
Optimizing the Fast Fourier Transform on a Multi-core Architecture

Long Chen1, Ziang Hu1, Junmin Lin2, Guang R. Gao1

1University of Delaware 2Tsinghua University
Dept. of Electrical & Computer Engineering Dept. of Computer & Technology

Newark, DE 19716 USA Beijing, P.R.China 100086
{lochen,hu,ggao}@capsl.udel.edu linjunmin@tsinghua.org.cn

Abstract

The rapid revolution in microprocessor chip architecture
due to multicore technology is presenting unprecedented
challenges to the application developers as well as system
software designers: how to best exploit the parallelism po-
tential due to such multi-core architectures ? In this paper,
we report an in-depth study on such challenges based on our
experience of optimizing the Fast Fourier Transform (FFT)
on the IBM Cyclops-64 chip architecture - a large-scale
multi-core chip architecture consisting 160 thread units,
associated memory banks and an interconnection network
that connect them together in a shared memory organiza-
tion.

We demonstrate how multi-core architectures like the
C64 could be used to achieve a high performance imple-
mentation of FFT both in 1D and 2D cases. We analyze the
optimization challenges and opportunities including prob-
lem decomposition, load balancing, work distribution, and
data-reuse, together with the exploiting of the C64 archi-
tecture features such as the multi-level of memory hierarchy
and large register files.

Furthermore, the experience learned during the hand-
tuned optimization process have provided valuable guid-
ance in our compiler optimization design and implementa-
tion.

The main contributions of this paper include: 1) our
study demonstrates that successful optimization for C64-
like large-scale multi-core architectures requires a careful
analysis that can identify certain domain-specific features
of a target application (e.g. FFT) and match them well with
some key multi-core architecture features; 2) Our optimiza-
tion, assisted with hand-tunned process, provided quantita-
tive evidence on the importance of each optimization iden-
tified in 1) ; 3) Automatic optimization by our compiler, the
design and implementation of which is guided by the feed-
backs from 1) and 2), shows excellent results that are often
comparable to the results derived from our time-consuming

hand-tunned code.

1 Introduction

Due to the increasing power consumption, heat dissipa-
tion, and other issues, microprocessor chip architecture has
been turning to multi-core rapidly in recent years. This is
presenting unprecedented challenges to application devel-
opers as well as system software designers on how to exploit
the potential parallelism provided by the multiple cores in a
single chip.

While people believe that multi-core processors are going
to become the mainstream in the future, there are few expe-
riences of application development reported on those novel
architectures.

In this paper, we report our detailed study in the imple-
mentation and optimization of the Fast Fourier Transform
(FFT) on IBM Cyclops-64 (C64) multi-core architecture.
FFT is one of the most important DSP algorithms and
has been studied extensively on various architectures [14].
Digital signal processing (DSP) algorithms such as Fast
Fourier Transform (FFT) are both computation-intensive
and memory-intensive due to the large amount of data in-
volved in the underlying applications. Moreover, real DSP
applications usually require performing these algorithms
on large data sets at real time. Thus a high performance
computing engine is highly desired for this domain. On the
other hand, most DSP algorithms have inherent parallelism
[10, 15], more or less. Therefore, it seems that these algo-
rithms can take the advantage of the emerging multi-core
architectures to achieve better performance.

The C64 chip, the computing engine of an IBM petaflop

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1-4244-0910-1/07/$20.00 ©2007 IEEE

supercomputer project, is used in our study. The C64 chip
employs the multi-core design by integrating 160 thread
units, 80 floating point units, 160 32KB SRAM banks, and
a 96-port crossbar on a single chip. Other components in-
clude an A-switch that is used to form 3D mesh for a C64
system with multiple chips, 4 off-chip DRAM controllers,
GigaBit Ethernet controller and other I/O devices. A C64
chip provides massively on-chip parallelism, massive on-
chip memory bandwidth, large register file for each thread
unit and multiple level of memory hierarchy. An important
feature is that there is no data cache in the chip. C64 archi-
tecture represents one kind of multi-core architectures that
is intended for high performance computing. Our experi-
ence of FFT study on C64 may benefit application/system
software developers on other multicore platforms.

During our study of 1D and 2D FFT on C64, we found
out that domain specific knowledge is very important. To
achieve better performance, we carefully analyzed the FFT
algorithm features, identified a set of important issues, set
up the experiments based on the analysis, found out the
optimal parameters that matches the C64 architecture fea-
tures. Those issues include problem decomposition, load
balancing, work distribution, data-reuse, register tiling, and
memory hierarchy aware instruction scheduling. Some of
the above optimizations had been done manually before
the C64 compiler can automatically generate more efficient
code. Our study provided valuable guidance to the com-
piler designers on what should be done in C64 compiler op-
timizations. For instance, the C64 compiler was enhanced
by adding the memory segment aware instruction schedul-
ing, such that the automatically generated code for FFT by
the compiler is very close to the tediously hand-tunned code
eventually.

The main contributions of this paper include: 1) our
study demonstrates that successful optimization for C64-
like large-scale multi-core architectures requires a careful
analysis that can identify certain domain-specific features
of a target application (e.g. FFT) and match them well with
some key multi-core architecture features; 2) Our optimiza-
tion, assisted with hand-tunned process, provided quantita-
tive evidence on the importance of each optimization iden-
tified in 1) ; 3) Automatic optimization by our compiler, the
design and implementation of which is guided by the feed-
backs from 1) and 2), shows excellent results that are often
comparable to the results derived from our time-consuming
hand-tunned code.

The rest of this paper is organized as follows. In Section
2, a short introduction of the FFT algorithm is given. The
problem characteristics are analyzed and the basic approach
to the problem solution is also discussed here. In Section 3,
we present the C64 chip architecture and its major features.
In Section 4, the optimizations and analysis of the FFT on
the C64 architecture are conducted. Section 5 is about the

+1

−1
a − ωk

Nb

a

ωk
N

a + ωk
Nb

b

Figure 1. Cooley-Tukey butterfly operation

related works. And Section 6 concludes the paper with fu-
ture work discussion.

2 Fast Fourier Transform

The FFT is a fast algorithm for computing the Discrete
Fourier Transform (DFT). In the literature, the FFT has
been extensively studied and implemented as an important
frequency analysis tool in many areas such as image pro-
cessing, signal processing, and other domains.

There are many variants of the FFT algorithms. In this
paper, we focus on the most common FFT algorithm, the
radix-2 Cooley-Tukey algorithm [6], which employs the di-
vide and conquer approach. Consider the computation of
the N = 2t points DFT, x(n). The algorithm divides this
N -point data sequence into two N/2-point data sequences
f1(n) and f2(n), corresponding to the even-indexed and
odd-indexed points of x(n), respectively. Then the N -point
DFT can be computed as,

X(k) = F1(k) + ωk
NF2(k), 0 ≤ k ≤ N

2
− 1

X(k +
N

2
) = F1(k) − ωk

NF2(k), 0 ≤ k ≤ N

2
− 1

where ωk
N are twiddle factors, F1(k) and F2(k) are the

N/2-point DFTs of f1(n) and f2(n), respectively. The sub-
problems F1(k) and F2(k) are recursively solved to obtain
the final solution of the original problem. Consequently, the
FFT gives an Θ(N log2 N) algorithm for computing DFT.
The computation above is usually referred to as the Cooley-
Tukey butterfly operation, which is shown in Figure 1. In
general, FFT on multidimensional data set can be realized
by performing 1D FFT alternately on each dimension of the
data, interleaved with data transpose steps.

Generally speaking, the recursive FFT algorithm introduces
non-negligible recursion overhead thus is not favored. An-
other approach is to employ the iterative implementation.
The iterative algorithm subdivides the resulting subprob-
lems iteratively until the problem size becomes one. In or-
der to achieve such an implementation, the input data have
to be reordered before the butterfly computations are per-
formed. This is called bit-reversal permutation. In the
Cooley-Tukey algorithm, this permutation is performed be-
fore the butterfly computations.

2

Bit−reversal permutation Second stage Third stageFirst stage

ω0
8

ω0
8

ω0
8

ω0
8

-1

-1

-1

-1

ω0
8

ω2
8

ω0
8

ω2
8

ω0
8

ω1
8

ω2
8

ω3
8

-1

-1

-1

-1

-1

-1

-1

-1

X(7)

X(6)

X(5)

X(4)

X(3)

X(2)

X(1)

X(0)

x(3)

x(4)

x(5)

x(6)

x(7)

x(1)

x(0)

x(2)

Figure 2. 8-point Cooley-Tukey example

Figure 2 shows an example the iterative FFT decomposition
of 8 points using the Cooley-Tukey algorithm. Before the
butterfly computation, the bit-reversal permutation is per-
formed on the input data. Then the computation is decom-
posed through 3 stages. We use iterative approach in this
paper.

3 Cyclops-64 Architecture

The C64 chip, shown in figure 3, is the core computa-
tion engine of the C64 supercomputer system, which con-
sists of thousands of such chips connected through a 3D-
mesh network. One C64 chip features massive parallelism
with 80 64-bit processors, each consisting 1 floating point
unit (FPU) and 2 thread units (TUs). Each thread unit is a
single-issue, in-order RISC processor operating at a moder-
ate clock rate (500MHz). It has 64 64-bit registers and 32
KB SRAM. Other on-chip components include 16 shared
instruction caches (ICs), 4 off-chip DRAM controllers, A-
Switch, and etc. All on-chip resources are connected to an
on-chip pipelined crossbar network with a large number of
ports (96×96), which sustains a 4GB/s bandwidth per port,
thus 384GB/s in total.

The C64 architecture has a segmented memory space, in-
cluding the scratch-pad (SP) memory, on-chip global inter-
leaved memory (GM), and off-chip DRAM. It is interesting
to note that C64 does not have data cache. Instead, the on-
chip SRAM banks are partitioned into the SP memory and
GM. While the GM are shared among all threads on the
chip, the SP memory is regarded as the fast local memory
of the corresponding thread unit (2 cycles for load, 1 cycle
for store).

All the thread units within a chip are connected by a 16-bit

Figure 3. Cyclops-64 chip architecture

signal bus, which provides a means to efficiently implement
barriers. Furthermore, the C64 instruction set architecture
(ISA) features a large number of atomic in-memory instruc-
tions. All these greatly facilitate the thread-level parallelism
with fast inter-thread synchronizations.

4 Optimizations and Discussions

In this section, we discuss our experiences on the imple-
mentation, analysis and optimizations of the FFT on C64
architecture. In the experiments, we consider the data sizes
of 216 and 256× 256 for 1D FFT and 2D FFT, respectively.
In both cases, the input data are double-precision complex
numbers, and can fit into on-chip GM. The twiddle factors
are pre-computed and stored in on-chip GM as well. All
the experiments were conducted on the FAST simulator[7],
which is a functionally-accurate simulator that, among other
features, models the memory hierarchy of C64 architecture,
including the latencies and bandwidth of each memory seg-
ment.

4.1 1D FFT

We start with a base parallel implementation of the 1D
FFT. Then, by analyzing the problem thoroughly, we apply
a sequence of optimization techniques to improve the per-
formance of the parallel implementation.

4.1.1 Base Parallel Implementation

Before we go into details about the implementation, let us
first introduce an important definition: work unit. A work
unit is an arbitrarily defined piece of the work that is the
smallest unit of concurrency that the parallel program can
exploit. The size of a work unit may vary in different imple-
mentations. In this base parallel implementation, we con-
sider a butterfly operation to be a work unit, which includes
1) read 2-point data and the twiddle factor from GM and, 2)
perform a bufferfly operations upon them, then, 3) write the

3

2-point results back to GM. We call this a 2-point work unit
because it contains 2 points that can be computed indepen-
dently from other data. This fine-grained approach matches
the natural granularity of the FFT in the sequential program
structure, which is the smallest unit of concurrency that the
FFT exposes. To achieve a balanced workload among all
threads, the work units are assigned to threads in a round-
robin way, during each stage of the FFT computation. Bar-
riers are used to synchronize threads before the next stage
starts. This parallel implementation has a performance of
6.54Gflops.

4.1.2 Optimal Work Unit

In the above implementation, at each stage, barriers are used
to control the accesses to the shared data, which imply large
synchronization overhead. Decreasing the number of syn-
chronizations can reduce such overhead and potentially im-
prove the performance. On the other hand, since the func-
tion that processes each work unit is the kernel part in the
FFT computation, we would like to have a closer look into
this function and see whether any optimizations could be
applied or not. In the base implementation, a work unit con-
sists of 6 load operations, 10 floating point operations, and
4 store operations, not considering the integer operations
for computing the indexes. We definitely cannot reduce the
number of floating point operations, which is inherent to the
FFT algorithm itself. Then, could we reduce the number of
memory operations? Obviously, the answer is also no in
this case.

Let us look at an alternative approach. By using 2-point
work units, a 4-point FFT computation can be completed in
two stages and requires 2 such work units at each stage, 4
in total. In other words, this computation requires 24 load
operations, 40 floating point operations, and 16 store oper-
ations. Instead of containing of 2 points, if one work unit
has 4-point data that can be computed independently from
other data, the thread can read all data into registers, per-
form required computation, and write back the results. In
this case, this work unit consists of 16 load operations, 40
floating point operations, and 8 store operations. Following
the convention, we call this 4-point work unit. Similar to the
base implementation, threads need to be synchronized after
all of them finish their 4-point work units, which are 2-stage
FFT computations. Compared with the previous implemen-
tation, this method eliminates half number of the barriers
and reduces the number of memory operations by 40%, and
increases the percentage of floating point operations to the
total number of instructions from 50% to 62.5%1. This
is definitely an encouraging sign to achieve better perfor-
mance. Let us extend this idea more ambitiously. Assuming

1Please note that we ignore the integer operations to simplify the anal-
ysis. While this indeed introduces inaccuracy, the trend remains the same

we have a machine with an unlimited number of registers,
if one work unit has 216-point data, then only one barrier is
needed and the percentage of floating point operations to the
total number of instructions would increase to 80%! In gen-
eral, given a machine with a unlimited number of registers,
using a work unit of N -point data can get rid of (lg2 N −1)
barriers. Moreover, the percentage of floating point opera-
tions to the total number of instructions is 5N lg2 N

6N lg2 N+4N . It
is clear that the more data one work unit has, the more ben-
efits we will gain.

However, in practical, no machine has unlimited registers,
neither does C64. Further, a huge work unit may limit the
concurrency exposed by the program. So we have to decide
an appropriate size of the work unit, which should expose
enough parallelism and still can fully utilize the register file
without serious register spilling. Let us examine the above
example again. For 4-point work unit, it needs 8 registers
for input data, 4 registers for the corresponding indexes,
another 8 registers for the twiddle factors. Thus the total
number of registers needed would be 20. While complet-
ing this work unit will not cause register spilling, it does
underutilized the register file: about half registers are not
used during the entire computation. Considering the case of
8-point work unit, it requires 16 registers for input data, 8
registers for the corresponding indexes, another 24 registers
for the twiddle factors. The total number of registers to be
used would be 50. In theory, the execution of this work unit
will use most of the registers and it will not generate reg-
ister spilling. If we go a little bit further with the 16-point
work unit, the total number of registers needed during the
computation increases to 112, which imposes much greater
pressure on the register file and will certainly introduce se-
rious register spilling and thus typically will slow down the
computation. Therefore, based on our analysis, the 8-point
work unit could be the best choice for C64. Note that 8-
point work unit implies a 3-stage FFT computation. Given
a FFT computation with n-point data, when lg2 n cannot be
divided exactly by 3, the last (lg2 n− lg2 n

3) stage(s) can be
computed with 4-point work units or 2-point work units.

Our analysis and conclusion have been confirmed by the ex-
perimental results with different sizes of work unit, which
are shown in figure 4. Obviously 8-point work unit outper-
forms other sizes of work unit. After applying this 8-point
work unit, we reach a performance of 13.17Gflops, which
is 101.5% improvement over the base parallel implementa-
tion.

4.1.3 Special Handling of the First Stages

As shown in figure 2, every bufferfly operation performs on
consecutive data during the first stage. For example, the
top left butterfly operation acts upon x(0) and x(4), which

4

Figure 4. Number of cycles per bufferfly oper-
ation versus the the size of work unit

are contiguous in the memory after the bit-reversal permu-
tation. It holds true that all points within the same work
unit are consecutive in the memory before the first stage,
for any valid size of work unit. This implies that less regis-
ters are required for the first lg2 M stages, as when M -point
work unit is used, only the starting pointer and the size of
the work unit are needed to access this work unit, instead of
computing the indexes for all the points and keeping them
in registers.

Inspired by this observation, we try to search the appropri-
ate M , the size of work unit for the first lg2 M stages. Since
it is clear that M ≥ 8, let us consider 16-point work unit
again. We need 32 registers for the input data and 1 reg-
ister for the starting address of this work unit, another 64
registers for the 32 twiddle factors. Thus the total number
of registers would be 97, which still exceeds the maximum
available registers in C64 architecture. It seems that 8-point
is the maximum size of work unit that we can use during the
entire FFT. However, let us look at figure 2 more carefully.
In this figure, all bufferfly operations performed during the
first stages are using the same twiddle factor ω0

8 . In the sec-
ond stage, only 2 distinct twiddle factors are used, i.e., ω0

8

and ω2
8 . In general, in the i-th stage of a complete FFT com-

putation, 2i−1 distinct twiddle factors are used, and they in-
clude all twiddle factors used in the preceding stages. In
other words, during the execution of the first lg M stages,
there are fewer twiddle factors being used. By knowing this
fact, we re-consider the possibility of using 16-point work
unit. Instead of 64, we only need 16 registers to keep 8
distinct twiddle factors used in the fist 4 stages. Thus the
total number of registers required is 49, which can fit into
the C64 register file. Further, we define these 8 twiddle
factors as macros in the program. This approach reduces
the number of memory operations, while the inaccuracy in-

troduced is well under control2. After applying these ap-
proaches for the first 4 stages, we achieve an improvement
of 28.4% over the earlier implantation, while the absolute
performance reaches 16.92Gflops.

4.1.4 Eliminating Unnecessary Memory Operations

Mathematically, in a 8-point work unit, all twiddle factors
used in the “first” stage of this 8-point computation (not the
first stage of the complete FFT computation) are of the same
value, half twiddle factors used in the “second” stage are of
the same value, all the twiddle factors have distinct values
in the “third” stage. Thus, only 1, 2, and 4 distinct twiddle
factors are needed for the first, second, and third stage of
the 8-point work unit computation, respectively. Thus we
can reduce the computation for the indexes of the twiddle
factors and subsequent memory operations. By eliminating
these unnecessary instructions, we have an absolute perfor-
mance of 17.97Gflops, which is a 6.2% improvement over
the previous number.

4.1.5 Loop Unrolling

Recall that in the entire FFT computation, besides the
bufferfly computations, the bit-reversal permutation usu-
ally also accounts for substantial portion of the overall FFT
computation time. Specifically, in the current implementa-
tion, this permutation takes 5.7% of the total execution time.
In the kernel loop of the bit-reversal permutation, once the
indexes of two points to be permuted are computed, the two
corresponding points will be read from GM, swapped and
written back to GM. Since C64 ISA has bit gather instruc-
tions that can be used to perform fast index computation,
the most time-consuming part is the memory operations. To
hide the memory latency, we unroll this kernel loop 4 times.
By doing this, we accomplish an improvement of 25.0% for
the permutation part, and accordingly, a 1.4% improvement
on the overall performance.

4.1.6 Register Renaming and Instruction Scheduling
(Manually)

C64 architecture does not have data cache and each
memory operation may have different latency depending
on the target memory segment, i.e., SP, GM, and DRAM.
But most existing compilers assume a cache latency (cache
hit) or a uniform memory latency (cache miss) when they
do instruction scheduling. By manually applying register
renaming and instruction scheduling on several kernel
functions, we hide most of the latencies due to memory op-
erations and floating point operations, and achieve a 13.7%
improvement. The performance reaches 20.72Gflops.

2After applying the FFT and a subsequent IFFT, the variance between
the results and the original data is at the order of O(10−14)

5

Table 1. 216 1D FFT Incremental Optimizations

Optimizations GFLOPS Speedup Over Incremental
Base Version Speedup

Base 6.54 1.00 0%
Optimal W.U. 13.17 2.02 101.5%
Special App. 16.92 2.59 28.4%

Eli. MEM Ops. 17.97 2.75 6.2%
Loop Unroll. 18.23 2.79 1.4%
Reg. & Inst. 20.72 3.17 13.7%

4.1.7 Memory Hierarchy Aware Compilation

While the above manual optimizations can achieve a rela-
tively high performance, the entire process is tedious and
error-prone. The different delays of memory instructions
when accessing different memory segments have to be care-
fully investigated and manipulated. On the other hand, this
work would be an ideal job for a smart compiler that could
identify the segments where variables reside, and apply the
corresponding latencies when scheduling the instructions.
Inspired by this idea, we tailored the compiler such that
it accounts for the different latencies when accessing vari-
ables specified with segment pragmas when applying in-
struction scheduling. By employing this memory hierar-
chy aware compiler with the code from 4.1.5, we achieve
a 8.8% improvement, which corresponds to a performance
of 19.84Gflops. While the absolute performance is a lit-
tle bit lower than the manually optimized code in 4.1.6 (it
is still comparable to the latter), this optimization dramati-
cally reduces the effort to achieve a high performance im-
plementation on architectures with deep memory hierarchy
like C64.

So far, we finish the optimizing 1D FFT implementation.
We list all the techniques applied and the corresponding re-
sults in Table 1. Figure 5 shows the speedup of this opti-
mized implementation. The effect of the memory hierarchy
aware compiler is not shown in either Table 1 or Figure 5.
From these plots, we observe that the performance of this
implementation scales nearly linearly up to 128 threads.

4.2 2D FFT

As mentioned in Section 2, the multidimensional FFT
problem can be solved by performing 1D FFT alternately on
each dimension of the data interleaved with data transpose
steps. That is, for a N ×N 2D FFT x(i, j), one can simply

Figure 5. Speedup of the optimized 1D FFT
implementation

perform a sequence of 1D FFTs by any 1D FFT algorithm:
first transform along the row dimension x(:, j), after all row
FFTs are done, then transform along the column dimension
x(i, :). This is known as the conventional row-column algo-
rithm. This method is easily shown to require Θ(N2 lg2 N)
complex multiplication operations. Our implementation of
the parallel 2D FFT follows this row-column algorithm.

4.2.1 Base Parallel Implementation

In the base implementation, we simply employ one
row/column FFT as a work unit. All row FFTs are indepen-
dent of each other, so they can be computed in parallel. So
do all column FFTs. After completing all row FFTs, a bar-
rier is used to synchronize all threads before they perform
the column FFTs. Work units are distributed to threads in
the round-robin way. By utilizing the optimized 1D FFT im-
plementation presented in the previous section, this parallel
implementation achieves a performance of 15.11Gflops.

4.2.2 Load Balancing

The work unit scheme used in the base implementation is
straightforward and can be easily implemented. However,
it may hurt the performance due to the non-trivial load im-
balance. For example, given a 64 × 64 2D FFT, using
more than 64 threads will not produce any performance gain
than using exact 64 threads: while the first 64 threads are
working on their own work units, other threads will remain
idle because there is no work unit available for them. In
other words, this simple work unit scheme does not expose
enough concurrency to keep all threads busy at all times,
thus limits the speedup achievable. To resolve this issue,
we should use fine-grain work unit and distribute them over
all threads as evenly as possible. So, instead of having one
entire 1D FFT as a work unit, we divide each row/column
FFT into small tasks.

6

In this way, multiple threads may work on one single
row/column FFT, just like what we did for 1D FFT. Based
on the what we have learned from 1D FFT, we still use 8-
point work unit. While this “new” work unit scheme re-
duces the load imbalance issue, it needs more barriers to
synchronize threads working on the same row/column FFT.
Thanks to C64’s hardware barrier support, these barriers do
not introduce much overhead.

4.2.3 Work Distribution and Data Reuse

Given a set of work units defined in the previous section,
one can distribute these work units to threads in a common
round-robin scheduling. This method absolutely works and
can distribute work units as evenly as possible to all threads.
However, it does not appreciate the nature of the 2D FFT. In
the 2D FFT computation, the exact same set of operations
are repeatedly performed on each row/column FFT, includ-
ing the bit-reversal permutation and the butterfly computa-
tion. For example, if x(a, 0) and x(b, 0) need to be swapped
during the bit-reversal permutation, x(a, j) and x(b, j) need
to be swapped during the bit-reversal permutation as well,
for 0 ≤ j < N . This also holds true for the butterfly com-
putation: if a butterfly operation with a twiddle factor ω is to
be performed on x(0, a) and x(0, b), this butterfly operation
should be performed on x(i, a) and x(i, b), for 0 ≤ i < N ,
with the same twiddle factor. This provides great oppor-
tunity for data reuse, thus it can reduce the index com-
putations and memory operations. A major-reversal work
distribution scheme is employed to exploit this opportunity.
Namely, when a thread completes a work unit consisting of
{x(a, io), x(a, i1), · · · , x(a, in)} in a row FFT x(a, :), in-
stead of going row-major and locating another work unit
in the same row FFT, it reuses the computed indexes, i.e.,
{i0, i1, · · · , in}, and twiddle factors by going column-major
to the row FFT x(a+1, :) and locating the work unit consist-
ing of {x(a+1, io), x(a+1, i1), · · · , x(a+1, in)} as its next
work unit. The procedure repeats until this thread finishes
all its workload or it reaches the last row FFT x(N − 1, :),
where the data cannot be easily reused. The similar proce-
dure applies to column FFTs and the bit-reversal permuta-
tion. After using the fain-grained work unit and this major
reversal work distribution scheme, the performance reaches
19.37Gflops.

4.2.4 Memory Hierarchy Aware Compilation

Again, we apply the memory hierarchy aware compiler
to the 2D FFT implementation, which introduces another
3.25% improvement over the previous compilation, thus the
overall performance raises to 20.00Gflops. Finally, similar
to the 1D FFT, the optimized 2D FFT implementation also
scales nearly linearly up to 128 threads, as shown Figure 6.

Figure 6. Speedup of the optimized 2D FFT
implementation

5 Related Work

The FFT problem has been extensively studied on var-
ious machines. A large number of literature addresses
the distributed memory FFT implementations on the hy-
percube architecture [9, 13, 17] by taking the advantage
of the small communication delay between processors that
are physically close in the network. Other parallel FFT
implementations have investigated on arrays[12] and mesh
architectures[18]. An instructive shared-memory FFT for
Alliant FX/8 is presented in[19]. Additional performance
studies on shared-memory FFT are discussed in [3, 16].
Moreover, by using the Kronecker notation, the work in[11]
shows how to design parallel DFT algorithms with vari-
ous architecture constraints. The significance of consider-
ing memory hierarchy to an effective FFT implementation
has been pursued in[4]. The work in [5] shows how to use
local memory to compute the FFT efficiently on CRAY-2.
The issue of data re-use is also discussed in [1, 2]. Fur-
ther, an excellent review of various sequential and parallel
DFT algorithms proposed in the literature until 1991 ap-
peared in[14]. Two dataflow-based multithreaded FFTs[21]
are presented to exploit the features of EARTH[20], a fine-
grained dataflow architecture. FFTW [8] features a dy-
namic programming algorithm to determine the best exe-
cution plan. It supports multithreaded programming inter-
faces, and is portable and adaptable on various architec-
tures.

6 Conclusion and Future Work

In this paper, we presented the implementation and op-
timizations of the FFT on the C64 multi-core architecture,
together with extensive analysis. The results demonstrates
that multi-core architectures like C64 can be used to achieve
excellent performance results with respect to both speedup

7

and absolute performance for DSP problems like FFT. For
instance, the best result of the FFT obtained on a 3.60GHz
Intel Xeon Pentium 4 processor is 5.5Gflops[8], which is
only around one quarter of using one C64 chip.

However, the study also shows that application development
on such multi-core architectures is not easy. We should
carefully consider Both of the architecture features and
the properties of the application/algorithm itself to achieve
good performance. Almost all optimizations applied in our
work involve problem-specific features that can be matched
to certain architecture features, such as register file size with
work unit, using fast barrier operations, and so on.

On the other hand, multi-core system software, especially
the compiler, faces more challenges. In the study we shows
that memory hierarchy aware instruction scheduling may
dramatically improve the performance while reduces the
burden from the programmers.

One of the architecture features of C64 has not been fully
explored is the fast scratchpad memory (SP) for each thread
unit. SP may be used as larger register file. More FFT
points may be stored in SP such that each FFT work unit
may contain more points. Another issue is to study larger
FFT problem sizes when data cannot be fully stored in on-
chip memories.

Acknowledgments

We would like to acknowledge the support from IBM,
in particular, Monty Denneau, who is the architect of the
IBM Cyclops-64 architecture; ET International, the Depart-
ment of Defense, the Department of Energy (DE-FC02-
01ER25503), the National Science Foundation (CNS-
0509332), and other government sponsors. Special thanks
to Michael Merrill for his initial FFT implementation. We
would also like to acknowledge other members of the
CAPSL group at University of Delaware, in particular
Weirong Zhu, Yuan Zhang and Shuxin Yang.

References

[1] R. Agarwal and J. Cooley. Vectorized mixed radix discrete
fourier transform algorithms. In Proceedings of the IEEE,
volume 75, pages 1283– 1292, 1987.

[2] M. Ashworth and A. G. Lyne. A segmented FFT algorithm
for vector computers. Parallel Computing, 6:217–224, 1988.

[3] A. Averbuch, E. Gabber, B. Gordissky, and Y. Medan. A
parallel FFT on an MIMD machine. Parallel Computing,
15:61–74, 1990.

[4] D. H. Bailey. FFTs in external or hierarchical memory.
In Proceedings of the Supercomputing 89, pages 234–242,
1989.

[5] D. A. Carlson. Using local memory to boost the performance
of FFT algorithms on the CRAY-2 supercomputer. J. Super-
comput., 4:345–356, 1990.

[6] J. W. Cooley and J. W. Tukey. An algorithm for the ma-
chine calculation of complex fourier series. Math. Comput.,
19:297–301, 1965.

[7] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. FAST: A func-
tionally accurate simulation toolset for the Cyclops64 cellu-
lar architecture. In Workshop on Modeling, Benchmarking,
and Simulation (MoBS2005), in conjuction with the 32nd
Annual International Symposium on Computer Architecture
(ISCA2005), Madison, Wisconsin, June 2005.

[8] M. Frigo and S. Johnson. FFTW.
[9] A. G. and P. I. Parallel implementation of 2-d FFT algo-

rithms on a hypercube. In Proc. Parallel Computing Action,
Workshop ISPRA, 1990.

[10] A. Gupta and V. Kumar. On the scalability of FFT on par-
allel computers. In FMPSC: Frontiers of Massively Parallel
Scientific Computation. National Aeronautics and Space Ad-
ministration NASA, IEEE Computer Society Press, 1990.

[11] J. Johnson, R. Johnson, D. Rodriguez, and R. Tolimieri. A
methodology for designing, modifying, and implementing
fourier transform algorithms on various architectures. Cir-
cuits, Systems, and Signal Processing, 9:449–500, 1990.

[12] S. Johnsson and D. Cohen. Computational arrays for the
discrete Fourier transform. 1981.

[13] S. L. Johnsson and R. L. Krawitz. Cooley-tukey FFT on
the connection machine. Parallel Computing, 18(11):1201–
1221, 1992.

[14] C. V. Loan. Computational framework for the fast Fourier
transform. SIAM, Philadelphia, 1992.

[15] H. Nguyen and L. K. John. Exploiting SIMD parallelism in
DSP and multimedia algorithms using the AltiVec technol-
ogy. In International Conference on Supercomputing, pages
11–20, 1999.

[16] A. Norton and A. J. Silberger. Parallelization and perfor-
mance analysis of the cooley-tukey fft algorithm for shared-
memory architectures. IEEE Transactions on Computers,
36(5):581–591, 1987.

[17] D. M. S. L. Johnsson, R.L. Krawitz and R. Frye. A radix 2
FFT on the connection machine. In Proceedings of Super-
computing 89, pages 809–819, 1989.

[18] V. Singh, V. Kumar, G. Agha, and C. Tomlinson. Scalability
of parallel sorting on mesh multicomputers. In International
Parallel Processing Symposium, pages 92–101, 1991.

[19] P. N. Swarztrauber. Multiprocessor FFTs. Parallel Comput-
ing, 5(1-2):197–210, 1987.

[20] K. B. Theobald. EARTH: An Efficient Architecture for Run-
ning Threads. PhD thesis, May 1999.

[21] P. Thulasiraman, K. B. Theobald, A. A. Khokhar, and G. R.
Gao. Multithreaded algorithms for the fast fourier transform.
In ACM Symposium on Parallel Algorithms and Architec-
tures, pages 176–185, 2000.

8

