F-measure which is differentiable

w.r.t the posterior and can be easily appended to the back

of CNNs as the loss function. Compared to the conven-

tional cross-entropy loss of which the gradients decrease

dramatically in the saturated area, our loss function, named

FLoss, holds considerable gradients even when the activa-

tion approaches the target. Consequently, the FLoss can

continuously force the network to produce polarized acti-

vations. Comprehensive benchmarks on several popular

datasets show that FLoss outperforms the state-of-the-art

with a considerable margin. More specifically, due to the

polarized predictions, our method is able to obtain high-

quality saliency maps without carefully tuning the optimal

threshold, showing significant advantages in real-world ap-

plications. Code and pretrained models are available at

http://kaizhao.net/fmeasure.

1. Introduction

We consider the task of salient object detection (SOD),

where each pixel of a given image has to be classified as

salient (outstanding) or not. The human visual system is

able to perceive and process visual signals distinctively: in-

terested regions are conceived and analyzed with high pri-

ority while other regions draw less attention. This capacity

has been long studied in the computer vision community

in the name of ‘salient object detection’, since it can ease

the procedure of scene understanding [4]. The performance

of modern salient object detection methods is often evalu-

ated in terms of F-measure. Rooted from information re-

∗M.M. Cheng is the corresponding author.

trieval [29], the F-measure is widely used as an evaluation

metric in tasks where elements of a specified class have

to be retrieved, especially when the relevant class is rare.

Given the per-pixel prediction Ŷ (ŷi ∈ [0, 1], i = 1, ..., |Y |)
and the ground-truth saliency map Y (yi ∈ {0, 1}, i =
1, ..., |Y |), a threshold t is applied to obtain the binarized

prediction Ẏ t(ẏti ∈{0, 1}, i=1, ..., |Y |). The F-measure is

then defined as the harmonic mean of precision and recall:

F (Y, Ẏ t)=(1+β
2)

precision(Y, Ẏ t) · recall(Y, Ẏ t)

β2precision(Y, Ẏ t)+recall(Y, Ẏ t)
, (1)

where β2 > 0 is a balance factor between precision and re-

call. When β2 > 1, the F-measure is biased in favour of

recall and otherwise in favour of precision.

Most CNN-based solutions for SOD [11, 16, 30, 9, 31,

39, 33] mainly rely on the optimization of cross-entropy loss

(CELoss) in an FCN [22] architecture, and the quality of

saliency maps is often assessed by the F-measure. Optimiz-

ing the pixel-independent CELoss can be regarded as min-

imizing the mean absolute error (MAE= 1
N

∑N
i |ŷi − yi|),

because in both circumstances each prediction/ground-truth

pair works independently and contributes to the final score

equally. If the data labels have biased distribution, mod-

els trained with CELoss would make biased predictions to-

wards the majority class. Therefore, SOD models trained

with CELoss hold biased prior and tend to predict unknown

pixels as the background, consequently leading to low-

recall detections. The F-measure [29] is a more sophisti-

cated and comprehensive evaluation metric which combines

precision and recall into a single score and automatically

offsets the unbalance between positive/negative samples.

In this paper, we provide a uniform formulation in both

training and evaluation for SOD. By directly taking the eval-

uation metric, i.e. the F-measure, as the optimization target,

we perform F-measure maximizing in an end-to-end man-

ner. To perform end-to-end learning, we propose the re-

laxed F-measure to overcome the in-differentiability in the

standard F-measure formulation. The proposed loss func-

tion, named FLoss, is decomposable w.r.t the posterior Ŷ

and thus can be appended to the back of a CNN as supervi-

sion without effort. We test the FLoss on several state-of-

the-art SOD architectures and witness a visible performance
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gain. Furthermore, the proposed FLoss holds considerable

gradients even in the saturated area, resulting in polarized

predictions that are stable against the threshold. Our pro-

posed FLoss enjoys three favorable properties:

• Threshold-free salient object detection. Models

trained with FLoss produce contrastive saliency maps

in which the foreground and background are clearly

separated. Therefore, FLoss can achieve high perfor-

mance under a wide range of threshold.

• Being able to deal with unbalanced data. Defined

as the harmonic mean of precision and recall, the F-

measure is able to establish a balance between sam-

ples of different classes. We experimentally evidence

that our method can find a better compromise between

precision and recall.

• Fast convergence. Our method quickly learns to focus

on salient object areas after only hundreds of iterations,

showing fast convergence speed.

2. Related Work

We review several CNN-based architectures for SOD

and the literature related to F-measure optimization.

Salient Object Detection (SOD). The convolutional neu-

ral network (CNN) is proven to be dominant in many sub-

areas of computer vision. Significant progress has been

achieved since the presence of CNN in SOD. The DHS

net [19] is one of the pioneers of using CNN for SOD.

DHS firstly produces a coarse saliency map with global

cues, including contrast, objectness et al. Then the coarse

map is progressively refined with a hierarchical recurrent

CNN. The emergence of the fully convolutional network

(FCN) [22] provides an elegant way to perform the end-

to-end pixel-wise inference. DCL [16] uses a two-stream

architecture to process contrast information in both pixel

and patch levels. The FCN-based sub-stream produces a

saliency map with pixel-wise accuracy, and the other net-

work stream performs inference on each object segment.

Finally, a fully connected CRF [14] is used to combine the

pixel-level and segment-level semantics.

Rooted from the HED [34] for edge detection, aggregat-

ing multi-scale side-outputs is proven to be effective in re-

fining dense predictions especially when the detailed local

structures are required to be preserved. In the HED-like

architectures, deeper side-outputs capture rich semantics

and shallower side-outputs contain high-resolution details.

Combining these representations of different levels will lead

to significant performance improvements. DSS [11] in-

troduces deep-to-shallow short connections across different

side-outputs to refine the shallow side-outputs with deep se-

mantic features. The deep-to-shallow short connections en-

able the shallow side-outputs to distinguish real salient ob-

jects from the background and meanwhile retain the high

resolution. Liu et al. [18] design a pooling-based module

to efficiently fuse convolutional features from a top-down

pathway. The idea of imposing top-down refinement has

also been adopted in Amulet [38], and enhanced by Zhao

et al. [40] with bi-directional refinement. Later, Wang et al.

[32] propose a visual attention-driven model that bridges the

gap between SOD and eye fixation prediction. These meth-

ods mentioned above tried to refine SOD by introducing a

more powerful network architecture, from recurrent refin-

ing network to multi-scale side-output fusing. We refer the

readers to a recent survey [3] for more details.

F-measure Optimization. Despite having been utilized

as a common performance metric in many application do-

mains, optimizing the F-measure doesn’t draw much atten-

tion until very recently. The works aiming at optimizing

the F-measure can be divided into two subcategories [6]:

(a) structured loss minimization methods such as [24, 25]

which optimize the F-measure as the target during train-

ing; and (b) plug-in rule approaches which optimize the F-

measure during inference phase [13, 7, 26, 37].

Much of the attention has been drawn to the study of

the latter subcategory: finding an optimal threshold value

which leads to a maximal F-measure given predicted pos-

terior Ŷ . There are few articles about optimizing the F-

measure during the training phase. Petterson et al. [24] op-

timize the F-measure indirectly by maximizing a loss func-

tion associated to the F-measure. Then in their successive

work [25] they construct an upper bound of the discrete F-

measure and then maximize the F-measure by optimizing

its upper bound. These previous studies either work as post-

processing, or are in-differentiable w.r.t posteriors, making

them hard to be applied to the deep learning framework.

3. Optimizing the F-measure for SOD

3.1. The Relaxed F­measure

In the standard F-measure, the true positive, false posi-

tive and false negative are defined as the number of corre-

sponding samples:

TP (Ẏ t, Y ) =
∑

i
1(yi == 1 and ẏti == 1),

FP (Ẏ t, Y ) =
∑

i
1(yi == 0 and ẏti == 1),

FN(Ẏ t, Y ) =
∑

i
1(yi == 1 and ẏti == 0),

(2)

where Y is the ground-truth, Ẏ t is the binary prediction

binarized by threshold t and Y is the ground-truth saliency

map. 1(·) is an indicator function that evaluates to 1 if its

argument is true and 0 otherwise.

To incorporate the F-measure into CNN and optimize

it in an end-to-end manner, we define a decomposable F-
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measure that is differentiable over posterior Ŷ . Based on

this motivation, we reformulate the true positive, false posi-

tive and false negative based on the continuous posterior Ŷ :

TP (Ŷ , Y ) =
∑

i
ŷi · yi,

FP (Ŷ , Y ) =
∑

i
ŷi · (1− yi),

FN(Ŷ , Y ) =
∑

i
(1− ŷi) · yi .

(3)

Given the definitions in Eq. 3, precision p and recall r are:

p(Ŷ , Y ) =
TP

TP + FP
, r(Ŷ , Y ) =

TP

TP + FN
. (4)

Finally, our relaxed F-measure can be written as:

F (Ŷ , Y ) =
(1 + β2)p · r

β2p+ r
,

=
(1 + β2)TP

β2(TP + FN) + (TP + FP )
,

=
(1 + β2)TP

H
,

(5)

where H = β2(TP + FN) + (TP + FP ). Due to the

relaxation in Eq. 3, Eq. 5 is decomposable w.r.t the posterior

Ŷ , therefore can be integrated in CNN architecture trained

with back-prop.

3.2. Maximizing F­measure in CNNs

In order to maximize the relaxed F-measure in CNNs in

an end-to-end manner, we define our proposed F-measure

based loss (FLoss) function LF as:

LF (Ŷ , Y ) = 1− F = 1−
(1 + β2)TP

H
. (6)

Minimizing LF (Ŷ , Y ) is equivalent to maximizing the re-

laxed F-measure. Note again that LF is calculated directly

from the raw prediction Ŷ without thresholding. There-

fore, LF is differentiable over the prediction Ŷ and can be

plugged into CNNs. The partial derivative of loss LF over

network activation Ŷ at location i is:

∂LF

∂ŷi
= −

∂F

∂ŷi

= −
( ∂F

∂TP
·
∂TP

∂ŷi
+

∂F

∂H
·
∂H

∂ŷi

)

= −
( (1 + β2)yi

H
−

(1 + β2)TP

H2

)

=
(1 + β2)TP

H2
−

(1 + β2)yi
H

.

(7)

There is another alternative to Eq. 6 which maximize the

log-likelihood of F-measure:

LlogF (Ŷ , Y ) = − log(F ), (8)

and the corresponding gradient is

∂LlogF

∂ŷi
=

1

F

[

(1 + β2)TP

H2
−

(1 + β2)yi
H

]

. (9)

We will theoretically and experimentally analyze the advan-

tage of FLoss against Log-FLoss and CELoss in terms of

producing polarized and high-contrast saliency maps.

3.3. FLoss vs Cross­entropy Loss

To demonstrate the superiority of our FLoss over the al-

ternative Log-FLoss and the cross-entropy loss (CELoss),

we compare the definition, gradient and surface plots of

these three loss functions. The definition of CELoss is:

LCE(Ŷ , Y )=−
∑|Y |

i
(yi log ŷi + (1−yi) log (1−ŷi)) ,

(10)

where i is the spatial location of the input image and |Y |
is the number of pixels of the input image. The gradient of

LCE w.r.t prediction ŷi is:

∂LCE

∂ŷi
=

yi

ŷi
−

1− yi

1− ŷi
. (11)

As revealed in Eq. 7 and Eq. 11, the gradient of CELoss
∂LCE

∂ŷi
relies only on the prediction/ground-truth of a single

pixel i; whereas in FLoss ∂LF

∂ŷi
is globally determined by

the prediction and ground-truth of ALL pixels in the image.

We further compare the surface plots of FLoss, Log-FLoss

and CELoss in a two points binary classification problem.

The results are in Fig. 1. The two spatial axes represent the

prediction ŷ0 and ŷ1, and the z axis indicates the loss value.

As shown in Fig. 1, the gradient of FLoss is different

from that of CELoss and Log-FLoss in two aspects: (1)

Limited gradient: the FLoss holds limited gradient values

even the predictions are far away from the ground-truth.

This is crucial for CNN training because it prevents the no-

torious gradient explosion problem. Consequently, FLoss

allows larger learning rates in the training phase, as evi-

denced by our experiments. (2) Considerable gradients in

the saturated area: in CELoss, the gradient decays when

the prediction gets closer to the ground-truth, while FLoss

holds considerable gradients even in the saturated area. This

will force the network to have polarized predictions. Salient

detection examples in Fig. 3 illustrate the ‘high-contrast’

and polarized predictions.

4. Experiments and Analysis

4.1. Experimental Configurations

Dataset and data augmentation. We uniformly train

our model and competitors on the MSRA-B [20] training

set for a fair comparison. The MSRA-B dataset with 5000

images in total is equally split into training/testing subsets.
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Figure 1. Surface plot of different loss functions in a 2-point 2-class classification circumstance. Columns from left to right: F-measure

loss defined in Eq. 6, log F-measure loss defined in Eq. 8 and cross-entropy loss in Eq. 10. In top row the ground-truth is [0, 1] and in

bottom row the ground-truth is [1, 1]. Compared with cross-entropy loss and Log-FLoss, FLoss holds considerable gradient even in the

saturated area, which will force to produce polarized predictions.

We test the trained models on 5 other SOD datasets: EC-

SSD [35], HKU-IS [15], PASCALS [17], SOD [23], and

DUT-OMRON [23]. More statistics of these datasets are

shown in Table 1. It’s worth mentioning that the challeng-

ing degree of a dataset is determined by many factors such

as the number of images, number of objects in one image,

the contrast of salient object w.r.t the background, the com-

plexity of salient object structures, the center bias of salient

objects and the size variance of images etc. Analyzing these

details is out of the scope of this paper, we refer the readers

to [8] for more analysis of datasets.

Dataset #Images Year Pub. Contrast

MSRA-B [20] 5000 2011 TPAMI High

ECSSD [35] 1000 2013 CVPR High

HKU-IS [15] 1447 2015 CVPR Low

PASCALS [17] 850 2014 CVPR Medium

SOD [23] 300 2010 CVPRW Low

DUT-OMRON [36] 5168 2013 CVPR Low

Table 1. Statistics of SOD datasets. ‘#Images’ indicates the num-

ber of images in a dataset and ‘contrast’ represents the general

contrast between foreground/background. The lower the contrast,

the more challenging the dataset is.

Data augmentation is critical to generating sufficient data

for training deep CNNs. We fairly perform data augmenta-

tion for the original implementations and their FLoss vari-

ants. For the DSS [11] and DHS [19] architectures we

perform only horizontal flip on both training images and

saliency maps just as DSS did. Amulet [38] only allows

256×256 inputs. We randomly crop/pad the original data

to get square images, then resize them to meet the shape

requirement.

Network architecture and hyper-parameters. We test

our proposed FLoss on 3 baseline methods: Amulet [38],

DHS [20] and DSS [11]. To verify the effectiveness of

FLoss (Eq. 6), we replace the loss functions of the origi-

nal implementations with FLoss and keep all other config-

urations unchanged. As explained in Sec. 3.3, the FLoss

allows a larger base learning rate due to limited gradients.

We use the base learning rate 104 times the original settings.

For example, in DSS the base learning rate is 10−8, while in

our F-DSS, the base learning rate is 10−4. All other hyper-

parameters are consistent with the original implementations

for a fair comparison.

Evaluation metrics. We evaluate the performance of

saliency maps in terms of maximal F-measure (MaxF),

mean F-measure (MeanF) and mean absolute error (MAE =
1
N

∑N
i |ŷi−yi|). The factor β2 in Eq. 1 is set to 0.3 as sug-

gested by [1, 11, 16, 19, 30]. By applying series thresholds

t ∈ T to the saliency map Ŷ , we obtain binarized saliency

maps Ẏ t with different precisions, recalls and F-measures.

Then the optimal threshold to is obtained by exhaustively

searching the testing set:

to = argmax
t∈T

F (Y, Ẏ t). (12)

Finally, we binarize the predictions with to and evaluate
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Training data ECSSD [35] HKU-IS [15] PASCALS [17] SOD [23] DUT-OMRON [23]

Model Train #Images MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE

Log-FLoss MB [20] 2.5K .909 .891 .057 .903 .881 .043 .823 .808 .101 .838 .817 .122 .770 .741 .062

FLoss MB [20] 2.5K .914 .903 .050 .908 .896 .038 .829 .818 .091 .843 .838 .111 .777 .755 .067

Table 2. Performance comparison of Log-FLoss (Eq. 8) and FLoss (Eq. 6). FLoss performs better than Log-FLoss on most datasets in terms

of MaxF, MeanF and MAE. Specifically FLoss enjoys a large improvement in terms of MeanF because of its high-contrast predictions.

the best F-measure:

MaxF = F (Y, Ẏ to), (13)

where Ẏ to is a binary saliency map binarized with to. The

MeanF is the average F-measure under different thresholds:

MeanF =
1

|T |

∑

t∈T

F (Y, Ẏ t), (14)

where T is the collection of possible thresholds.

4.2. Log­FLoss vs FLoss

Firstly we compare FLoss with its alternative, namely

Log-FLoss defined in Eq. 8, to justify our choice. As an-

alyzed in Sec. 3.3, FLoss enjoys the advantage of having

large gradients in the saturated area that cross-entropy loss

and Log-FLoss don’t have.

To experimentally verify our assumption that FLoss will

produce high-contrast predictions, we train the DSS [11]

model with FLoss and Log-FLoss, respectively. The train-

ing data is MSRA-B [20] and hyper-parameters are kept un-

changed with the original implementation, except for the

base learning rate. We adjust the base learning rate to 10−4

since our method accept larger learning rate, as explained

in Sec. 3.3. Quantitative results are in Table 2 and some

example detected saliency maps are shown in Fig. 2.

Although both of Log-FLoss and FLoss use F-measure

as maximization target, FLoss derives polarized predic-

tions with high foreground-background contrast, as shown
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Figure 2. Example saliency maps by FLoss (bottom) and Log-

FLoss (middle). Our proposed FLoss method produces high-

contrast saliency maps.

in Fig. 2. The same conclusion can be drawn from Table 2

where FLoss achieves higher Mean F-measure. Which re-

veals that FLoss achieves higher F-measure score under a

wide range of thresholds.

4.3. Evaluation results on open Benchmarks

We compare the proposed method with several base-

lines on 5 popular datasets. Some example detection re-

sults are shown in Fig. 3 and comprehensive quantitative

comparisons are in Table 3. In general, FLoss-based meth-

ods can obtain considerable improvements compared with

their cross-entropy loss (CELoss) based counterparts es-

pecially in terms of mean F-measure and MAE. This is

mainly because our method is stable against the threshold,

leading to high-performance saliency maps under a wide

threshold range. In our detected saliency maps, the fore-

ground (salient objects) and background are well separated,

as shown in Fig. 3 and explained in Sec. 3.3.

4.4. Threshold Free Salient Object Detection

State-of-the-art SOD methods [11, 16, 19, 38] often eval-

uate maximal F-measure as follows: (a) Obtain the saliency

maps Ŷi with pretrained model; (b) Tune the best thresh-

old to by exhaustive search on the testing set (Eq. 12) and

binarize the predictions with to; (c) Evaluate the maximal

F-measure according to Eq. 13.

There is an obvious flaw in the above procedure: the op-

timal threshold is obtained via an exhaustive search on the

testing set. Such procedure is impractical for real-world ap-

plications as we would not have annotated testing data. And

even if we tuned the optimal threshold on one dataset, it can

not be widely applied to other datasets.

We further analyze the sensitivity of methods against

thresholds in two aspects: (1) model performance under dif-

ferent thresholds, which reflects the stability of a method

against threshold change, (2) the mean and variance of op-

timal threshold to on different datasets, which represent the

generalization ability of to tuned on one dataset to others.

Fig. 4 (a) illustrates the F-measure w.r.t different thresh-

olds. For most methods without FLoss, the F-measure

changes sharply with the threshold, and the maximal F-

measure (MaxF) presents only in a narrow threshold span.

While FLoss based methods are almost immune from the
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Image GT DHS [19] F-DHS Amulet [38] F-Amulet DSS [11] F-DSS

Figure 3. Salient object detection examples on several popular datasets. F-DHS, F-Amulet and F-DSS indicate the original architectures

trained with our proposed FLoss. FLoss leads to sharp salient confidence, especially on the object boundaries.

Training data ECSSD [35] HKU-IS [15] PASCALS [17] SOD [23] DUT-OMRON [23]

Model Train #Images MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE

RFCN [30] MK [5] 10K .898 .842 .095 .895 .830 .078 .829 .784 .118 .807 .748 .161 - - -

DCL [16] MB [20] 2.5K .897 .847 .077 .893 .837 .063 .807 .761 .115 .833 .780 .131 .733 .690 .095

DHS [19] MK [5]+D [23] 9.5K .905 .876 .066 .891 .860 .059 .820 .794 .101 .819 .793 .136 - - -

Amulet [38] MK [5] 10K .912 .898 .059 .889 .873 .052 .828 .813 .092 .801 .780 .146 .737 .719 .083

DHS [19] MB 2.5K .874 .867 .074 .835 .829 .071 .782 .777 .114 .800 .789 .140 .704 .696 .078

DHS+FLoss [19] MB 2.5K .884 .879 .067 .859 .854 .061 .792 .786 .107 .801 .795 .138 .707 .701 .079

Amulet [38] MB 2.5K .881 .857 .076 .868 .837 .061 .775 .753 .125 .791 .776 .149 .704 .663 .098

Amulet-FLoss MB 2.5K .894 .883 .063 .880 .866 .051 .791 .776 .115 .805 .800 .138 .729 .696 .097

DSS [11] MB 2.5K .908 .889 .060 .899 .877 .048 .824 .806 .099 .835 .815 .125 .761 .738 .071

DSS+FLoss MB 2.5K .914 .903 .050 .908 .896 .038 .829 .818 .091 .843 .838 .111 .777 .755 .067

Table 3. Quantitative comparison of different methods on 6 popular datasets. Our proposed FLoss consistently improves performance in

terms of both MAE (the smaller the better) and F-measure (the larger the better). Especially in terms of Mean F-measure, we outperform the

state-of-the-art with very clear margins, because our method is able to produce high-contrast predictions that can achieve high F-measure

under a wide range of thresholds.

change of threshold.

Fig. 4 (b) reflects the mean and variance of to across dif-

ferent datasets. Conventional methods (DHS, DSS, Amulet)

present unstable to on different datasets, as evidenced by

their large variances. While the to of FLoss-based methods

(F-DHS, F-Amulet, F-DSS) stay unchanged across different

datasets and different backbone network architectures.

In conclusion, the proposed FLoss is stable against
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Figure 4. (a) F-measures under different thresholds on the ECSSD dataset. (b) The mean and variance of optimal threshold to. FLoss-based

methods hold stable to across different datasets (lower to variances) and different backbone architectures (F-DHS, F-Amulet and F-DSS

hold very close mean to).
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Figure 5. Precision, Recall, F-measure and Maximal F-measure

(•) of DSS (- - -) and F-DSS (—) under different thresholds. DSS

tends to predict unknown pixels as the majority class–the back-

ground, resulting in high precision but low recall. FLoss is able to

find a better compromise between precision and recall.

threshold t in three aspects: (1) it achieves high perfor-

mance under a wide range of threshold; (2) optimal thresh-

old to tuned on one dataset can be transferred to others, be-

cause to varies slightly across different datasets; and (3) to
obtained from one backbone architecture can be applied to

other architectures.

4.5. The Label­unbalancing Problem in SOD

The foreground and background are biased in SOD

where most pixels belong to the non-salient regions. The

unbalanced training data will lead the model to local mini-

mal that tends to predict unknown pixels as the background.

Consequently, the recall will become a bottleneck to the

performance during evaluations, as illustrated in Fig. 5.

Although assigning loss weight to the positive/negative

samples is a simple way to offset the unbalancing problem,

an additional experiment in Table 4 reveals that our method

performs better than simply assigning loss weight. We de-

fine the balanced cross-entropy loss with weight factor be-

tween positive/negative samples:

Lbalance =
∑|Y |

i
w1 · yi log ŷi+

w0 · (1− yi) log (1− ŷi).
(15)

The loss weights for positive/negative samples are deter-

mined by the positive/negative proportion in a mini-batch:

w1 = 1
|Y |

∑|Y |
i 1(yi==0) and w0 = 1

|Y |

∑|Y |
i 1(yi==1),

as suggested in [34] and [28].

4.6. The Compromise Between Precision and Recall

Recall and precision are two conflict metrics. In some

applications, we care recall more than precision, while in

other tasks precision may be more important than recall.

The β2 in Eq. 1 balances the bias between precision and

precision when evaluating the performance of specific tasks.

For example, recent studies on edge detection use [2, 34, 28]

β2 = 1, indicating its equal consideration on precision and

recall. While saliency detection [1, 11, 16, 19, 30] usually

uses β2 = 0.3 to emphasize the precision over the recall.

As an optimization target, the FLoss should also be able

to balance the favor between precision and recall. We

train models with different β2 and comprehensively eval-

uate their performances in terms of precision, recall and F-

measure. Results in Fig. 6 reveal that β2 is a bias adjuster

between precision and recall: larger β2 leads to higher re-

call while lower β2 results in higher precision.

4.7. Faster Convergence and Better Performance

In this experiment, we train three state-of-the-art

saliency detectors (Amulet [38], DHS [20] and DSS [11])
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Training data ECSSD [35] HKU-IS [15] PASCALS [17] SOD [23] DUT-OMRON [23]

Model Train #Images MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE MaxF MeanF MAE

DSS [11] MB [20] 2.5K .908 .889 .060 .899 .877 .048 .824 .806 .099 .835 .815 .125 .761 .738 .071

DSS+Balance MB [20] 2.5K .910 .890 .059 .900 .877 .048 .827 .807 .097 .837 .816 .124 .765 .741 .069

DSS+FLoss MB [20] 2.5K .914 .903 .050 .908 .896 .038 .829 .818 .091 .843 .838 .111 .777 .755 .067

Table 4. Performance comparisons across the original cross-entropy loss (Eq. 10), balanced cross-entropy loss (Eq. 15) and our proposed

FLoss (Eq. 6). Original cross-entropy learns a biased prior towards the major class (the background). This is evidenced by the low

recall: many positive points are mis-predicted as negative because of biased prior. By assigning loss weights on foreground/background

samples, the balanced cross-entropy loss can alleviate the unbalancing problem. Our proposed method performs better than the balanced

cross-entropy loss, because the F-measure criterion can automatically adjust data unbalance.
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Figure 6. Precision, Recall, F-measure of model trained under

different β2 (Eq. 1). The precision decreases with the growing

of β2 whereas recall increases. This characteristic gives us much

flexibility to adjust the balance between recall and precision: use

larger β2 in a recall-first application and lower β2 otherwise.

and their FLoss counterparts. Then we plot the performance

of all the methods at each checkpoint to determine the con-

verge speed and converged performance of respective mod-

els. All the models are trained on the MB [20] dataset and

tested on the ECSSD [35] dataset. The results are shown in

Fig.7.
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Figure 7. Performance versus training iterations. Our method

presents faster convergence and higher converged performance.

We observe that our FLoss offers a per-iteration perfor-

mance promotion for all the three saliency models. We also

find that the FLoss-based methods quickly learn to focus on

the salient object area and achieve high F-measure score af-

ter hundreds of iterations. While cross-entropy based meth-

ods produce blurry outputs and cannot localize salient areas

very preciously. As shown in Fig. 7, FLoss based methods

converge faster than its cross entropy competitors and get

higher converged performance.

5. Conclusion

In this paper, we propose to directly maximize the F-

measure for salient object detection. We introduce the

FLoss that is differentiable w.r.t the predicted posteriors as

the optimization objective of CNNs. The proposed method

achieves better performance in terms of better handling

biased data distributions. Moreover, our method is sta-

ble against the threshold and able to produce high-quality

saliency maps under a wide threshold range, showing great

potential in real-world applications. By adjusting the β2

factor, one can easily adjust the compromise between pre-

cision and recall, enabling flexibility to deal with various

applications. Comprehensive benchmarks on several popu-

lar datasets illustrate the advantage of the proposed method.

Future work. We plan to improve the performance and

efficiency of the proposed method by using recent back-

bone models, e.g., [10, 27]. Besides, the FLoss is poten-

tially helpful to other binary dense prediction tasks such as

edge detection [21], shadow detection [12] and skeleton de-

tection [40].
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mizing the f-measure in multi-label classification: Plug-in

rule approach versus structured loss minimization. In ICML,

pages 1130–1138, 2013.

[7] Krzysztof J Dembczynski, Willem Waegeman, Weiwei
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