
Ann Oper Res (2016) 240:39–94

DOI 10.1007/s10479-015-2018-y

SI: 4OR SURVEYS

Optimizing the half-product and related quadratic

Boolean functions: approximation and scheduling

applications

Hans Kellerer1
· Vitaly A. Strusevich2

Published online: 22 September 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper reviews the problems of Boolean non-linear programming related to

the half-product problem. All problems under consideration have a similar quadratic non-

separable objective function. For these problems, we focus on the development of fully

polynomial-time approximation schemes, especially of those with strongly polynomial time,

and on their applications to various scheduling problems.

Keywords Quadratic knapsack · Half-product · Single machine scheduling · FPTAS

1 Introduction

This paper provides a review of results on Boolean programming problems of optimizing

a particular objective function, known as the half-product. The function is a quadratic non-

separable function of Boolean variables, and we consider the problems of its minimization

and maximization either with no additional constraints or under a linear constraint of a

knapsack type. The problems of this range serve as mathematical models for numerous

scheduling problems. We pay special attention to developing fast approximation schemes

and algorithms for the problems related to optimizing the half-product, as well as for the

relevant scheduling applications.

This is an updated version of the paper that appeared in 4OR, 12, 111–161 (2012).

B Vitaly A. Strusevich

v.strusevich@gre.ac.uk; V.Strusevich@greenwich.ac.uk

Hans Kellerer

hans.kellerer@uni-graz.at

1 Institut für Statistik und Operations Research, Universität Graz, Universitätsstraße 15,

8010 Graz, Austria

2 Department of Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park

Row, Greenwich, London SE10 9LS, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-2018-y&domain=pdf

40 Ann Oper Res (2016) 240:39–94

This review is a modified version of the survey Kellerer and Strusevich (2012). The current

version exhibits a shift of focus of the presentation. The earlier survey was centered around

the symmetric quadratic knapsack problem, which consists in minimizing a special form

of the half-product function under a linear knapsack constraint. Our interest in that specific

model was justified by the fact that it would serve as a universal model of most scheduling

applications. In this paper, the stress is on the half-product problem in its pure form, and

on its variants of practical importance such as the positive half-product and the symmetric

quadratic knapsack.

Our main goal is to review algorithmic ideas that help to develop approximation schemes

for these Boolean quadratic problems, and to survey all known scheduling applications.

New topics addressed in this paper compared to Kellerer and Strusevich (2012) include

fast approximation schemes for minimizing the positive half-product and its scheduling

applications, development of differential approximation schemes and approximability for

the maximization counterparts of the problems under consideration.

The remainder of this paper is organized as follows. Section 2 gives formal descriptions of

all versions of problems related to the half-product optimization, in various forms: Boolean,

matrix and in terms of set-functions. In Sect. 3 we formulate a number of scheduling problems

and for each problem present its reformulation in terms of a half-product related problem.

Sections 4, 5 and 6 address the problems of minimizing the half-product, the positive half-

product and the symmetric quadratic knapsack problem, respectively. For each of this models,

we describe the principles of design of approximation schemes and discuss their adaptations

to the relevant scheduling problems. Section 7 reviews the whole range of problems from

the point of view of differential approximation. The maximization versions are discussed in

Sect. 8. The concluding remarks and open questions can be found in Sect. 9.

2 Formulation of half-product and related problems

In this section, we present formulations of the half-product problem and its versions. In this

section, and in fact in most of this paper, we focus on problems of minimization of the relevant

functions. Their maximization counterparts are discussed in Sect. 8.

2.1 Boolean programming formulations

Let x = (x1, x2, . . . , xn) be a vector with n Boolean components. Consider the function

H (x) =
n∑

1≤i< j≤n

αiβ j xi x j −
n∑

j=1

γ j x j , (1)

where for each j, 1 ≤ j ≤ n, the coefficients α j and β j are non-negative integers, while γ j is

an integer that can be either negative or positive. Problems of minimizing quadratic functions

similar to (1) were introduced in 1990s as mathematical models for various scheduling

problems by Kubiak (1995) and Jurisch et al. (1997). Function (1) and the term “half-product”

were introduced by Badics and Boros (1998), who considered the problem of minimizing

the function H (x) with respect to Boolean decision variables with no additional constraints.

The function H (x) is called a half-product since its quadratic part consists of roughly half of

the terms of the product
(∑n

j=1 α j x j

) (∑n
j=1 β j x j

)
. Notice that we only are interested in

the instances of the problem for which the optimal value of the function is strictly negative;

otherwise, setting all decision variables to zero solves the problem.

In this paper, we refer to the problem of minimizing function H (x) of the form (1),

as Problem HP. This problem is NP-hard in the ordinary sense, even if α j = β j for all

123

Ann Oper Res (2016) 240:39–94 41

j = 1, 2, . . . , n, as proved by Badics and Boros (1998). It has numerous applications, mainly

to machine scheduling; see Erel and Ghosh (2008) and Kellerer and Strusevich (2012) for

reviews. Notice that in those applications a scheduling objective function usually is written

in the form

F (x) = H (x) + K , (2)

where K is a given additive constant. We refer to the problem of minimizing function F (x)

of the form (2), as Problem HPAdd.

Consider the function

P (x) =
n∑

1≤i< j≤n

αiβ j xi x j +
n∑

j=1

μ j x j +
n∑

j=1

ν j

(
1 − x j

)
+ K , (3)

where all coefficients α j , β j , μ j , ν j and K are non-negative integers. Following Janiak et al.

(2005), we call the problem of minimizing the function P (x) of the form (3) the Positive

Half-Product Problem or Problem PosHP.

In the two problems introduced above, the minimum is sought for over all n−dimensional

Boolean vectors, i.e., they are quadratic Boolean programming problems with no additional

constraints. In this paper, we review a restricted version of these problems, in which an

additional knapsack constraint is introduced. In particular, the knapsack constrained variant

of Problem PosHP can be written as

Minimize P(x) =
n∑

1≤i< j≤n

αiβ j xi x j +
n∑

j=1

μ j x j +
n∑

j=1

ν j

(
1 − x j

)
+ K

Subject to

n∑

j=1

α j x j ≤ A

x j ∈ {0, 1}, j = 1, 2, . . . , n,

(4)

which we call the Positive Half-Product Knapsack Problem and denote Problem PosHPK.

Similarly to the classical Linear Knapsack Problem (see the comprehensive monographs

Martello and Toth (1990) and Kellerer et al. (2004) on this most studied problem of Combi-

natorial Optimization), Problem PosHPK contains a linear knapsack constraint

n∑

j=1

α j x j ≤ A. (5)

We can view the value α j as the weight of item j, 1 ≤ j ≤ n, i.e., x j = 1 means that

item j is placed into a knapsack with capacity A, while x j = 0 means that the corresponding

item is not placed into the knapsack. An important feature is that the coefficients α j in the

knapsack constraint are the same as in the quadratic terms of the objective function. The latter

feature makes Problem PosHPK to be a special case of another quadratic knapsack problem,

namely the problem

Minimize Z(x) =
∑

1≤i< j≤n

αiβ j xi x j +
∑

1≤i< j≤n

αiβ j (1 − xi)(1 − x j)

+
n∑

j=1

μ j x j +
n∑

j=1

ν j (1 − x j) + K

Subject to

n∑

j=1

α j x j ≤ A

x j ∈ {0, 1}, j = 1, 2, . . . , n.

(6)

123

42 Ann Oper Res (2016) 240:39–94

Following Kellerer and Strusevich (2010a, b), we call the latter problem the Symmetric

Quadratic Knapsack Problem, or Problem SQK . We use the term “symmetric” because both

the quadratic and the linear parts of the objective function are separated into two terms, one

depending on the variables x j , and the other depending on the variables (1−x j). Problem SQK

is no easier than the Linear Knapsack Problem and therefore is at least NP-hard in the ordinary

sense.

Clearly, Problem SQK is a generalization of Problem PosHPK, since its objective contain

an additional quadratic term. The objective function Z(x) can be rewritten as

Z (x) = 2
∑

1≤i< j≤n

αiβ j xi x j +
n∑

i=1

⎛
⎝μi − αi

n∑

j=i+1

β j − βi

⎛
⎝

i−1∑

j=1

α j

⎞
⎠ − νi

⎞
⎠ xi

+ K +
n∑

i=1

⎛
⎝αi

n∑

j=i+1

β j + νi

⎞
⎠ ,

i.e., in a form close to that used in the formulation of Problem HPAdd.

The half-product function and its variants above are special cases of the general quadratic

function of Boolean variables. Let
(
qi j

)
n×n

be a symmetric quadratic matrix. For a Boolean

vector x = (x1, x2, . . . , xn) define the function

Q (x) =
∑

1≤i< j≤n

qi j xi x j −
n∑

j=1

γ j x j . (7)

We refer to a Boolean programming of optimizing function (7) subject to a linear constraint

(5) as the Quadratic Knapsack Problem (Problem QK). In general, Problem QK is NP-hard

in the strong sense. See Chapter 12 of the book by Kellerer et al. (2004) and a survey by

Pisinger (2007) for an overview of principal results on Problem QK.

Table 1 summarizes the notation introduced above for all Boolean programming problems

under consideration.

2.2 Matrix formulations and convexity

Sometimes it is convenient to reformulate the introduced functions in an alternative way,

e.g., in the matrix form. Below we illustrate this for Problem SQK. Let q (x) be the quadratic

term of the objective function Z (x) in (6). We can rewrite q (x) in the form

q (x) = 2

n∑

i=1

αi xi

n∑

j=i

β j x j −
n∑

i=1

⎛
⎝αi

n∑

j=i

β j + βi

⎛
⎝

i∑

j=1

α j

⎞
⎠

⎞
⎠ xi +

n∑

i=1

⎛
⎝αi

n∑

j=i+1

β j

⎞
⎠ .

Table 1 Notation for Boolean

programming problems under

consideration

Notation Objective/formulation Additional constraints

HP H(x) (1) None

HPAdd F(x) (2) None

PosHP P(x) (3) None

PosHPK P(x) (4) (5)

SQK Z(x) (6) (5)

QK Q(x) (7) (5)

123

Ann Oper Res (2016) 240:39–94 43

See Appendix A of Kellerer and Strusevich (2010b) for a detailed proof that uses the obvious

fact that

x j = x2
j (8)

for a Boolean variable x j . This allows us to rewrite the objective function of (6) as

Z (x) = 2

n∑

i=1

αi xi

n∑

j=i

β j x j +
n∑

i=1

⎛
⎝μi − αi

n∑

j=i

β j − βi

⎛
⎝

i∑

j=1

α j

⎞
⎠ − νi

⎞
⎠ xi

+ K +
n∑

i=1

⎛
⎝αi

n∑

j=i+1

β j + νi

⎞
⎠

and to write down a matrix form of that function. Define the matrix

G(M) =

⎡
⎢⎢⎢⎣

Mα1β1 α1β2 · · · α1βn

α1β2 Mα2β2 · · · α2βn

...
...

. . .
...

α1βn α2βn · · · Mαnβn

⎤
⎥⎥⎥⎦ . (9)

Lemma 1 [Kellerer and Strusevich (2010b)] The objective function in (6) admits a repre-

sentation

Z (x) = xT Gx + γ T x + K ′, (10)

where G is a positive definite n × n matrix G(2) of the form (9) with M = 2, x =
(x1, x2, . . . , xn) and γ = (γ1, γ2, . . . , γn) are n−dimensional column vectors and K ′ is

a constant such that

γi = μi − αi

n∑

j=i

β j − βi

i∑

j=1

αi − νi , i = 1, 2, . . . , n;

K ′ = K +
n∑

i=1

⎛
⎝αi

n∑

j=i+1

β j

⎞
⎠ +

n∑

i=1

νi .

In fact, the objective functions of all versions of the formulated problems admit a matrix

representation similar to (10) with matrix G = G (2).

Skutella (2001) proves that matrix G(1) of the form (9) with αi and β j numbered according

to
α1

β1
≤

α2

β2
≤ . . . ≤

αn

βn

(11)

is positive semi-definite. Thus, under condition (11) matrix G(M) is positive definite for each

M > 1 (as the sum of a positive semi-definite matrix G(1) and a positive definite diagonal

matrix). This implies that under condition (11) the half-product function and its variants are

convex. The assumption on convexity is essential for developing fast approximation schemes

for the relevant problems and their scheduling applications; see Sects. 5 and 6.

2.3 Set-function form and supermodularity

Another alternative form of the introduced problems of Boolean programming is based on

reformulation of the objective functions as set-functions, rather than functions of 0–1 vari-

ables.

123

44 Ann Oper Res (2016) 240:39–94

Following Kellerer et al. (2015), we illustrate this for the half-product function H(x) of

the form (1). For a set N = {1, 2, . . . , n}, let 2N denote the family of all subsets of N . For a

sequence (p1, p2, . . . , pn) of n numbers define p(U) =
∑

j∈U p j for every non-empty set

U ∈ 2N and define p(∅) = 0. Similarly, we use notation α (U) , γ (U), etc. to denote partial

sums of the corresponding sequences (α1, α2, . . . , αn) or (γ1, γ2, . . . , γn), etc.

Given a function ϕ (x) with Boolean arguments x j ∈ {0, 1}, we can associate it with a

set-function ϕ (U). More precisely, a Boolean vector x = (x1, x2, . . . , xn) can be associated

with a set U ∈ 2N in such a way that element j ∈ N belongs to U if and only if x j = 1. We

see the Boolean and the set representation of a function as equivalent, and use both types of

notation, ϕ (x) and ϕ (U), whichever is more convenient. Using this notation, the knapsack

constraint (5) can be written as α (U) ≤ A. See Foldes and Hammer (2005) for a detailed

discussion of the link between the set-functions and Boolean functions.

We can rewrite function H(x) in the set-function form as

H (U) =
∑

i, j∈U ; i< j;
αiβ j − γ (U) , (12)

and the general quadratic function Q(x) as

Q (U) =
∑

i, j∈U ; i< j

qi j − γ (U) . (13)

In a similar way, the set-function representations can be derived for functions F(x), P(x)

and Z(x).

Problem HP of minimizing H(x) can be understood as the problem of finding a set-

minimizer U∗ such that the inequality H (U∗) ≤ H (U) holds for all sets U ∈ 2N .

The concepts of set-minimizers for set-functions ϕ ∈ {F, P, S} are defined analo-

gously. In terms of the set-functions, the problems that we consider in this paper can

be formulated as min
{
ϕ (U) |U ∈ 2N

}
if no additional constraints are imposed, and as

min
{
ϕ (U) |α (U) ≤ A, U ∈ 2N

}
, if an additional knapsack constraint is introduced.

A set-function ϕ : 2N → R is called submodular if for all sets X, Y ∈ 2N the inequality

ϕ(X ∪ Y) + ϕ(X ∩ Y) ≤ ϕ(X) + ϕ(Y)

holds, and supermodular if for all sets X, Y ∈ 2N the inequality

ϕ(X ∪ Y) + ϕ(X ∩ Y) ≥ ϕ(X) + ϕ(Y)

holds. A pseudo-Boolean function ϕ (x) is submodular (supermodular) if and only if all its

second order derivatives are non-positive (non-negative); see Nemhauser et al. (1978). Thus,

a quadratic pseudo-Boolean function is submodular (supermodular) if and only if all its

quadratic terms have non-positive (non-negative, respectively) coefficients while the signs of

the coefficients in the linear part are irrelevant; see Boros and Hammer (2002). Since the half-

product function H (U) is a special case of function Q (U) with non-negative coefficients

qi j = αiβ j , it follows that H (U) is a supermodular function. This fact is useful for deciding

the complexity status of the problem of maximizing the half-product function; see Sect. 8.

2.4 Approximation algorithms and schemes

Since Problem HP is NP-hard, the main focus of research of the outlined range of problems

is on design and evaluation of approximation algorithms and schemes.

123

Ann Oper Res (2016) 240:39–94 45

For a collection of decision variables x, consider a problem of minimizing a function

ϕ(x) that takes positive values. Recall that a polynomial-time algorithm that finds a feasible

solution xH such that ϕ(xH) is at most ρ ≥ 1 times the optimal value ϕ(x∗) is called a

ρ− approximation algorithm; the value of ρ is called a worst-case ratio bound. A family

of ρ−approximation algorithms is called a fully polynomial-time approximation scheme

(FPTAS) if ρ = 1 + ε for any ε > 0 and the running time is polynomial with respect to both

the length of the problem input and 1/ε. If a function ϕ(x) takes both positive and negative

values, then an FPTAS delivers a feasible solution xH such that ϕ(xH) − ϕ(x∗) ≤ ε |ϕ(x∗)|.
The latter definition is applicable to Problem HP, while the former definition is suitable for

problems PosHP, PosHPK, SQK and their scheduling applications. A special attention is paid

to the design of FPTASs that require strongly polynomial running time, i.e., time bounded

by a polynomial that depends on n and 1/ε only.

Among the results on the general Problem QK a lack of approximation algorithms is

especially noticeable, while for the linear knapsack problems the design of approximation

algorithms and schemes is one of the major directions of research, see Kellerer et al. (2004) and

Pisinger (2007). Unlike the general Problem QK, the problems related to minimization of the

half-product are NP-hard only in the ordinary sense and are solvable in pseudopolynomial

time, see Sects. 4.1, 5.1 and 6.1. This gives a hope for developing fully polynomial-time

approximation schemes for these problems, at least under some additional conditions that

may appear relevant for scheduling applications.

The problems of the outlined range, with and without a linear knapsack constraint, serve

as mathematical models of many scheduling problems, and approximation algorithms and

schemes for the Boolean programming problems can be adapted for the relevant scheduling

problems.

An interesting feature of the problems under consideration initially brought by Janiak

et al. (2005) and Erel and Ghosh (2008) is that from the point of view of approximability

there is a difference between minimizing a pure half-product function H (x) of the form (1)

and minimizing the function F (x) = H (x) + K . The presence of an additive constant K

may influence the behavior of approximation algorithms, e.g., an FPTAS for the problem of

minimizing function H (x) does not need to yield an FPTAS for the problem of minimizing

F . We discuss these issues in Sect. 4.

Additional aspects, also reviewed in this paper, include approximability issues of the prob-

lems of maximizing Boolean functions related to the half-product; see Sect. 8. Besides, we

also discuss differential approximation algorithms and schemes, which rely on an alternative

approach to evaluating the quality of an approximate solution; see Sect. 7.

3 Scheduling problems: formulations and reductions to Boolean
programming

In this section, we present a number of scheduling problems that have initiated the study on

the half-product minimization and on the symmetric quadratic knapsack problem. For each

scheduling problem discussed below we only mention its complexity status and provide its

reduction either to one of the Boolean programming problems introduced in Sect. 2 , such

as Problems HP, HPAdd, PosHP, PosHPK or SQK. The issues of developing approximation

schemes for these problems are discussed later in the paper.

In most scheduling problems reviewed in this paper, we are given a set N = {1, 2, . . . , n}
of jobs to be processed without preemption on a single machine. The processing of job j ∈ N

takes p j time units. There is a positive weight w j associated with job j , which indicates its

123

46 Ann Oper Res (2016) 240:39–94

relative importance. All values p j and w j are positive integers. The machine processes at

most one job at a time. The completion time of job j ∈ N in a feasible schedule S is denoted

by C j (S), or shortly C j if it is clear which schedule is referred to. In a specific problem, it

is required to minimize a function Z(S) that depends on the completion times C j (S). For all

problems under consideration S∗ denotes an optimal schedule, i.e., Z(S∗) ≤ Z(S) for any

feasible schedule S.

For all scheduling problems we use a classification scheme widely accepted in scheduling

theory that associates each problem with a three-field descriptor α|β|γ where α represents

the machine environment, β defines the job characteristics, and γ is the optimality criterion.

Unless stated otherwise, the jobs are numbered in such a way that

p1

w1
≤

p2

w2
≤ · · · ≤

pn

wn

. (14)

We call the sequence of jobs numbered in accordance with (14) a Smith sequence or a

WSPT sequence (Weighted Shortest Processing Time). Recall that in an optimal schedule

for the classical single machine problem of minimizing the sum of the weighted completion

times, the jobs are processed according to the WSPT sequence, see Smith (1956).

Throughout this paper W denotes the sum of all weights, i.e.,

W =
n∑

j=1

w j , (15)

while the total processing time of all jobs is denoted by

p(N) =
n∑

j=1

p j . (16)

Similarly, for a non-empty subset N ′ define p(N ′) :=
∑

j∈N ′ p j and additionally define

p(∅) := 0.

3.1 Scheduling with machine non-availability

Consider a scheduling model that belongs to the family of scheduling models with machine

availability constraints. We refer to the surveys by Lee (2004) and by Ma et al. (2010) for the

most recent reviews of deterministic scheduling under availability constraints. Assume that

for the processing machine there is a known non-availability interval I = [s, t], during which

the machine cannot perform the processing of any job. This non-availability interval can be

due to some scheduled activity other than processing (a maintenance period, a rest period,

etc.). The job that is affected by the non-availability interval is called the crossover job. There

are several possible scenarios to handle the crossover job. Under the non-resumable scenario,

the crossover job that cannot be completed by time s is restarted from scratch at time t . Under

the resumable scenario the crossover job is interrupted at time s and resumed from the point

of interruption at time t . It is required to minimize the total weighted completion time, i.e.,

the function

Z(S) =
n∑

j=1

w j C j (S).

Extending standard scheduling notation, we denote the resulting problem under the non-

resumable scenario by 1|h(1), N − res|
∑

w j C j , and that under the resumable scenario

by 1|h(1), Res|
∑

w j C j . Both problems are NP-hard in the ordinary sense and solvable

123

Ann Oper Res (2016) 240:39–94 47

in pseudopolynomial time by dynamic programming (DP), see Adiri et al. (1989) and Lee

(1996). On the other hand, if the weights are equal, the resulting problem 1|h(1), Res|
∑

C j

is solvable in O(n log n) time, while 1|h(1), N − res|
∑

w j C j remains NP-hard in the

ordinary sense; see Adiri et al. (1989) and Lee and Liman (1992).

For each problem 1|h(1), N − res|
∑

w j C j and 1|h(1), Res|
∑

w j C j , there exists an

optimal schedule in which the jobs sequenced before and after the crossover job follow the

WSPT rule. Both problems can be formulated in terms of Problem SQK, as shown by Kellerer

and Strusevich (2010a).

Given problem 1|h(1), N − res|
∑

w j C j , introduce a Boolean variable x j in such a way

that

x j =
{

1, if job j completes before interval I

0, otherwise
(17)

for each job j, 1 ≤ j ≤ n. If job j completes before the interval I , then

C j =
j∑

i=1

pi xi , (18)

while if it completes after the interval I then

C j = t +
j∑

i=1

p j (1 − x j),

Thus, the sum of the weighted completion times can be written as

Z (x) =
n∑

j=1

w j x j

j∑

i=1

pi xi +
n∑

j=1

w j (1 − x j)

⎛
⎝t +

j∑

i=1

pi (1 − xi)

⎞
⎠

=
∑

1≤i≤ j≤n

piw j xi x j +
∑

1≤i≤ j≤n

piw j (1 − xi)(1 − x j) + t

n∑

j=1

w j (1 − x j).

Taking into account (8), we deduce that problem 1 |h(1), N − res|
∑

w j C j can be for-

mulated as the following Boolean quadratic programming problem

Minimize Z (x) =
∑

1≤i< j≤n

piw j xi x j +
∑

1≤i< j≤n

piw j (1 − xi)(1 − x j)

+ t

n∑

j=1

w j (1 − x j) +
n∑

j=1

p jw j

subject to

n∑

j=1

p j x j ≤ s

x j ∈ {0, 1}, j = 1, 2, . . . , n.

(19)

If in (6) we define

α j = p j , β j = w j , μ j = 0, ν j = w j t, j = 1, 2, . . . , n; A = s, K =
n∑

j=1

p jw j ,

then (19) becomes an instance of (6).

For problem 1|h(1), Res|
∑

w j C j , suppose that a certain job is chosen as the crossover

job. Denote the processing time and the weight of the chosen crossover job by p and w,

123

48 Ann Oper Res (2016) 240:39–94

respectively, and renumber the remaining jobs taken according to the WSPT rule by the

integers 1, 2, . . . , m, where m = n − 1.

A feasible schedule for problem 1|h(1), Res|
∑

w j C j with a fixed crossover job can be

found by inserting the crossover job into a schedule for processing the jobs 1, 2, . . . , m under

the non-resumable scenario.

Let S∗ denote the optimal schedule that delivers the smallest value Z(S∗) of the objective

function, while S(p) denote a feasible schedule with a fixed crossover job with the processing

time p and weight w. Denote the smallest value of the function among all schedules with the

chosen crossover job by Z∗(p).

Define the Boolean decision variables x j such that (17) holds for each j, 1 ≤ j ≤ m. It

follows from (19) that for an arbitrary assignment of variables x j the sum of the weighted

completion times of the corresponding schedule Sm under the non-resumable scenario is

given by

Zm =
∑

1≤i< j≤m

piw j xi x j +
∑

1≤i< j≤m

piw j (1 − xi)(1 − x j)+ t

m∑

j=1

w j (1 − x j)+
m∑

j=1

p jw j ,

where
m∑

j=1

p j x j ≤ s, x j ∈ {0, 1}, j = 1, 2, . . . , m.

To convert a schedule Sm into a schedule S(p) that is feasible for problem

1|h(1), Res|
∑

w j C j with the chosen crossover job, we process the crossover job for px

time units before the non-availability interval starting at time

ym =
m∑

j=1

p j x j ,

where either x = 1, if

p < s − ym,

or

x =
s − ym

p
,

otherwise. The former case should be ignored, since the chosen job completes earlier than

time s and is not a crossover job. In the latter case, the chosen job is the crossover job that

is additionally processed for p(1 − x) time units starting at time t , and this increases the

starting (and the completion) time of each job with x j = 0 by p(1 − x).

The value of the objective function of the resulting schedule S(p) can be written as

Z(p) = Zm + F(ym, Wm, x), (20)

where Wm =
∑m

j=1 w j (1 − x j) and

F(ym, Wm, x) = w (t + p(1 − x)) + Wm p(1 − x).

3.2 Scheduling with a floating maintenance period

In the problems in Sect. 3.1, the start time of the machine non-availability interval of duration

Δ = t − s is fixed. By contrast, a floating machine non-availability interval can be viewed as

a non-availability period of length Δ that may start at any time, provided that it is completed

123

Ann Oper Res (2016) 240:39–94 49

no later than a given deadline d . A possible meaningful interpretation of this situation is that

the machine is subject to a compulsory maintenance during the planning period, the length

of the maintenance is Δ time units, it must be completed by the deadline d , and the decision-

maker has to decide when to start the maintenance period (MP). We denote the problem of

minimizing the total weighted completion time in these settings by 1|CM P ≤ d|
∑

w j C j ,

where CM P means the completion time of the MP. This problem is closely related to one of

the single machine scheduling problems with two competing agents, introduced and studied

by Agnetis et al. (2004) together with other two-agent scheduling problems. Suppose that

two agents intend to use a single machine, Agent A owns the A−jobs, while Agent B owns

the B−jobs. Agent A wants to minimize the sum of the weighted completion times of the

A−jobs, while Agent B wants to have all the B−jobs completed by a given deadline d . It is

easily verified that there exists an optimal schedule the B−jobs can be processed as a block,

without intermediate idle time, and this will not increase the objective function of Agent A.

Thus, provided that the processing times and weights of the A−jobs are equal to p j and

w j , respectively, and the total processing time of the B−jobs is equal to Δ, the two-agent

problem is equivalent to problem 1|CM P ≤ d|
∑

w j C j . Notice that the two-agent problem

is proved NP-hard in the ordinary sense; see Agnetis et al. (2004).

Given problem 1|CM P ≤ d|
∑

w j C j , introduce the associated problem

1|h(1), Res|
∑

w j C j discussed in Sect. 3.1, in which the fixed non-availability interval

of length Δ is defined by [s, t] = [d − Δ, d], while the processing times of the jobs and

their weights remain equal to p j and w j , respectively. As proved by Kellerer and Strusevich

(2010a), problem 1|CM P ≤ d|
∑

w j C j and the associated problem 1|h(1), Res|
∑

w j C j

are equivalent, i.e., any schedule feasible for the associated problem 1|h(1), Res|
∑

w j C j

can be transformed into a schedule for the original problem 1|CM P ≤ d|
∑

w j C j and vice

versa, without any change in the objective function value.

In practice, the main reason to run maintenance of a piece of equipment is to restore its

conditions, that may get worse during the previous processing. Although scheduling models

that address various deterioration effects have been extensively studied since the early 1990s,

the integrated models that combine machine deterioration and its maintenance are fairly new,

see, e.g., Yang and Yang (2010), Zhao and Tang (2010) and Rustogi and Strusevich (2014,

2015).

The model that we discuss below is based on the paper by Kellerer et al. (2013). A single

machine is subject to a so-called cumulative deterioration. Each job j ∈ N is associated

with an integer p j that is called its “normal” processing time. A maintenance period has to

be run exactly once during the planning period and it will restore the machine conditions

completely, i.e., after the MP the machine is as good as new. Under cumulative deterioration,

the actual processing time of a job depends on the sum of the normal times of the earlier

sequenced jobs. Wu et al. (2011) list about a dozen of various cumulative effects. In this

paper, we focus on the models with a specific cumulative deterioration effect, assuming that

the actual processing time p
[r]
j of a job j that is sequenced in position r, 1 ≤ r ≤ n, of a

permutation π = (π(1), π(2), . . . , π(n)) is given by

p
[r]
j = p j

(
1 +

r−1∑

k=1

pπ(k)

)
. (21)

This formula is a variant of the most common model for cumulative deterioration, see

Kuo and Yang (2006) and Gordon et al. (2008). We distinguish between two versions of the

maintenance periods.

123

50 Ann Oper Res (2016) 240:39–94

(i) Constant Maintenance: the duration of the MP is Δ time units, where Δ > 0.

(ii) Start Time Dependent Maintenance: the duration of the MP is Φτ + Δ time units,

provided that the MP starts at time τ ; here Φ > 0 and Δ ≥ 0.

For the latter type of maintenance, the later a machine is sent for maintenance, the longer

it takes to restore it to an acceptable condition. This type of maintenance has been introduced

by Kubzin and Strusevich (2005, 2006). We denote the problem of minimizing the makespan,

i.e., the maximum completion time, by 1 |Cumu, M P(Φ)| Cmax, provided that the machine

is subject to cumulative deterioration and the duration of the MP is equal to Φτ + Δ. The

version with constant maintenance, i.e., with Φ = 0, is denoted by 1 |Cumu, M P(0)| Cmax.

In a schedule with a single MP the jobs are split into two groups: group 1 consists of

the jobs scheduled before the maintenance and group 2 contains all other jobs. For problem

1 |Cumu, M P(Φ)| Cmax, consider a schedule S with two groups. Let Ni be the set of jobs in

group i and |Ni | = ni for i ∈ {1, 2}. Let π = (π(1), . . . , π(n1)) and σ = (σ (1), . . . , σ (n2))

denote a sequence of jobs of set N1 and N2, respectively. In accordance with (21), the

makespan of schedule S is given by

Cmax(S) = pπ(1) +
n1∑

r=2

pπ(r)

(
1 +

r−1∑

k=1

pπ(k)

)

+Φ

(
pπ(1) +

n1∑

r=2

pπ(r)

(
1 +

r−1∑

k=1

pπ(k)

))
+ Δ

+ pσ(1) +
n2∑

r=2

pσ(r)

(
1 +

r−1∑

k=1

pσ(k)

)

which implies

Cmax(S) = p(N) +
1

2

⎛
⎝p(N1)

2 + p(N2)
2 −

∑

j∈N

p2
j

⎞
⎠

+Φ

⎛
⎝p(N1) +

1

2

⎛
⎝p(N1)

2 −
∑

j∈N1

p2
j

⎞
⎠

⎞
⎠ + Δ (22)

for problem 1 |Cumu, M P(Φ)| Cmax and

Cmax(S) = p(N) +
1

2

(
p(N1)

2 + p(N2)
2
)
+ Δ −

1

2

∑

j∈N

p2
j (23)

for problem 1 |Cumu, M P(0)| Cmax.

Notice that (22) and (23) demonstrate that for problem 1 |Cumu, M P(Φ)| Cmax the order

of jobs in each group does not affect the makespan. This complies with Gordon et al. (2008),

where for the single machine problem with the deterioration effect (21) and no maintenance

the makespan has been shown to be sequence independent. Thus, the main issue in solving

problem 1 |Cumu, M P(Φ)| Cmax, including its simpler version 1 |Cumu, M P(0)| Cmax, is

to find an appropriate partition of the jobs into two groups. It is proved by Kellerer et al.

(2013) that both problems are NP-hard.

Given problem 1 |Cumu, M P(Φ)| Cmax, introduce a Boolean variable x j in such a way

that

x j =
{

1, if job j is scheduled in the first group

0, otherwise.

123

Ann Oper Res (2016) 240:39–94 51

Then problem 1 |Cumu, M P(Φ)| Cmax reduces to minimizing the function

FΦ (x) = (Φ + 1)

⎛
⎝ ∑

1≤i< j≤n

pi p j xi x j +
n∑

j=1

p j x j

⎞
⎠

+
∑

1≤i< j≤n

pi p j (1 − xi)(1 − x j) +
n∑

j=1

p j (1 − x j) + Δ, (24)

which is a half-product plus a constant.

It is worth noticing that for Φ = 0 the function (24) is the simplest form of function (6)

with α j = β j = μ j = ν j = p j , j = 1, 2, . . . , n.

3.3 Minimizing total weighted earliness and tardiness

In this model, the jobs have a common due date d . In a schedule S, a job is said to be early

if C j (S) − d ≤ 0, and its earliness is defined as E j (S) = d − C j (S). On the other hand, a

job is said to be late if C j (S) − d > 0, and its tardiness is defined as T j (S) = C j (S) − d .

The aim is to find a schedule that minimizes the function
∑

j∈N w j

(
E j (S) + T j (S)

)
.

Problems with an earliness-tardiness criterion are important in just-in-time manufacturing,

where the earliness generates holding costs and the tardiness incurs a penalty for a late

delivery. Notice that the weights are symmetric, i.e., for job j the same weight w j is applied,

no matter the job is late or early. Let p(N) be the total processing time of all jobs defined by

(16). If p(N) ≤ d , the due date is called large or nonrestrictive; otherwise, for p(N) > d , the

due date is called small or restrictive. This classification is traditional and is justified by the

fact that the size of the due date may influence a possible structure of a feasible schedule, as

well as the complexity and the approximability status of the problem. We denote the problems

to minimize the total weighted earliness-tardiness by 1|d j = d, p(N) ≤ d|
∑

w j (E j + T j)

if the due date is large and by 1|d j = d, p(N) > d|
∑

w j (E j + T j) if the due date is

small. As far as problem 1|d j = d, p(N) ≤ d|
∑

w j (E j + T j) is concerned, it is solvable

in O(n log n) time, provided that the weights are equal; otherwise, it is NP-hard in the

ordinary sense as proved by Hall and Posner (1991). If the due date is small then problem

1|d j = d, p(N) > d|
∑

(E j + T j) is NP-hard in the ordinary sense even if the weights are

equal; see Hall et al. (1991) and Hoogeveen and van de Velde (1991).

As proved by Hall and Posner (1991), for problem 1|d j = d, p(N) ≤ d|
∑

w j (E j + T j)

there exists an optimal schedule in which some job completes exactly at time d , i.e., it will

have neither earliness nor tardiness. There is no intermediate idle time in job processing, but

some idle time may occur before the first early job; we call this class of schedules Class 1.

As demonstrated by Hall et al. (1991), for problem 1|d j = d, p(N) > d||
∑

w j (E j +T j),

an optimal schedule can be sought for either in Class 1 described above or in Class 2 of

schedules, in which the early jobs are processed starting at time zero and are followed by the

straddling job that starts before time d and is completed after time d; in turn, the straddling

job is followed by the block of late jobs.

In a schedule of either class the early jobs are processed in the order opposite to their

numbering by the WSPT rule, while the jobs that start either at or after the due date are

processed in the order of their numbering.

Following Kellerer and Strusevich (2010b), to establish the relevance of these two schedul-

ing problems to Problem SQK and Problem HPAdd, introduce Boolean decision variables

x j =
{

1, if job j completes by the due date d

0, otherwise.
(25)

123

52 Ann Oper Res (2016) 240:39–94

In order to find a Class 1 schedule that is optimal for problem 1|d j = d, p(N) ≤
d|

∑
w j (E j + T j), consider the jobs in the order of their numbering defined by (14), and

compute the completion time and the earliness of a job j that completes by time d as

C j = d −
j−1∑

i=1

pi xi , E j =
j−1∑

i=1

pi xi .

If job j is starts after the due date, then its completion time and tardiness are given by

C j = d +
j∑

i=1

pi (1 − xi), T j =
j∑

i=1

pi (1 − xi).

Thus, we obtain that the objective function can be written as

n∑

j=1

w j (E j +T j) =
∑

1≤i< j≤n

piw j xi x j +
∑

1≤i< j≤n

piw j (1−xi)(1−x j)+
n∑

j=1

p jw j (1−x j),

(26)

which implies that the problem reduces to Problem HPAdd. This fact has also been pointed

out in Erel and Ghosh (2008).

On the other hand, for problem 1|d j = d, p(N) > d|
∑

w j

(
E j + T j

)
finding the best

schedule in Class 1 reduces to minimizing (26) subject to the knapsack constraint, i.e., reduces

to the problem

Minimize Z (x) =
∑

1≤i< j≤n

piw j xi x j +
∑

1≤i< j≤n

piw j (1 − xi)(1 − x j)

+
∑n

j=1 p jw j (1 − x j)

subject to

n∑

j=1

p j x j ≤ d

x j ∈ {0, 1}, j = 1, 2, . . . , n.

(27)

If we set

α j = p j , β j = w j , μ j = 0, ν j = w j p j , j = 1, 2, . . . , n, A = d, K = 0 (28)

it follows that (27) and (6) coincide, i.e., the problem defined by (27) is Problem SQK.

For problem 1|d j = d, p(N) > d|
∑

w j

(
E j + T j

)
, in order to find the best schedule in

Class 2 suppose that a certain job is chosen as the straddling job. Renumber the remaining

jobs taken according to the WSPT rule by the integers 1, 2, . . . , m, where m = n − 1.

A feasible schedule of Class 2 with a fixed straddling job can be found by inserting the

chosen job into a schedule Sm , the best Class 1 schedule for processing the jobs 1, 2, . . . , m.

If such an insertion is successful, it will increase the earliness of each early job and the

tardiness of each tardy job in schedule Sm .

Let p and w denote the processing time and the weight of the job that is chosen as a possible

straddling job. Renumber the remaining jobs in the WSPT order by the numbers 1, 2, . . . , m.

Take a feasible schedule Sm for these jobs that belongs to Class 1. Such a schedule is defined

by a partition of the jobs into early and late, i.e., by an assignment of the Boolean variables

(25). The value of the objective function for schedule Sm is given by

Zm =
∑

1≤i< j≤m

piw j xi x j +
∑

1≤i< j≤m

piw j (1 − xi)(1 − x j) +
m∑

j=1

p jw j

(
1 − x j

)
,

123

Ann Oper Res (2016) 240:39–94 53

where
m∑

j=1

p j x j ≤ d.

The cases that either
∑m

j=1 p j x j = d or
∑m

j=1 p j x j + p ≤ d must be ignored, since the

chosen job cannot be inserted as straddling. It is obvious that the problem of minimizing Zm

is of the same structure as problem (27).

Compute

x =
d −

∑m
j=1 p j x j

p
.

We only need to consider the case that 0 < x < 1. To convert a schedule Sm into a

schedule S that is feasible for the original problem with the chosen straddling job, we reduce

the starting time of each early job by px and start the straddling job at time
∑m

j=1 p j x j . The

straddling job is processed for p(1 − x) time units after time d , thereby creating tardiness

and forcing all other tardy jobs to start p(1 − x) time units later.

3.4 Minimizing total weighted tardiness

Here it is required to minimize the total weighted tardiness with respect to a common due

date. We denote this problem by 1|d j = d|
∑

w j T j . Obviously, it only makes sense to

consider the instances for which p(N) > d . This problem is NP-hard in the ordinary sense,

as proved by Yuan (1992). For this problem, Lawler and Moore (1969) provide a dynamic

programming (DP) algorithm that requires O(n2d) time and demonstrate that the problem

with equal weights is solvable in O(n2) time.

This problem can be handled similarly to finding a schedule of Class 2 for problem

1|d j = d, p(N) > d|
∑

w j (E j + T j), see Kellerer and Strusevich (2006). Introduce the

Boolean decision variables

x j =
{

1, if job j completes after the due date d

0, otherwise.

Let p and w denote the processing time and the weight of the job that is chosen as a possible

straddling job. Renumber the remaining jobs in the WSPT order by the numbers 1, 2, . . . , m.

The problem of scheduling the jobs 1, 2, . . . , m reduces to maximizing the function

Zm =
m∑

j=1

w j

⎛
⎝

j∑

i=1

pi xi

⎞
⎠ x j =

∑

1≤i≤ j≤m

piw j xi x j ,

subject to

m∑

j=1

p j

(
1 − x j

)
≤ d

x j ∈ {0, 1}, j = 1, 2, . . . , m.

Given the values of x j ∈ {0, 1}, j = 1, 2, . . . , m, we can create the corresponding

schedule Sm scheduling the jobs with x j = 0 as the block of early jobs and the jobs with

x j = 1 as the block of late jobs; the jobs of each block are sequenced in the order of their

numbering. The chosen straddling job is inserted to start at time
∑m

j=1 p j

(
1 − x j

)
.

123

54 Ann Oper Res (2016) 240:39–94

Although the function Zm above is not symmetric in the sense of the objective in (6), it

possesses structural properties that allow us to use for its optimization and approximation

the algorithmic ideas developed for the symmetric functions.

3.5 Minimizing completion time variance

Given a schedule S for a single machine scheduling problem, the average completion time

is defined as

C(S) =
1

n

n∑

j=1

C j (S),

and the completion time variance (CTV) is defined as

V (S) =
1

n

⎛
⎝

n∑

j=1

C j (S) − C(S)

⎞
⎠

2

.

We denote the problem of minimizing the CTV by 1 || V . Since the 1970s, the problem has

been known to be applicable in various contexts, see, e.g., Merten and Muller (1972) where

this objective function is first introduced. Cheng and Kubiak (2005) refer to Kanet (1981) to

stress that the CTV as a measure of the schedule quality “is applicable to any service and

manufacturing setting where it is desirable to provide jobs or customers with approximately

the same level of service” .

An extended version of the problem in which the jobs have weights w j and the purpose

is to minimize the weighted CTV defined by

W V (S) =
n∑

j=1

w j

⎛
⎝C j (S) −

1

W

n∑

j=1

w j C j (S)

⎞
⎠

2

,

where W is the sum of all weights as defined by (15); see Merten and Muller (1972) and Cai

(1995). We call this problem 1 || W V . As agreed earlier, the jobs are numbered in accordance

with (14); in the non-weighted case this numbering reduces to p1 ≤ p2 ≤ . . . ≤ pn .

The objective function V (S) possesses several interesting properties. One of them, estab-

lished by Merten and Muller (1972), holds for any sequence π = (π(1), π(2), . . . , π(n)) of

jobs. The value of the CTV for the jobs taken in this sequence is equal to that for the jobs

taken in the “almost reversed” sequence π ′ = (π(1), π(n), π(n − 1), . . . , π(2)).

A permutation π = (π(1), π(2), . . . , π(n)) in which the shortest job 1 is placed in a

position k, 1 ≤ k ≤ n, is called V −shaped if

pπ(1) ≥ · · · ≥ pπ(k) ≤ pπ(k+1) ≤ · · · pπ(n).

Eilon and Chowdhury (1972) show that for problem 1 || V there exists an optimal sequence

π that is V −shaped and the longest job is in the first position, i.e., π(1) = n. Cai (1995)

extends this result to problem 1 || W V , provided that the weights are agreeable, i.e., the jobs

can be numbered so that

p1 ≤ p2 ≤ · · · ≤ pn and w1 ≥ w2 ≥ · · · ≥ wn . (29)

It is pointed out by Bagchi et al. (1987) that problem 1 || V is equivalent to problem

1
∣∣d j = d

∣∣ 1
n

∑(
C j − d

)2
of minimizing the mean squared deviation of the completion times

with respect to a common due date d. De et al. (1989) discuss the differences in the properties

123

Ann Oper Res (2016) 240:39–94 55

of problem 1
∣∣d j = d

∣∣ 1
n

∑(
C j − d

)2
that depend on a relative value of d; these issues are

similar to restrictive and non-restrictive due dates for the problem from Sect. 3.3.

Kubiak (1993) settles the complexity status of problem 1 || V by proving its NP-hardness

in the ordinary sense. Several DP algorithms are known to solve the problem in pseudopoly-

nomial time, but it remains unknown whether problem 1 || W V with general weights is

NP-hard in the strong sense. Kubiak (1995) reduces problem 1 || V to (an NP-hard) problem

of maximizing a quadratic submodular function.

Starting from Kubiak (1995), there have been several attempts to write out problem 1 || V

as a Boolean programming problem with a quadratic function, which we now call the half-

product; see, e.g., Jurisch et al. (1997) and Badics and Boros (1998). In particular, Badics

and Boros (1998) give a formulation of problem 1 || V in terms of Problem HPAdd. The jobs

are scanned in the order of their numbering and following decision variables are used:

x j =
{

1, if job j is sequenced before job 1

0, otherwise,

where xn = 1, since an optimal V −shaped sequence starts with that job. In this case, the

completion time of job j ∈ N is given by

C j =
(
1 − x j

) j∑

k=1

pk + p j +
n−1∑

k= j+1

pk xk + pn,

so that the objective function V as a function of n Boolean variables with xn = 1 can be

written as

n2V (x1, x2, . . . , xn−1, 1) = H (x1, x2, . . . , xn−1) + K ,

where H (x1, x2, . . . , xn−1) is a half-product with n − 1 variables and

K =
n∑

j=1

j (n − j) p2
j + 2

∑

1≤i< j≤n

i (n − j) pi p j .

Cheng and Kubiak (2005) reduce problem 1 || W V with agreeable weights to Prob-

lem HPAdd with the decision variables

x j =
{

1, if job j is sequenced after job 1

−1, otherwise,

where x1 = −1.

3.6 Scheduling with controllable processing times

In scheduling with controllable processing times, the actual durations of the jobs are not

fixed in advance, but have to be chosen from a given interval. This area of scheduling has

been active since the 1980s, see surveys by Nowicki and Zdrzałka (1990) and by Shabtay

and Steiner (2007).

Normally, for a scheduling model with controllable processing times two types of decisions

are required: (i) each job has to be assigned its actual processing time, and (ii) a schedule has

to be found that provides a required level of quality. There is a penalty for assigning shorter

actual processing times, since the reduction in processing time is usually associated with an

additional effort, e.g., allocation of additional resources or improving processing conditions.

A quality of the resulting schedule is measured with respect to the cost of assigning the actual

processing times that guarantee a certain scheduling performance.

123

56 Ann Oper Res (2016) 240:39–94

The model that is of interest for the purpose of this survey is the following problem of

scheduling jobs on a single machine. For each job j ∈ N , its processing time p j is not

given in advance but has to be chosen by the decision-maker from a given interval
[

p
j
, p j

]
.

That selection process can be seen as either compressing (also known as crashing) the longest

processing time p j down to p j , and the value y j = p j − p j is called the compression amount

of job j . Compression may decrease the completion time of each job j but incurs additional

cost v j y j , where v j is a given non-negative unit compression cost. The goal is to find the

actual processing times and the sequence of jobs such that the sum of the total weighted

completion time
∑

j∈N w j C j and the total compression cost
∑

j∈N v j y j is minimized. We

denote this problem by 1
∣∣p j = p j − y j

∣∣∑
j∈N w j C j +

∑
j∈N v j y j .

Vickson (1980) proves that in an optimal schedule each job is either fully compressed,

i.e., p j = p
j

or fully decompressed, i.e., p j = p j .

In this review, we focus of a special case of the problem in which p
j

= 0. The result-

ing problem in NP-hard in the ordinary sense, as independently proved by Hoogeveen and

Woeginger (2002) and by Wan et al. (2001). Combining the results by Vickson (1980) and

the optimality of the WSPT rule (14) for minimizing
∑

j∈N w j C j on a single machine

established by Smith (1956), it follows that in an optimal sequence some jobs will have

zero processing times (and therefore zero completion times), while the other jobs will be

sequenced in non-decreasing order of p j/w j and for each of these jobs the compression

cost is zero.

Janiak et al. (2005) and Kellerer and Strusevich (2013) show that problem 1
∣∣p j = p j − y j

∣∣∑
j∈N w j C j +

∑
j∈N v j y j reduces to Problem PosHP. Introduce the Boolean decision vari-

ables

x j =
{

1, if p j = p j

0, otherwise
.

The completion time of job j satisfies (18), and the objective function can be written as

as

n∑

j=1

w j C j +
n∑

j=1

v j y j =
n∑

j=1

w j x j

j∑

i=1

pi xi +
n∑

j=1

p jv j

(
1 − x j

)

=
n∑

1≤i< j≤n

piw j xi x j +
n∑

j=1

p jw j x j +
n∑

j=1

p jv j

(
1 − x j

)
,

The last expression is a positive half-product function of the form (3) with

α j = p j , β j = w j , μ j = p jw j , ν j = p jv j , K = 0.

3.7 Scheduling with rejection

Consider the following model of scheduling with rejection introduced by Engles et al. (2003).

The decision-maker has to decide which of the jobs of set N to accept for processing and

which to reject. This decision splits the set of jobs into two subsets, NA and NR = N\NA

of accepted and rejected jobs, correspondingly. Each rejected job j incurs a penalty of v j .

The purpose is to minimize the sum of the total weighted completion time
∑

j∈NA
w j C j

of the accepted jobs and the total rejection penalty
∑

j∈NR
v j . We denote this problem by

1 |rej |
∑

j∈NA
w j C j +

∑
j∈NR

v j . Engles et al. (2003) show that this problem is NP-hard in

the ordinary sense.

123

Ann Oper Res (2016) 240:39–94 57

In practice rejection decisions are often taken when the processing capabilities will not

allow the completion of all jobs by a given deadline. Kellerer and Strusevich (2013) intro-

duce a restricted version of the problem with rejection, in which all accepted jobs must be

completed by a given time d . We denote this problem by 1
∣∣rej, C j ≤ d

∣∣∑
j∈NA

w j C j +∑
j∈NR

v j .

The objective function in each of the problems 1 |rej |
∑

j∈NA
w j C j +

∑
j∈NR

v j and

1
∣∣rej, C j ≤ d

∣∣∑
j∈NA

w j C j +
∑

j∈NR
v j is a positive half-product function of the form

(3).

As before, it follows from the optimality of the WSPT rule for minimizing the total

weighted completion time
∑

j∈N w j C j on a single machine that in an optimal sequence the

accepted jobs will be sequenced in accordance with (14). Renumber the jobs in this order,

and introduce the Boolean decision variables

x j =
{

1, if j is accepted

0, otherwise
.

Then an accepted job j completes at time C j given by (18), and the objective function

can be written as

∑

j∈NA

w j C j +
∑

j∈NR

v j =
n∑

j=1

w j x j

j∑

i=1

pi xi +
n∑

j=1

v j

(
1 − x j

)

=
n∑

1≤i< j≤n

piw j xi x j +
n∑

j=1

p jw j x j +
n∑

j=1

v j

(
1 − x j

)
,

i.e., as a positive half-product function of the form (3) with

α j = p j , β j = w j , μ j = p jw j , ν j = v j , K = 0.

Thus, problem 1 |rej |
∑

j∈NA
w j C j +

∑
j∈NR

v j is Problem PosHP. For problem

1
∣∣rej, C j ≤ d

∣∣∑
j∈NA

w j C j +
∑

j∈NR
v j the condition that all accepted jobs complete

no later than time d can be written in the form of an additional knapsack constraint

n∑

j=1

p j x j ≤ d,

so that the problem can be seen as Problem PosHPK of the form (4).

3.8 Scheduling with controllable release dates

In scheduling with controllable release dates, the actual times at which the jobs enter the

system are not fixed in advance, but have to be chosen from a given interval. These problems

can serve as mathematical models of situations that arise in supply chain scheduling, i.e.,

when the times by which the supplier delivers the required materials to the manufacturer can

be negotiated.

If the due dates r j are fixed and the jobs are numbered in non-decreasing order of their

values, then the optimal makespan, i.e., the maximum completion time, Cmax is given

Cmax(S∗) = max
1≤u≤n

⎧
⎨
⎩ru +

n∑

j=u

p j

⎫
⎬
⎭ .

123

58 Ann Oper Res (2016) 240:39–94

In this review, we focus on the model studied by Shakhlevich and Strusevich (2006),

in which the processing times are fixed and equal to p j , and the decision-maker chooses

the actual values of the release dates r j from a given interval
[
r , r̄

]
, the same for all jobs

j ∈ N . We further assume that the length of the interval exceeds the sum of all processing

times. Reducing r̄ to some actual value r j , r ≤ r j ≤ r̄, incurs additional cost β j y j , where

y j = r̄ − r j is the compression amount of the corresponding release date. The goal is to find

the actual release dates and the sequence of jobs such that the sum of the makespan Cmax

and the total compression cost of the release dates
∑

j∈N v j y j is minimized. We denote this

problem by 1
∣∣r j ∈

[
r , r̄

]∣∣ Cmax +
∑

j∈N v j y j .

Let the jobs that become available earlier than time r̄ be called early jobs, while the other

jobs are called late. Notice that the late jobs have a common release date r̄ , while for the

early jobs the release dates have been reduced individually. As proved by Shakhlevich and

Strusevich (2006), in an optimal schedule either all jobs are late or there exists a sequence

of early jobs with the last early job completed at time r̄ . It follows from the optimality of

the WSPT rule (14) for minimizing
∑

j∈N w j C j on a single machine established by Smith

(1956), that in an optimal sequence the early jobs will be sequenced in non-increasing order

of p j/v j .

As in Kellerer and Strusevich (2013), considering the jobs in this order, introduce the

Boolean decision variables

x j =
{

1, if j is sequenced early

0, otherwise
.

Then 1
∣∣r j ∈

[
r , r̄

]∣∣ Cmax +
∑

j∈N v j y j reduces to minimizing the function

Cmax +
∑

j∈N

v j y j =

⎛
⎝r̄ +

n∑

j=1

p j

(
1 − x j

)
⎞
⎠ +

n∑

1≤i< j≤n

vi p j xi x j +
n∑

j=1

p jv j x j ,

i.e., to Problem PosHP.

3.9 Scheduling on two identical parallel machines

Unlike in all other scheduling problems previously discussed in this section, here the jobs

have to be processed without preemption on two parallel identical machines M1 and M2. The

processing time of job j on any of these two machines is p j . In one problem that we consider it

is required to minimize the makespan Cmax, while in the other problem the objective function

is the weighted sum of the completion times. We denote these two problems by P2 || Cmax

and P2 ||
∑

w j C j , respectively. Assume that the jobs are numbered arbitrary in the case

of problem P2 || Cmax and in accordance with the WSPT rule (14) in the case of problem

P2 ||
∑

w j C j .

Both problems can be formulated in terms of quadratic Boolean programming (although

problem P2 || Cmax is essentially the well-known subset-sum problem, a special case of the

linear knapsack problem). The first formulations are given by Jurisch et al. (1997). Below

we present the formulations of these problems that are due to Kubiak (2005) and both use a

half-product function, written with respect to the “exclusive OR” operation ⊕. Recall that for

two Boolean variables xi and x j we have that xi ⊕ x j = 1 if and only if exactly one of these

variables is equal to 1. More formally, for a Boolean variable x ∈ {0, 1}, define x = 1 − x .

Then xi ⊕ x j = xi x j + x i x j . For a scheduling problem with parallel machines define

123

Ann Oper Res (2016) 240:39–94 59

x j =
{

1, if job j is scheduled on machine M1

0, otherwise
.

Then for a schedule in which the jobs are considered in the order of a chosen numbering

a job j assigned to machine M1 completes at time C j that satisfies (18); otherwise, its

completion time is

C j =
j∑

k=1

pk (1 − xk) .

For problem P2 || Cmax, in order to minimize the makespan it suffices to minimize the

product of the completion times of the last jobs assigned to the machines, i.e., to minimize∑n
j=1 p j x j

∑n
j=1 p j

(
1 − x j

)
. It can be verified that

n∑

j=1

p j x j

n∑

j=1

p j

(
1 − x j

)
= p(N)

n∑

j=1

p j x j −
n∑

j=1

p2
j x j − 2

∑

1≤i< j≤n

pi p j xi x j

=
n∑

j=1

(
p(N) − p j

)
p j x j − 2

∑

1≤i< j≤n

pi p j xi x j

=
∑

1≤ j<i≤n

pi p j xi ⊕ x j .

For problem P2 ||
∑

w j C j , we derive

n∑

j=1

w j C j =
n∑

j=1

w j x j

j∑

i=1

pi xi +
n∑

j=1

w j

(
1 − x j

) j∑

i=1

pi (1 − xi) ,

i.e., the problem reduces to Problem HPAdd. It can be also seen that

n∑

j=1

w j C j =
∑

1≤ j<i≤n

wi p j xi ⊕ x j .

4 Half-product: approximation and scheduling applications

In this section, we review the known results regarding the existing FPTASs for Problem HP,

the problem of minimizing the half-product function H(x) of the form (1). We also discuss

the implications to the relevant scheduling problems.

4.1 Approximation schemes

Badics and Boros (1998) present the first systematic study on Problem HP, although similar

problems of quadratic Boolean programming appeared in the literature earlier, normally in

connection with scheduling problems, see, e.g., Kubiak (1995) and Jurisch et al. (1997).

Badics and Boros (1998) give an O(n4)−time algorithm that recognizes whether a quadratic

function of n Boolean variables is a half-product. They also give the first FPTAS for the prob-

lem of minimizing the half-product function H(x) of the form (1) that requires O(n2 log Â/ε)

time, where Â =
∑n

j=1 α j . Notice that this running time is not strongly polynomial with

respect to the length of the input.

123

60 Ann Oper Res (2016) 240:39–94

Erel and Ghosh (2008) give the first FPTAS that requires strongly polynomial time

O(n2/ε). Below we present an extended version of their FPTAS adapted by Sarto Basso and

Strusevich (2014) for solving Problem HP with an additional knapsack constraint (5). Thus, in

terms of set-functions the problem under consideration is min {H (U) |α (U) ≤ A, U ⊆ N }.
We start by presenting a dynamic programming algorithm (DP) from Erel and Ghosh

(2008) and Sarto Basso and Strusevich (2014) and then explain how this algorithm can

be converted into an FPTAS. Our description is done in terms of set-functions. The DP

algorithm scans the items in the sequence (1, 2, . . . , n) and manipulates the states of the

form (Uk, α(Uk), H (Uk)), where Uk ⊆ {1, 2, . . . , k} is the set of the selected elements

that represents a partial solution, α(Uk) is the weight of the knapsack and H (Uk) is the

value of the objective function for the partial solution. Given a state (Uk, α(Uk), H (Uk)),

it is always feasible not to include the next element k + 1 into the knapsack, while a new

element is included only if it fits the knapsack and decreases the current value of the objective.

Notice that for all generated partial solutions the values of the objective function are negative.

Formally, the algorithm can be stated as follows.

Algorithm DPHP

Step 1 Initialize (U0, α(U0), H (U0)) = (∅, 0, 0).

Step 2 For all k from 0 to n − 1 do:

(a) Make transitions from each stored state of the form (Uk , α(Uk), H (Uk)) into the state

(Uk+1, α(Uk+1), H (Uk+1)) by setting Uk+1 = Uk, α(Uk+1) = α(Uk), H (Uk+1) =
H (Uk). Additionally, if α(Uk)+αk+1 ≤ A (i.e., item k+1 fits into the knapsack) and

α(Uk)βk+1 − γk+1 < 0 (item k + 1 makes a negative contribution into the objective

function), create another state (Uk+1, α(Uk+1), H (Uk+1)) by setting Uk+1 = Uk ∪
{k + 1} , α(Uk+1) = α(Uk) + αk+1, H (Uk+1) = H (Uk) + α(Uk)βk+1 − γk+1.

(b) For all generated states (Uk+1, α(Uk+1), H (Uk+1)) with the same α(Uk+1) value,

retain the one with smallest value of H (Uk+1) .

Step 3 Output the optimal value of the function that corresponds to the smallest value of

H (Un) among all found states of the form (Un, α(Un), H (Un)).

The running time of the algorithm is O (n A). Its correctness follows from the fact

that for two states (Uk+1, α(Uk+1), H (Uk+1)) and (U ′
k+1, α(U ′

k+1), H
(
U ′

k+1

)
) generated

in iteration k we can keep only the former state, provided α(Uk+1) ≤ α(U ′
k+1) and

H (Uk+1) ≤ H
(
U ′

k+1

)
. This is proved in Badics and Boros (1998) for their DP for problem

min {H (U) |U ⊆ N }, and the proof carries over if the knapsack constraint is added.

To convert Algorithm DP into an FPTAS, Erel and Ghosh (2008) use a popular technique

of thinning the solution space, making sure that the number of states kept after each iteration

is O (n/ε). For an iteration k, 0 ≤ k ≤ n − 1, compute L Bk+1, the smallest objective

function value among all states (Uk+1, α(Uk+1), H (Uk+1)) generated after Step 2(a) of

Algorithm DP. Recall that L Bk+1, as well as all other function values computed by the

algorithm, is negative. Thus, since L Bk+1 ≥ H (U∗), we deduce that |L Bk+1| ≤ |H (U∗)|.
For a given ε > 0, define Δk+1 = (ε |L Bk+1|) /n = −εL Bk+1/n. It follows that for each k,

0 ≤ k ≤ n − 1, the inequality Δk+1 ≤ ε |H (U∗)| /n holds.

To convert Algorithm DPHP into an FPTAS for problem min {H (U) |α(U) ≤ A, U ⊆ N }
we only need to replace Step 2(b) by another storage mechanism:

(i) Divide the interval [L Bk+1, 0] into subintervals of width Δk+1.

(ii) From all states (Uk+1, α(Uk+1), H (Uk+1)) generated in Step 2(a) with H (Uk+1) in the

same subinterval, retain the one with the smallest α(Uk+1).

123

Ann Oper Res (2016) 240:39–94 61

Notice that the number of subintervals created in each iteration is O (n/ε). Since for each

subinterval at most one state is kept with the function value in that subinterval, the total number

of states kept in each iteration in O (n/ε). The resulting algorithm outputs a set Uε such that

H (Uε) − H (U∗) ≤ ε |H (U∗)| and requires O
(
n2/ε

)
time, i.e., behaves as an FPTAS for

problem min {H (U) |α (U) ≤ A, U ⊆ N }, as well as for the less restricted Problem HP.

Notice that time O
(
n2/ε

)
is the fastest possible for an FPTAS for these problems, since

computing the objective function for fixed values of decision variables (or, equivalently, a

given set U) requires O
(
n2

)
time.

Kubiak (2005) introduces another type of the half-product function that is defined in terms

of the exclusive OR operation (see Sect. 3.9) as follows

Hα,β (x) = −
∑

1≤ j<i≤n

αiβ j xi ⊕ x j . (30)

This function is called the symmetric half-product, since for any vector e = (e1, e2, . . . , en)

with positive components the equalities Hα,β (x) = Hα−e,β (x) + He,β (x) and Hα,β (x) =
Hα,β−e (x)+Hα,e (x) hold. For scheduling applications, the ordered symmetric half-products

are of special interest, in which either the components of the vector α = (α1, α2, . . . , αn) are

non-decreasing or the components of the vector β = (β1, β2, . . . , βn) are non-increasing.

In either case, Kubiak (2005) shows that applying a dynamic programming algorithm to the

instance of the problem with appropriately rounded components of the ordered vector results

into an FPTAS that requires O(n2/ε) time.

It is pointed by Badics and Boros (1998) that algorithms that behave as an FPTAS for the

problem min {H (U) |U ⊆ N }, i.e., Problem HP, do not necessarily deliver an ε−approximate

solution for the problem min {F (U) |U ⊆ N }, i.e., Problem HPAdd with F (U) = H (U)+
K . In other words, the inequality H (Uε) − H (U∗) ≤ ε |H (U∗)| does not imply F (Uε) −
F (U∗) ≤ ε |F (U∗)|. This is due to the fact that H (U∗) < 0 and it is possible that |F (U∗)| =
|H (U∗) + K | < |F (U∗)|, despite the fact that both Problems HP and HPAdd have the same

optimal solution U∗ and for any set U the equality F (U) − F (U∗) = H (U) − H (U∗)
holds.

A systematic discussion of these issues is provided by Kubiak (2005) and Janiak et al.

(2005). Kubiak (2005) proves the following statement.

Theorem 1 [Kubiak (2005)] Let Uε be a solution delivered by an FPTAS for prob-

lem min {H (U) |U ⊆ N }. If |H (U∗) /F (U∗)| ≤ α for some positive α > 0, then

F (Uε) − F (U∗) ≤ εαF (U∗).

If the condition of Theorem 1 holds for an α that is bounded from above by a polynomial

of the length of the input of Problem HPAdd, then an FPTAS by Erel and Ghosh applied to

Problem HP with ε′ = ε/α gives a solution F (Uε) − F (U∗) ≤ εαF (U∗), i.e., behaves as

an FPTAS for minimizing the function F (U) that requires O
(
n2α/ε

)
time.

For various scheduling applications, there are examples for which α is either a constant

or a polynomial of n; see Sect. 4.2. On the other hand, Janiak et al. (2005) demonstrate for

Problem HPAdd related to problem 1
∣∣p j = p j − y j

∣∣ ∑
j∈N w j C j +

∑
j∈N v j y j (see Sect.

3.6) that |H(x∗)/F(x∗)| > F(n) for any positive rational function of n.

Erel and Ghosh (2008) develop another approach to Problem HPAdd. Suppose that a lower

bound FL B and an upper bound FU B on the optimal value of the function F are available,

i.e., FL B ≤ F (U∗) ≤ FU B .

Theorem 2 [Erel and Ghosh (2008)] For Problem HPAdd, let FL B and FU B denote a lower

bound and an upper bound, respectively, on the optimal value of the objective function, i.e.,

123

62 Ann Oper Res (2016) 240:39–94

for min {F (U) |U ⊆ N } the inequalities FL B ≤ F (U∗) ≤ FU B hold. The problem admits

an approximation algorithm that delivers a solution U0 such that F (U0) − FL B ≤ εFL B in

O(βn2/ε) time, where β ≥ FU B/FL B .

For the algorithm that is guaranteed by Theorem 2 to be an FPTAS it is required that β

should be bounded from above by a polynomial of the length of the input.

If for some initial lower and upper bounds the ratio β ≥ FU B/FL B is not bounded by a

polynomial, then Erel and Ghosh explain how to tighten the bounds by a procedure similar

to binary search.

Theorem 3 [Erel and Ghosh (2008)] Under the conditions of Theorem 2, Problem HPAdd

admits a general FPTAS that requires O(n2 log β/ε) time.

In particular, if for problem min {F (U) |U ⊆ N } the initial FU B is equal to K , and the

initial FL B is set to be equal to 1/ε, then the general FPTAS guaranteed by Theorem 3

requires O
(
n2 log (K ε) /ε

)
time. Since normally we may assume that ε < 1, this gives the

running time of O
(
n2 log (K) /ε

)
.

4.2 Scheduling applications

We start with the problem that is probably most studied in connection with the half-product

minimization, namely problem 1 || V of minimizing the completion time variance, see Sec-

tion 3.5. The first FPTAS for problem 1 || V is given by De et al. (1992). It takes O
(
n3/ε

)

time and does not involve any reformulation in terms of quadratic Boolean programming.

Badics and Boros (1998) adapt their FPTAS for Problem HP to problem 1 || V but obtain an

algorithm that requires O(n3 log p(N)/ε).

The best time of an FPTAS for problem 1 || V known so far is O(n2/ε) and is achieved

in several papers, all based on a quadratic Boolean reformulations of the problem:

(i) Kubiak et al. (2002) use a reformulation of problem 1 || V in terms of a function similar

to (30);

(ii) Kubiak (2005) reformulates the problem as a symmetric ordered half-product;

(iii) it is shown by Kubiak et al. (2002) that for the half-product formulation of problem

1 || V the inequality |H(x∗)/F(x∗)| ≤ 3 holds, so that Theorem 1 with α = 3 implies

that the FPTAS of Erel and Ghosh (2008) gives an ε−approximate solution to problem

1 || V in O(n2/ε) time.

For problem 1 || W V to minimize the weighted completion time variance with agreeable

due dates Cai (1995) gives an approximation scheme that requires O
(
W n2/ (wminε)

)
, where

W is the sum of all weights defined by (15) and wmin is the smallest weight. Notice that if

applied to problem 1 || V to minimize the completion time variance, this scheme is an FPTAS

that requires O
(
n3/ε

)
time, since W = n and wmin = 1; this corresponds to best running

time for the problem known at the time, see De et al. (1992).

Assume that in problem 1 || W V the jobs are numbered in accordance with (29). The first

FPTAS for problem 1 || W V is due to Woeginger (1999) and requires O(n5 log5 (max {pn, w1,

n, 1/ε}) /ε5) time. An improved algorithm by Cheng and Kubiak (2005) is based on an adap-

tation of the algorithm by Badics and Boros (1998) and requires O(n4 log (max{pn, w1, n})/ε)
time.

Erel and Ghosh (2008) report on several improvements regarding the running time of an

FPTAS for problem 1 || W V . They claim that their general FPTAS can be adapted in a similar

way as it is done by Cheng and Kubiak (2005) with respect to the FPTAS by Badics and Boros

123

Ann Oper Res (2016) 240:39–94 63

(1998), and this results in a scheme that runs in O(n2 log (max {pn, w1}) /ε) time. Further,

it is known from Cheng and Kubiak (2005) that the constant term K in the formulation of

the problem in the form F(x) = H(x) + K can be seen as an upper bound FU B on the

optimal value of the function, while there exists a lower bound FL B ≤ F(x∗) such that

K ≤ 4n2 FL B . Thus, β = 4n2, and the algorithm guaranteed by Theorem 2 is an FPTAS

that needs O(βn2/ε) = O(n4/ε) time, which is strongly polynomial in the length of the

problem input. Moreover, for an FPTAS that is guaranteed by Theorem 3 the running time

reduces to O(n2 log β/ε) = O(n2 log n/ε).

Consider now problem 1|d j = d, p(N) > d|
∑

w j (E j + T j) of minimizing the total

weighted earliness and tardiness about a common non-restrictive due date; see Sect. 3.3. Hall

and Posner (1991) show that the problem is solvable by a dynamic programming algorithm.

We may assume that

n ≤ max
j∈N

{
p j , w j

}
, (31)

since otherwise the DP algorithm will require polynomial time.

The first FPTAS for this problem is due to Kovalyov and Kubiak (1999), the run-

ning time is O(n2 log3
(
max

{
p j , w j , n, 1/ε

}
/ε2

)
, or under the assumption (31), is

O(n2 log3
(
max

{
p j , w j , 1/ε

}
/ε2

)
; their approach does not involve a half-product refor-

mulation. Kubiak (2005) reformulates the problem as an ordered symmetric half-product.

He uses the problem as one of the examples for which a representation F(x) = H(x) + K

is possible, but |H(x∗)/F(x∗)| can be arbitrary large, so that there is no direct conversion of

an FPTAS for Problem HP to an FPTAS for this scheduling problem based on Theorem 1.

Erel and Ghosh (2008) show that for their general FPTAS from Theorem 3 the running time

of O
(
n2 log (K) /ε

)
time under the assumption (31) becomes O(n2 log

(
max

{
p j , w j

}
/ε

)
,

since here K =
∑n

i=1 wi

∑i
j=1 p j ≤ n2 max

{
p j , w j

}
.

Problem 1 |Cumu, M P(Φ)| Cmax formulated in Sect. 3.2 also admits a reformulation as

Problem HPAdd. Let the set N of jobs be partitioned into two subsets N1 and N2. Consider

a schedule in which the jobs of set N1 are assigned to the first group, while the jobs of set

N2 are scheduled in the second group, after the MP. For such a schedule, let FΦ(N1, N2)

and F0(N1, N2) denote the values of the makespan in problems 1 |Cumu, M P(Φ)| Cmax

and 1 |Cumu, M P(0)| Cmax, respectively. Further, let N∗
1 (Φ) and N∗

2 (Φ) denote the sets

that form a partition associated with a schedule that is optimal for 1 |Cumu, M P(Φ)|
Cmax, Φ ≥ 0.

As seen from (23), a partition that defines an optimal schedule for problem

1 |Cumu, M P (0)| Cmax is such that p(N1)
2+ p(N2)

2 is as small as possible. Finding such a

partition N∗
1 (0) and N∗

2 (0) reduces to the subset-sum problem which admits a very fast FPTAS

by Kellerer et al. (2003) that requires no more than O(min
{
n/ε, n + 1/ε2 log (1/ε)

}
) time.

The found sets N ε
1 and N ε

2 are such that p(N ε
1)2+p(N ε

1)2 ≤ (1 + ε) p(N∗
1 (0))2+p(N∗

2 (0))2,

but because of the additive constant in (23) the value F0(N ε
1 , N ε

2) may be larger than

(1 + ε) F0(N∗
1 (0), N∗

2 (0)). Still, Kellerer et al. (2013) show that an FPTAS for the subset-sum

problem can be converted into an FPTAS for problem 1 |Cumu, M P(0)| Cmax.

For Φ > 0 and an arbitrary partition N = N1 ∪ N2, it is proved by Kellerer et al. (2013)

that

FΦ(N1, N2) ≤
(

1 +
Φ

2

)
F0(N1, N2).

This allows expressing the lower and upper bounds on the optimal makespan in terms of an

ε−approximate solution to problem 1 |Cumu, M P(0)| Cmax, so that the ratio β = FU B/FL B

123

64 Ann Oper Res (2016) 240:39–94

of the bounds is at most
(
1 + Φ

2

)
(1 + ε), and the algorithm guaranteed by Theorem 2 behaves

as an FPTAS for problem 1 |Cumu, M P(Φ)| Cmax that runs in O(n2/ε) time.

The half-product formulation of problem P2 || Cmax from Sect. 3.9 does not contain a

constant term. Thus, the fastest FPTAS results from a direct application of the scheme by

Erel and Ghosh (2008) which requires O(n2/ε) time. It should be mentioned that this problem

is not the best to handle via quadratic programming. In fact, it is equivalent to the subset-sum

problem for which there is a very fast FPTAS by Kellerer et al. (2003) that requires no more

than O
(
min

{
n/ε, n + 1/ε2 log (1/ε)

})
time.

For problem P2 ||
∑

w j C j it is shown by Kubiak (2005) that for the half-product for-

mulation the inequality |H(x∗)/F(x∗)| ≤ 2 holds. Thus, due to Theorem 1 with α = 2 it

follows that the scheme by Erel and Ghosh (2008) requires O(n2/ε) time. Notice that Sahni

(1976) gives an FPTAS of the same running time derived from different principles.

5 Positive half-product: approximation and scheduling applications

In this section, we describe an approach to designing an FPTAS for Problem PosHP of min-

imizing function (3) and its knapsack-constrained variant, Problem PosHPK. This approach

is developed by Kellerer and Strusevich (2013) and results into the fastest possible FPTASs

for each of these problems, with the running time O
(
n2/ε

)
. However, this is achieved under

the assumption that the objective function is convex. Notice that for all known scheduling

applications of this result, the objective function is convex, i.e., the convexity assumption

does not affect applicability of this approach. Recall that for function (3) to be convex, it is

sufficient that (11) holds; see Sect. 2.2. Below we mainly focus on Problem PosHPK, which

is more general than the unrestricted Problem PosHP.

5.1 Approximation scheme: general principles

According to Kellerer and Strusevich (2013), there are two main prerequisites that are required

for designing an FPTAS for the problems under consideration.

The first of these prerequisites is a DP algorithm that finds an exact solution in pseudopoly-

nomial time. The DP algorithm presented below is very similar to Algorithm DPHP for

Problem HP given in Sect. 4.1, although written in terms of the Boolean programming nota-

tion, rather than the set-function notation. Define

Ak =
k∑

j=1

α j , k = 1, 2, . . . , n.

and suppose that the values x1, x2, . . . , xk have been assigned. The DP algorithm deals with

partial solutions associated with states of the form

(k, Zk, yk) ,

where

k is the number of the assigned variables;

Zk is the current value of the objective function;

yk :=
∑k

j=1 α j x j ; for Problem PosHPK yk denotes the total weight of the items currently

put into the knapsack.

123

Ann Oper Res (2016) 240:39–94 65

We now give a formal statement of the DP algorithm. Notice that

∑

1≤i< j≤n

αiβ j xi x j =
n∑

j=2

β j x j

j−1∑

i=1

αi xi .

Algorithm DP1

Step 1 Start with the initial state (0, Z0, y0) = (0, K , 0). Compute the values Ak =∑k
j=1 α j , k = 1, 2, . . . , n.

Step 2 For all k from 1 to n make transitions from each stored state of the form

(k − 1, Zk−1, yk−1) (32)

into the states of the form

(k, Zk, yk) (33)

by assigning the next variable xk .

(a) Define xk = 1, provided that item k fits into the knapsack, i.e., if the inequality

yk−1 + αk ≤ A holds. If feasible, the assignment xk = 1 changes a state (32) to a

state of the form (33), where

Zk = Zk−1 + βk yk−1 + μk, yk = yk−1 + αk . (34)

(b) Define xk = 0, which is always feasible. This assignment changes a state of the form

(32) into the state of the form (33) such that

Zk = Zk−1 + νk; yk = yk−1. (35)

Step 3 Find Z∗
n , the smallest value of Zn among all found states of the form (n, Zn, yn).

Perform backtracking and find vector x∗ =
(
x∗

1 , x∗
2 , . . . , x∗

n

)
that leads to Z∗

n . Output

x∗ and P (x∗) = Z∗
n .

Algorithm DP1 can be implemented in O (n A) time. This algorithm will serve as a tem-

plate for DP algorithms for several other problems considered in this paper; see Sects. 6.1

and 8.

In order to convert Algorithm DP1 into a fast FPTAS, the second prerequisite is needed,

which is a polynomial time algorithm that finds an upper bound PU B , such that for all

instances of the Problem PosHPK the inequality PU B/P (x∗) ≤ R holds, where R is a

constant.

Below we describe an approximation scheme that delivers the required performance, pro-

vided that both mentioned prerequisites (a DP algorithm and a bounded ratio approximation

algorithm) are available. The scheme follows the steps of Algorithm DP1, and in order to

reduce the number of computed function values, out of all generated states with close objec-

tive function values the scheme keeps only one state, that with the smallest current weight

of the knapsack. Notice that the inequality P (x∗) ≥ 1
R

PU B implies that PL B = 1
R

PU B is a

lower bound on P (x∗).

Algorithm EpsPosHPK

Step 1 Given an upper bound PU B such that PU B/P (x∗) ≤ R, define a lower bound

PL B := 1
R

PU B . For an arbitrary ε > 0, define δ := ε
n

PL B . Split the interval[
0, PU B

]
into subintervals I1, I2, . . . of length δ each.

Step 2 Store the initial state (0, Z0, y0) with Z0 = K and y0 = 0. For each k, 1 ≤ k ≤ n,

do the following:

123

66 Ann Oper Res (2016) 240:39–94

(a) In line with Algorithm DP1, move from a stored state (k − 1, Zk−1, yk−1) to at most

two states of the form (k, Z̃k, ỹk), where Z̃k ≤ PU B , using the relations (34) and

(35).

(b) For each interval Iq , find the state (k, Zk, yk) such that Zk belongs to Iq and yk ≤ ỹk

for all states (k, Z̃k, ỹk) with Z̃k from Iq . Keep only state (k, Zk, yk) and remove all

other states (k, Z̃k, ỹk) with Z̃k from Iq .

Step 3 Determine Z ε as the smallest value of Zn among the states (n, Zn, yn). Perform

backtracking and find the vector xε =
(
xε

1, xε
2, . . . , xε

n

)
that leads to Z ε . Output xε

and P (xε) as an approximate solution of Problem PosHPK.

Define v :=
⌈

PU B/δ
⌉

= ⌈Rn/ε⌉. In Step 2, moving from iteration k − 1 to k, Algo-

rithm EpsPosHPK creates at most 2v states from at most v kept states, and moves to the next

iteration with at most k stored states. Thus, for each k, Step 2 takes O(v) time, and the overall

running time of Algorithm EpsPosHPK is O (nv) = O
(
Rn2/ε

)
. The following statement

summarizes the behaviour of the algorithm.

Theorem 4 Let xε be a vector found by Algorithm EpsPosHPK applied to Problem PosHPK

to minimize a function P (x) of the form (3), with a lower bound PL B and an upper bound

PU B on the optimal value. Then P (xε) − P (x∗) ≤ εPL B and the running time of the

algorithm is O(Rn2/ε) time, where R = PU B/PL B .

5.2 Continuous relaxation and constant-ratio approximation

In this subsection, we explain how to obtain the second prerequisite needed for the FPTAS.

To find the required upper bound PU B the following approach is used by Kellerer and

Strusevich (2013). For Problem PosHPK, let Problem PosHPKr be its continuous relaxation,

i.e., the problem obtained from the original Boolean formulation by relaxing the integrality

constraints and replacing the condition x j ∈ {0, 1} by 0 ≤ x j ≤ 1, j = 1, 2, . . . , n. For

Problem PosHP, the continuous relaxation is denoted by Problem PosHPr. To derive the

corresponding upper bound PU B , Kellerer and Strusevich (2013) first solve the continuous

relaxation and then perform an appropriate rounding to obtain a heuristic Boolean solution

to the original problem. In order to make sure that the continuous relaxation can be solved

in polynomial time, the assumption on the convexity of the objective function is adopted.

Introduce the continuous relaxation of Problem PosHPK under the numbering (11),

obtained by replacing the integrality condition x j ∈ {0, 1} by 0 ≤ x j ≤ 1 for each

j = 1, 2, . . . , n. The resulting Problem PosHPKr, belongs to a general area of Quadratic

Programming in which it is required to optimize a quadratic function subject to linear con-

straints. See Hochbaum (2005, 2008) for detailed reviews of quadratic optimization with

integer and continuous variables.

The problem of convex quadratic programming is known to be solvable in polynomial time

by a modified ellipsoid algorithm due to Kozlov et al. (1979). The fastest known algorithm

for this problem is given by Monteiro and Adler (1989) and requires O(n3 P) time, where

n is the number of variables and P is the total length of the input coefficients. However, it

is still unknown whether the problem admits a strongly polynomial algorithm, even if the

number of linear constraints is fixed or even equal to one, as in the continuous relaxation

of the Quadratic Knapsack Problem (Problem QK). Recall that the continuous relaxation

of Problem QK to minimize a separable concave quadratic function under a single linear

constraint is NP-hard, as proved by Moré and Vavasis (1991).

123

Ann Oper Res (2016) 240:39–94 67

For problems with n continuous decision variables, if the objective function is convex and

separable, i.e., is the sum of (not necessarily quadratic) convex functions, each depending

on one decision variable only, then the problem with linear constraints admits a polynomial-

time algorithm developed by Hochbaum and Shantikumar (1990). Problem QK to minimize a

separable convex quadratic function is solvable in strongly polynomial time. Bretthauer and

Shetty (1997) give multiple references to various algorithms for this problem. The best known

algorithm is due to Brucker (1984), and it requires only O(n) time. Moreover, an extension of

Problem QK to the problem of minimizing a separable differentiable convex (non-necessarily

quadratic) function subject to a fixed number of linear constraints also admits an O(n)-time

algorithm developed by Berman et al. (1993).

Recently, Romeijn et al. (2007) have given an O(n3)−time algorithm that maximizes a

non-separable convex function of a special structure subject to two knapsack constraints.

They specifically point out that their problem is different from Problem QK in possible

applications and solution techniques.

In order to design an FPTAS that for each Problem PosHP and Problem PosHPK requires

O(n2/ε) time, Problem PosHPKr and Problem PosHPKr must be solved in most O(n2) time.

Following Kellerer and Strusevich (2013), below we outline a possible approach to solving

the continuous relaxations. Assume that function (3) is convex. Using the fact that for a

Boolean variable x j = x2
j , j ∈ N , rewrite as

P(x) =
∑

1≤i< j≤n

αiβ j xi x j +
n∑

j=1

μ j x j +
n∑

j=1

ν j

(
1 − x j

)
+ K

=
∑

1≤i≤ j≤n

αiβ j xi x j −
n∑

j=1

(
ν j − α jβ j − μ j

)
x j +

n∑

j=1

ν j + K .

Introduce new decision variables χ j = α j x j , j = 1, 2, . . . , n, and rewrite the continuous

relaxation of Problem PosHPK as

Minimize P(x) =
n∑

i=1

ciχi

i∑
j=1

χ j −
∑n

j=1 γ jχ j + K ′

Subject to
∑n

j=1 χ j ≤ A

0 ≤ χ j ≤ α j , j = 1, 2, . . . , n;

where K ′ =
∑n

j=1 ν j + K , c j = β j/α j and γ j =
(
ν j − α jβ j − μ j

)
/α j . We can reformu-

late the objective function in an almost separable form

n∑

i=1

ciχi

i∑

j=1

χ j =
1

2

n∑

i=1

ciχ
2
i +

1

2

n−1∑

i=1

(ci − ci+1)

⎛
⎝

i∑

j=1

χ j

⎞
⎠

2

+
1

2
cn

(
n∑

i=1

χi

)2

;

the proof of a similar equality can be found in Kellerer and Strusevich (2010b).

Introduce the network G with the set V of vertices and set E of arcs. Set V consists of a sin-

gle source vs , a single sink vt , the vertices wn, wn−1, . . . , w2 and the vertices tn, tn−1, . . . , t1.

Set E consists of the following arcs: (vs, wn) of capacity A, (w j , t j) of capacity α j and

(w j , w j−1) of capacity
∑ j−1

i=1 αi for j = n, n − 1, . . . , 3; (w2, t2) and (w2, t1) of capacity

α2 and α1, respectively; besides, for each j , 1 ≤ j ≤ n , vertex t j is connected to the

sink by the arc
(
t j , vt

)
of capacity α j . Let f be a flow on an arc, then the cost of that flow

is defined as 1
2

cn f 2 for arc (vs, wn), as 1
2

(
c j−1 − c j

)
f 2 for each arc (w j , w j−1) where

j = n, n − 1, . . . , 3; as 1
2

c j f 2 − γ ′
j f for the arc that enters vertex t j , j = 2, 3, . . . , n; as

123

68 Ann Oper Res (2016) 240:39–94

vt

t1
t2

w2 t3

w3 t4

w4

vs

Fig. 1 A example of a series-parallel network for n = 4: a rooted tree with the leaves connected to

the sink vt

(c1 − 1
2

c2) f 2 −γ ′
1 f for arc (w2, t1), while the cost of the flow on each arc that enters the sink

is zero. It is clear that the minimum cost of the flow in the constructed network corresponds

to the minimum value of Z − K ′, while the flow on the arc that enters vertex t j is equal to

the corresponding value of the decision variable χ j .

For illustration, consider the example below for n = 4. The network is shown in Fig. 1,

while its parameters are given in Table 2.

Tamir (1993) presents an algorithm that minimizes a quadratic convex flow cost function

on a series-parallel network with a single source and sink. In our case, network G satisfies the

required condition, since it is a rooted tree with a single source and sink. Another point that

makes our problem a special case of the one solved by Tamir is that his model is parametric,

with the sum of all decision variables bounded by a running parameter that in his paper is

denoted by q. For this parametric problem, each decision variable is defined as a piecewise-

linear function of q . In our case, we only need an output of Tamir’s algorithm for q = A,

where A is either
∑

j∈N α j (for Problem PosHPr) or the right-hand side of the knapsack

constraint (for Problem PosHPKr).

In general, for a network with the set of vertices V and the set of arcs E , the running time

of Tamir’s algorithm is O(|V | |E |+ |E | log |E |), and it takes extra O(log |E |) time to output

the solution for a particular value of q . Since for our network G, we have that |V | = O(n)

and |E | = O(n), we conclude that the following statement holds.

Theorem 5 Each Problem PosHPr and Problem PosHPKr with a convex objective function

can be solved in O(n2) time.

123

Ann Oper Res (2016) 240:39–94 69

Table 2 Parameters of the

network
Arc Capacity Cost for flow f

(vs , w4) A 1
2 c4 f 2

(w4, w3) α1 + α2 + α3
1
2 (c3 − c4) f 2

(w4, t4) α4
1
2 c4 f 2 − γ ′

4 f

(w3, w2) α1 + α2
1
2 (c2 − c3) f 2

(w3, t3) α3
1
2 c3 f 2 − γ ′

3 f

(w2, t2) α2
1
2 c2 f 2 − γ ′

2 f

(w2, t1) α1 (c1 − 1
2 c2) f 2 − γ ′

1 f

(t1, vt) α1 0

(t2, vt) α2 0

(t3, vt) α3 0

(t4, vt) α4 0

Denote the vector that solves a Problem PosHPKr (or problem PosHPr) by xC =(
xC

1 , xC
2 , . . . , xC

n

)
. Obviously, for each Problem PosHP and Problem PosHPK, the inequality

P
(
xC

)
≤ P (x∗) holds. The components of vector xC can be appropriately rounded, so that

for the resulting Boolean vector xH =
(
x H

1 , x H
2 , . . . , x H

n

)
, the inequality P

(
xH

)
≤ R P (x∗)

holds, where R is a constant. Notice that the actual value of R does not have be particularly

small; what is needed a fast a fast constant-ratio rounding algorithm.

In the corresponding rounding algorithms the number λ = 1
2

√
5 − 1

2
= 0.618 03 plays an

important role. This number is the positive root of the equation x2 = 1 − x . Notice that

1

λ2
=

1

1 − λ
=

3 +
√

5

2
= 2. 618 · · · > 1. 618 · · · =

1

λ
.

The algorithm below uses an approximation algorithm for a linear knapsack minimization

problem. Consider the minimization linear knapsack problem with the set of items I .

Minimize
∑

j∈I c j y j

Subject to
∑

j∈I q j y j ≥ Q

y j ∈ {0, 1} , j ∈ I.

Let y∗ be an optimal solution vector. Csirik et al. (1991) give an O(n log n) algorithm,

which they call Algorithm GR, that finds a vector yH such that

∑

j∈I

c j y H
j ≤

3

2

∑

j∈I

c j y∗
j .

There are other algorithms known for the problem that also provide a constant ratio; see,

e.g., Güntzer and Jungnickel (2000).

Algorithm PosHPKConstR

Step 1 Input vector xC =
(
xC

1 , xC
2 , . . . , xC

n

)
that solves Problem PosHPKr. Define λ :=

1
2

√
5 − 1

2
.

Step 2 Define N1 :=
{

j ∈ N |xC
j ≤ λ

}
and N2 := N\N1.

123

70 Ann Oper Res (2016) 240:39–94

Step 3 Introduce the following auxiliary linear knapsack problem

Minimize
∑

j∈N2
ν j y j

Subject to
∑

j∈N2
α j y j ≥

∑
j∈N2

α j − A

y j ∈ {0, 1} , j ∈ N2.

(36)

Run Algorithm GR by Csirik et al. (1991) to find a vector yH with components

y H
j , j ∈ N2, which delivers an approximate solution to problem (36).

Step 4 Output vector xH with components x H
j = 0 for j ∈ N1 and x H

j = 1− y H
j for j ∈ N2

and the value Z(xH). Stop.

The following statement addresses the performance of the rounding algorithm.

Theorem 6 Let x∗ be a vector that delivers an optimal solution to Problem PosHPK with

a convex objective function. Algorithm PosHPKConstR requires O(n log n) time and finds a

vector xH such that
P(xH)

P (x∗)
≤

7 +
√

5

2
= 4.618 . . .

Algorithm PosHPKConstR can easily be simplified to handle Problem PosHP with no

knapsack constraint. It suffices to skip Step 3 all together and set x H
j = 1 for j ∈ N2. The

modified rounding algorithm requires only O(n) time and finds a vector xH such that

P(xH)

P (x∗)
≤

3 +
√

5

2
= 2.618 . . .

Thus, we can summarize the results reviewed Sects. 5.1 and 5.2 as the following statement.

Theorem 7 Problem PosHP and Problem PosHPK with a convex objective of the form (3)

admits an FPTAS that requires O(n2/ε) time.

In the following section, we discuss the implications of Theorem 7 for various scheduling

applications.

5.3 Scheduling Applications

In Sect. 3, several scheduling problems are shown to reduce to Problems PosHP and PosHPK.

As demonstrated by Kellerer and Strusevich (2013) , each of these problems admits an FPTAS

that runs in O
(
n2/ε

)
time. Notice that for all these problems, in an optimal schedule the jobs

are sequenced in accordance with a certain permutation that is a obtained by a form of the

WSPT rule (14), which is similar to (11). This fact implies convexity of the corresponding

function, which is an assumption in Theorem 7.

Problem 1
∣∣p j = p j − y j

∣∣∑
j∈N w j C j +

∑
j∈N v j y j formulated in Sect. 3.6 is an exam-

ple of a scheduling problem for which a reformulation in the form F(x) = H(x) + K is

possible, but |H(x∗)/F(x∗)| can be arbitrary large; see Janiak et al. (2005) and Sect. 4.1.

In fact, exactly this scheduling problem has motivated Janiak et al. to introduce the positive

half-product. By reducing problem 1
∣∣p j = p j − y j

∣∣∑
j∈N w j C j +

∑
j∈N v j y j to Prob-

lem PosHP, Janiak et al. (2005) report an FPTAS that requires either O
(
n2 log

(∑
p j

)
/ε

)

or O
(
n2 log

(∑
w j

)
/ε

)
time. Theorem 3 guarantees that the general FPTAS by Erel and

Ghosh (2008) of the running time O
(
n2 log (K ε) /ε

)
takes O(n2 log

(
max

{
p j , w j , n

}
)/ε

)

time, since here K =
∑n

j=1 p jv j ≤ n max
{

p2
j , v

2
j

}
.

123

Ann Oper Res (2016) 240:39–94 71

Recall that in a job sequence that is optimal for problem 1
∣∣p j = p j − y j

∣∣∑
j∈N w j C j +∑

j∈N v j y j some jobs will have zero processing times, while the other jobs will be sequenced

in non-decreasing order of p j/w j . This means that the problem reduces to Problem PosHP

with a convex objective function, so that Theorem 7 applies and the problem admits an FPTAS

that runs in O
(
n2/ε

)
time.

Problem 1
∣∣r j ∈

[
r , r̄

]∣∣ Cmax +
∑

j∈N v j y j from Sect. 3.8 reduces to Problem PosHPK;

see Shakhlevich and Strusevich (2006) and Sect. 3.8. Interpreting the results of Janiak et al.

(2005), this implies that the problem admits an FPTAS that runs either in O
(
n2 log (p(N)) /ε

)

or O
(
n2 log

(∑
v j

)
/ε

)
time. Since here K = p(N)+r , Theorem 3 guarantees that the gen-

eral FPTAS by Erel and Ghosh (2008) will require O(n2 log (p(N) + r)/ε) . The convexity

of the objective function follows from the fact that in an optimal sequence the early jobs will

be sequenced in non-increasing order of p j/v j . Due to Theorem 7, the problem admits an

FPTAS that runs in O
(
n2/ε

)
time.

For problem 1 |rej |
∑

j∈NA
w j C j +

∑
j∈NR

v j from Sect. 3.7, Engles et al. (2003)

present an FPTAS that requires O
(
n2 log

(∑
p j

)
/ε

)
time. Their reasoning does not

use a link between this problem and quadratic Boolean programming. As demonstrated

in Kellerer and Strusevich (2013) (see also Sect. 3.7), the objective function problems

1 |rej |
∑

j∈NA
w j C j +

∑
j∈NR

v j and 1
∣∣rej, C j ≤ d

∣∣∑
j∈NA

w j C j +
∑

j∈NR
v j is a pos-

itive half-product function of the form (3). In both problems, an optimal sequence of the

accepted jobs is formed in accordance with (14), which implies that the objective func-

tion is convex. Due to Theorem 7, each problem 1 |rej |
∑

j∈NA
w j C j +

∑
j∈NR

v j and

1
∣∣rej, C j ≤ d

∣∣∑
j∈NA

w j C j +
∑

j∈NR
v j admits an FPTAS that runs in O

(
n2/ε

)
time.

6 Symmetric quadratic knapsack: approximation and scheduling
applications

In this section, we discuss an FPTAS that is capable of handling instances of Problem SQK

that are related to scheduling applications listed in Sect. 3. Full technical details for the

development of such an FPTAS are given in Kellerer and Strusevich (2010a, b). Below we

only stress the differences between their approach and the approach to designing an FPTAS

for Problem PosHPK outlined in Section 5.

6.1 Approximation scheme

To design an FPTAS for Problem SQK the same two prerequisites are needed as for Prob-

lem PosHPK: a DP algorithm and a constant-ratio approximation algorithm.

We start with DP algorithms for solving Problem SQK given in the form (6). These

algorithms first appeared in Kellerer and Strusevich (2010a), and under some additional

conditions they can be converted into an FPTAS.

Unlike for Problem PosHPK, here we need two versions of the DP algorithm. One of these

versions is a minor modification of Algorithm DP1 from Sect. 5.1 and uses the same states

of the form (k, Zk, yk). These states will be called the primal states, and the DP algorithm

that manipulates the primal sates will be called the primal algorithm.

For our purposes, we also need another form of the DP algorithm that manipulates the

states of the dual form (k, Zk, ỹk), where k and Zk have the same meaning as above, while

ỹk = Ak − yk . It is clear that ỹk is the total weight of the considered items that have not been

put into the knapsack.

123

72 Ann Oper Res (2016) 240:39–94

The primal DP algorithm, which we call Algorithm PDP can be easily deduced from

Algorithm DP1. All what is needed is to modify Step 2 by replacing the recursive formula

(34) by the formula

Zk+1 = Zk + βk+1 yk + μk+1, yk+1 = yk + αk+1, (37)

and the recursive formula (35) by

Zk+1 = Zk + βk+1 (Ak − yk) + νk+1; yk+1 = yk . (38)

The corresponding dual DP algorithm, which we will refer to as Algorithm DDP, also

starts with the state (0, K , 0), but manipulates the dual states. We skip its formal description,

since is it very similar to that of Algorithm PDP. It suffices to say that in iteration k, given a

state

(k, Zk, ỹk) ,

Algorithm DDP transforms it into a state

(k + 1, Zk+1, ỹk+1) ,

where for xk+1 = 1 we define

Zk+1 = Zk + βk+1(Ak − ỹk) + μk+1, ỹk+1 = ỹk, (39)

provided that Ak − ỹk ≤ A, while for xk+1 = 0 we define

Zk+1 = Zk + βk+1 ỹk + νk+1, ỹk+1 = ỹk + αk+1. (40)

Algorithm PDP and Algorithm DDP can be implemented efficiently to run in O(n A) time.

Let Z∗ denote the optimal value of the objective function (6).

Assume now the second prerequisite has also been obtained, i.e., for Problem SQK, an

upper bound ZU B such that ZU B/Z∗ ≤ ρ can be found in polynomial time, where ρ is a

positive constant. As in Sect. 5, given ZU B , we derive that

ZL B =
1

ρ
ZU B

is a lower bound on Z∗.

The FPTAS for Problem SQK appears to be more elaborate compared to the FPTAS for

Problem PosHPK, where the latter is obtained by a rather straightforward conversion of a

DP algorithm.

It is worth mentioning that Woeginger (2000) proves that if a dynamic programming algo-

rithm for some optimization problem possesses a certain structure, then it can be converted

into an FPTAS. Notice that the method of Woeginger is not applicable to Problem SQK. The

reason is that variable yk in the recursion for Zk+1 given in (38) has a negative coefficient.

In particular, the objective function of Problem SQK is not what is called cc-benevolent in

Woeginger (2000).

Below we explain that Condition C.1(i) of the scheme given in Woeginger (2000) is not

satisfied. For the DP algorithm for Problem SQK we consider the state vectors S = (s1, s2) =
(Zk, yk) and S′ = (s′

1, s′
2) = (Z ′

k, y′
k). Moreover, we are given a degree-vector D = (d1, d2),

with d1, d2 positive integers. For a real number Δ > 1, vector S is said to be [D,Δ] -close

to vector S′, if

Δ−dℓ · sℓ ≤ s′
ℓ ≤ Δdℓ · sℓ, ℓ = 1, 2.

123

Ann Oper Res (2016) 240:39–94 73

Condition C.1(i) implies that if S is [D,Δ]-close to S′ and y′
k ≤ yk , then also the inequal-

ities

Δ−d1 Zk+1 ≤ Z ′
k + βk+1

(
Ak − y′

k + νk+1

)
≤ Δd1 Zk+1 (41)

hold for Zk+1 = Zk + βk+1 (Ak − yk) + νk+1. Notice that the inequality y′
k ≤ yk is due to

the fact that yk can be considered as critical coordinate.

Choosing Zk = Z ′
k = νk+1 = 0, the inequalities (41) reduce for ℓ = 1 to Ak − y′

k ≤
Δd1 (Ak − yk) for Δ−d1 · yk ≤ y′

k ≤ yk . It can be easily seen that this cannot be true if Ak is

close enough to yk . Thus, designing an FPTAS for Problem SKQ cannot be done within the

standard scheme and requires special actions, as outlined below.

The FPTAS for Problem SKQ has been developed in Kellerer and Strusevich (2010a, b). It

is based on both DP algorithms, the primal and the dual. To reduce the number of computed

function values, we round the computed values up to a multiple of a chosen small number. To

reduce the number of states stored after each iteration we split the range of possible y−values

(and ỹ−values) into subintervals of a variable length and for each of the resulting subintervals

we keep at most two y−values (and at most two ỹ−values) related to the same value of the

function.

Algorithm EpsSQK

Step 1 Given an instance of Problem SQK, find an upper bound ZU B on the optimal value

Z∗ of the objective function, such that ZU B/Z∗ ≤ ρ.

Step 2 Given an arbitrary ε > 0, define ZL B = 1
ρ

ZU B and

δ =
εZL B

2n
.

Step 3 Let there be h ≤ n distinct values among β j , j = 1, 2, . . . , n. Sort these values

in decreasing order, i.e., determine a permutation π = (π(1), π(2), . . . , π(h)) such

that

βπ(1) > βπ(2) > · · · > βπ(h).

Split the interval
[
0, ZU B

βπ(h)

]
into h intervals

I1 =
[

0,
ZU B

βπ(1)

]
, I2 =

[
ZU B

βπ(1)

,
ZU B

βπ(2)

]
, . . . , Ih =

[
ZU B

βπ(h−1)

,
ZU B

βπ(h)

]
.

Additionally, split each interval I j into subintervals I r
j of length δ/βπ(j) (it may turn

out that the last of the subintervals of an interval I j is strictly shorter than δ/βπ(j)).

Step 4 Store the initial state (0, K , 0). For each k, 0 ≤ k ≤ n − 1 , do the following:

(a) According to Algorithm PDP, move from a stored primal state (k, Zk, yk) to at most

two primal states of the form (k + 1, Zk+1, yk+1), where Zk+1 ≤ ZU B , using the

relations (37) and (38), each time rounding up the updated value of Zk+1 to the

next multiple of δ. For each selection of states with the same value of Zk+1 and a

subinterval I r
j , determine the value ymin

k+1 as the smallest value of yk+1 that belongs

to I r
j and the value ymax

k+1 as the largest value of yk+1 that belongs to I r
j . If these

values exist and are distinct, then out of all states (k + 1, Zk+1, yk+1) with the same

value of Zk+1 for yk+1 ∈
[
ymin

k+1, ymax
k+1

]
store only two states (k + 1, Zk+1, ymin

k+1) and

(k + 1, Zk+1, ymax
k+1).

(b) According to Algorithm DDP, move from a stored dual state (k, Zk, ỹk) to at most

two dual states of the form (k + 1, Zk+1, ỹk+1), where Zk+1 ≤ ZU B , using the

123

74 Ann Oper Res (2016) 240:39–94

relations (39) and (40), each time rounding up the updated value of Zk+1 to the

next multiple of δ. For each selection of states with the same value of Zk+1 and a

subinterval I r
j , determine the value ỹmin

k+1 as the smallest value of ỹk+1 that belongs

to I r
j and the value ỹmax

k+1 as the largest value of ỹk+1 that belongs to I r
j . If these

values exist and are distinct then out of all states (k + 1, Zk+1, ỹk+1) with the same

value of Zk+1 for ỹk+1 ∈
[
ỹmin

k+1, ỹmax
k+1

]
store only two states (k + 1, Zk+1, ỹmin

k+1) and

(k + 1, Zk+1, ỹmax
k+1).

(c) For each primal state (k + 1, Zk+1, yk+1) stored in Step 4(a) of this iteration addi-

tionally store the dual state (k + 1, Zk+1, ỹk+1), where ỹk+1 = Ak+1 − yk+1, unless

it coincides with one of the states stored in Step 4(b) of this iteration.

(d) For each dual state (k+1, Zk+1, ỹk+1) stored in Step 4(b) of this iteration additionally

store the primal state (k + 1, Zk+1, yk+1), where yk+1 = Ak+1 − ỹk+1, unless it

coincides with one of the states stored in Step 4(a) of this iteration.

Step 4 Among all values Zn found in Step 4 identify the smallest one associated with a

feasible value yn ≤ A. With this value of Zn , perform the backtracking to find the

corresponding decision variables x j , j = 1, . . . , n. Compute the value of the objec-

tive function with the found x j ’s, call this value Z ε and accept it as an approximate

value of the objective function.

To understand better the role of the intervals created in Step 3 of Algorithm EpsSQK, for

each k, 0 ≤ k ≤ n − 1, define

B(k) := max{βk+1, βk+2, . . . , βn}. (42)

The following statement holds.

Lemma 2 [Kellerer and Strusevich (2010a)] Assume that the primal dynamic programming

Algorithm PDP is applied to Problem SQK and finds a chain of states

(0, K , 0), (1, Z∗
1 , y∗

1), . . . , (n, Z∗
n , y∗

n)

leading to the optimal value Z∗ = Z∗
n . Then for each k, 0 ≤ k ≤ n − 1, for B(k) defined by

(42) either

B(k)y∗
k ≤ Z∗,

or

B(k)ỹ∗
k ≤ Z∗,

where ỹ∗
k = Ak − y∗

k .

The following statement studies the behavior of Step 4 of Algorithm EpsSQK.

Lemma 3 [Kellerer and Strusevich (2010a)] Assume that the primal dynamic programming

Algorithm PDP is applied to Problem SQK and finds a chain of primal states

(0, K , 0), (1, Z∗
1 , y∗

1), . . . , (n, Z∗
n , y∗

n)

leading to the optimal value Z∗ = Z∗
n . Let

(0, K , 0), (1, Z∗
1 , ỹ∗

1), . . . , (n, Z∗
n , ỹ∗

n)

be the corresponding chain of dual states. Then for each k, 1 ≤ k ≤ n, Algorithm EpsSQK

finds

123

Ann Oper Res (2016) 240:39–94 75

(i) a pair of primal states
(
k, Z ′

k, y′
k

)
and

(
k, Z ′′

k , y′′
k

)
such that

Z ′
k ≤ Z∗

k + 2kδ; Z ′′
k ≤ Z∗

k + 2kδ (43)

and

y′
k ≤ y∗

k ≤ y′′
k , y′′

k − y∗
k ≤

δ

B(k)
, y∗

k − y′
k ≤

δ

B(k)
;

(ii) a pair of dual states
(
k, Z ′

k, ỹ′
k

)
and

(
k, Z ′′

k , ỹ′′
k

)
such that (43) holds and

ỹ′
k ≤ ỹ∗

k ≤ ỹ′′
k , ỹ′′

k − ỹ∗
k ≤

δ

B(k)
, ỹ∗

k − ỹ′
k ≤

δ

B(k)
,

where B(k) is defined by (42).

Based on Lemmas 2 and 3, the main theorem can be proved.

Theorem 8 [Kellerer and Strusevich (2010a)] Let Z∗ denote an optimal value of the objective

function for Problem SQK. Given a positive ε, Algorithm EpsSQK outputs a value Z ε such

that

Z ε − Z∗ ≤ εZ∗

and requires O
(

T (n) + n4

ε2

)
time, where T (n) denotes the time needed for finding an upper

bound ZU B such that ZU B/Z∗ ≤ ρ.

For scheduling applications a version of Problem SQK in which all β j = 1 can be

of certain importance (this corresponds to the case of equal weights of jobs). In this case

Algorithm EpsSQK is less time-consuming. In Step 3 of the algorithm it is sufficient to split

the interval
[
0, ZU B

]
into subintervals of equal length δ. Thus, in each iteration for at most

ZU B/δ values of the objective function and each of ZU B/δ subintervals we store at most two

states, i.e., the total number of states created and stored in each iteration is O

((
ZU B

δ

)2
)

,

i.e., factor n less than in the general case of arbitrary β j . This reduces the overall running

time of Algorithm EpsSQK for the case that all β j = 1 to O
(

T (n) + n3

ε2

)
.

The running time estimate in Theorem 8 is valid, provided that the second prerequisite

is available, i.e., a polynomial-time algorithm exists that finds a heuristic solution with the

objective function value ZU B , which does not exceed ρZ∗ for a constant ρ. Notice that

Algorithm EpsSQK remains an FPTAS if the ratio ρ in ZU B/Z∗ ≤ ρ is not a constant but

polynomially depends on n . More precisely, if ρ = O(nc) for a positive c, then the running

time of Algorithm EpsSQK is O
(

T (n) + n2c+4

ε2

)
.

Below, we present a constant-ratio approximation algorithm for Problem SQK under

specific additional conditions. As in Sect. 4, one of these assumptions is the convexity of the

objective function, which can be guaranteed by the numbering of items given by (11). The

algorithm below is based on rounding a solution to a continuous relaxation of Problem SQK.

Introduce Problem SQKr, a continuous relaxation of Problem SQK, obtained by replacing

the integrality condition x j ∈ {0, 1} by 0 ≤ x j ≤ 1 for each j = 1, 2, . . . , n. Using

transformations similar to those described in Sect. 5.2 for Problem PosHP, we can rewrite

(6) as

Minimize Z = 2
n∑

i=1

ciχi

i∑
j=1

χ j −
∑n

j=1 γ ′
jχ j + K ′

subject to
∑n

j=1 χ j ≤ A

0 ≤ χ j ≤ α j , j = 1, 2, . . . , n,

123

76 Ann Oper Res (2016) 240:39–94

where c j = β j/α j , γ
′
j = γ j/α j and χ j = α j x j , j = 1, 2, . . . , n. In turn,

2

n∑

i=1

ciχi

i∑

j=1

χ j =
n∑

i=1

ciχ
2
i +

n−1∑

i=1

(ci − ci+1)

⎛
⎝

i∑

j=1

χ j

⎞
⎠

2

+ cn

(
n∑

i=1

χi

)2

,

so that, as in Sect. 5.2, Problem SQKr can be solved by an algorithm by Tamir (1993) in

O
(
n2

)
time.

Kellerer and Strusevich (2010b) present an algorithm that under an additional condition

behaves as a constant-ratio approximation algorithm for the original Problem SQK with

Boolean decision variables. The algorithm is based on an appropriate rounding of the solution

to the continuous relaxation. In the analysis of the algorithm the value of the objective function

for the found optimal solution to Problem SQKr serves as a lower bound on the optimal value

for the original Problem SQK.

Informally, the algorithm works as follows. Start with a solution to Problem SQKr and

round down to zero those components that are less than a specially chosen value. To determine

the other variables, a continuous linear knapsack problem has to be solved to obtain a solution

with at most one fractional component. Then the value for that component is fixed to 1, thereby

reducing the dimension of the problem, and the process is repeated.

Algorithm Round

Step 1 Define Problem Pn as the given Problem SQK of the form (6). Set H := N , F := ∅

and h := n.

Step 2 Solve the continuous relaxation of problem Ph and find the corresponding solution

vector with components xC R
j , where j ∈ H .

Step 3 Define the sets I1 := { j ∈ H |xC R
j ≤ η} and I2 := { j ∈ H |xC R

j > η}, where η

is chosen to be the smaller root of the equation η = (1 − η)2, i.e., η = 3−
√

5
2

≈
0.381 97.

Step 4 Set x
(h)
j := 1 for j ∈ F and x

(h)
j := 0 for j ∈ I1.

Step 5 For each j ∈ I2, define π j := ν j +β j

∑
i< j,i∈I1

αi +α j

∑
i> j,i∈I1

βi . Introduce the

following auxiliary continuous linear knapsack problem

Minimize
∑

j∈I2
π j (1 − x j)

subject to
∑

j∈I2
α j x j ≤ A

0 ≤ x j ≤ 1, j ∈ I2

and solve it in the following greedy way.

(a) Denote u = |I2|. Find a sequence σ = (σ (1), . . . , σ (u)) of items of set I2 sorted in

non-increasing order of the cost-weight ratios π j/α j .

(b) Find the index ℓ such that

ℓ−1∑

k=1

ασ(k) ≤ A;
ℓ∑

k=1

ασ(k) > A.

An optimal solution to the auxiliary problem above is determined by a vector with

components xΔ
σ(k)

= 1 for 1 ≤ k < ℓ, xΔ
σ(k)

= 0 for ℓ + 1 ≤ k ≤ u, while the value

xΔ
σ(ℓ)

is chosen to satisfy

ℓ−1∑

k=1

ασ(k) + ασ(ℓ)x
Δ
σ(ℓ) = A.

123

Ann Oper Res (2016) 240:39–94 77

Step 6 Set x
(h)
j := 0 for j ∈ I1. Define x

(h)
j := xΔ

j , j ∈ I2, j �= σ(ℓ) and set x
(h)
σ (ℓ)

:=⌊
xΔ
σ(ℓ)

⌋
. Compute the value of the objective function Z of the original Problem SQK

with x j = x
(h)
j , j ∈ N ; store this value as Z (h).

Step 7 If either x
(h)
σ (ℓ)

= 1 or h = 1, go to Step 9; otherwise, go to Step 8.

Step 8 Update H := H\{σ(ℓ)} , F := F ∪ {σ(ℓ)}. In problem Ph , replace variable xσ(ℓ)

by 1 and call the resulting problem Ph−1 . To derive problem Ph−1 from problem

Ph , we set A := A − ασ(ℓ); keeping the variables other than xσ(ℓ) in the same

order as in problem Ph , renumber them by 1, . . . , h − 1; set h := h − 1 and define

μi := μi + αi

∑h
j=i+1 β j for i = 1, . . . , h. Go to Step 2.

Step 9 Output the solution that corresponds to the smallest of the found values Z (h).

The following statement holds.

Theorem 9 [Kellerer and Strusevich (2010b)] For Problem SQK of the form (6) for which

(11) holds and additionally

ν j ≥ α jβ j , j ∈ N (44)

Algorithm Round requires O(n3) time and is an approximation algorithm with a ratio of at

most 2 + 3
η

= 3
√

5+13
2

≈ 9.8541.

To summarize our discussion of this section, we formulate the main statement regarding

a possibility of solving Problem SQK by an FPTAS.

Theorem 10 For Problem SQK of the form (6) for which the conditions (11) and (44) hold,

Algorithm EpsSQK is an FPTAS that requires O
(

n4

ε2

)
time.

Notice that the additional conditions (11) and (44) hold for all known scheduling appli-

cations of Problem SQK.

6.2 Alternative FPTAS

In this subsection, we describe an approach by Xu (2012) who shows that Algorithm EpsSQK

can be formulated as a strongly polynomial FPTAS without additional assumptions, such as

convexity. Recall that due to Theorem 8 the running time of EpsSQK is in O
(

T (n) + n4

ε2

)
,

where T (n) denotes the time needed for finding an upper bound ZU B such that ZU B/Z∗ ≤ ρ.

If ZU B/Z∗ is not bounded by a constant ρ, the running time is given by O
(

T (n) + ZU B

Z L B
n4

ε2

)
.

Hence for obtaining a strongly polynomial FPTAS, it is sufficient to develop a strongly

polynomial time algorithm for computing a lower bound Z L B and an upper bound ZU B on

the optimal objective value of problem SQK, such that the ratio of the bounds is bounded by

a polynomial in the size of the instance.

Let � denote the set which contains zero and all possible coefficients of the objective

function of Problem SQK given in the form (6), i.e.,

� = {0} ∪ {αiβ j |1 ≤ i < j ≤ n} ∪ {μ j |1 ≤ j ≤ n} ∪ {ν j |1 ≤ j ≤ n}.

Define λ∗ as the minimum value of λ ∈ � such that there is a Boolean vector x =
(x1, x2, . . . , xn) for which the following inequalities hold.

123

78 Ann Oper Res (2016) 240:39–94

αiβ j xi x j ≤ λ, 1 ≤ i < j ≤ n, (45)

αiβ j (1 − xi)(1 − x j) ≤ λ, 1 ≤ i < j ≤ n, (46)

μ j x j ≤ λ, 1 ≤ j ≤ n, (47)

ν j

(
1 − x j

)
≤ λ, 1 ≤ j ≤ n, (48)

n∑

j=1

α j x j ≤ A. (49)

Set λmax = max{λ|λ ∈ �}. For λ = λmax the zero vector satisfies all inequalities (45)–

(49). Hence, � is non-empty and λ∗ is well-defined.

Consider the optimal solution vector x∗ to Problem SQK. Let λ′ denote the maximum

among the values of αiβ j x∗
i x∗

j , αiβ j (1 − x∗
i)(1 − x∗

j) for 1 ≤ i < j ≤ n, and μ j x∗
j ,

ν j

(
1 − x∗

j

)
for 1 ≤ j ≤ n. Obviously, x∗ satisfies (45)–(49) for λ = λ′. Since 0 ∈ � we

get λ∗ + K ≤ Z∗.

Consider now any Boolean vector x that satisfies (45)–(49) for λ = λ∗. Due to (49), x is

a feasible solution to Problem SQK. We have
∑

1≤i< j≤n

αiβ j xi x j +
∑

1≤i< j≤n

αiβ j (1 − xi)(1 − x j)

≤ λ∗
∑

1≤i< j≤n

(
xi x j + (1 − xi)(1 − x j)

)
≤

n(n − 1)

2
λ∗,

and
n∑

j=1

μ j x j +
n∑

j=1

ν j (1 − x j) ≤ λ∗
n∑

j=1

(
x j + (1 − x j)

)
= nλ∗.

These two inequalities imply Z∗ ≤
(

n(n−1)
2

+ n
)

λ∗ + K . Hence, the following statement

holds.

Lemma 4 For Problem SQK, the values Z L B = λ∗ + K and ZU B =
(

n(n−1)
2

+ n
)

λ∗ + K

are a lower bound and an upper bound on the optimal value Z∗ of the objective function,

respectively.

In order to compute the lower and upper bounds on Z∗ suggested by Lemma 4, we need

to compute λ∗. If we can test in reasonable running time for a given λ whether it is feasible,

i.e. whether there is an x which satisfies (45)–(49), then the value λ∗ can be found by using

binary search on the values of �.

First, we establish a sufficient and necessary condition for a Boolean vector x to satisfy

(45) and (46). Define a graph G = (V, E) with vertices V = {1, . . . , n}. There is an edge

between i and j if αiβ j > λ. Since (45) and (46) are equivalent to xi + x j = 1, x satisfies

(45) and (46) if and only if x corresponds to a 2-coloring of the vertices of G with colors

zero and one. But x corresponds to a 2-coloring if and only if there is a bipartition of G with

the vertices with x j = 0 in one set and the vertices with x j = 1 in the other set. For each

connected component G ′ = (V ′, E ′) of G the bipartition (V ′
1, V ′

2) of V ′ is unique. Thus,

either (i) x j = 1 for j ∈ V ′
1 and x j = 0 for j ∈ V ′

2 or (ii) x j = 0 for j ∈ V ′
1 and x j = 1 for

j ∈ V ′
2, must hold.

Hence, the procedure is as follows: Compute the connected components of G. For each

connected component G ′ of G check whether there exists a bipartition of G ′. Then, examine

123

Ann Oper Res (2016) 240:39–94 79

whether at least one the two possibilities (i) and (ii) satisfy (47) and (48). If both possibilities

satisfy (47) and (48), then choose the one with smaller value of
∑

j∈V ′ α j x j . This guarantees

that
∑n

j=1 α j x j is minimized, i.e., we find values x j which satisfy (49) if they exist.

The running time of this algorithm is dominated by the sorting of the O(n2) elements of

�. This gives T (n) = O(n2 log n). Since by Lemma 4, ZU B/Z L B ≤ n2, we get a running

time of O(n6

ε2) for Algorithm EpsSQK. By applying the Bound Improvement Procedure of

Tanaev et al. (1998) to Z L B and ZU B , it is possible to find new lower and upper bounds Z L B1

and ZU B1 with ZU B1

Z L B1
≤ 3. The total running time of the Bound Improvement Procedure is

O(n4 log log n). Thus, the following statement holds.

Theorem 11 [Xu (2012)] There is an FPTAS for Problem SQK which requires O
(
n4 log

log n + n4

ε2

)
time.

6.3 Scheduling applications

In this subsection, we review approximation results for several scheduling problems listed in

Section 3. This will include known constant-ratio approximation algorithms, FPTASs derived

by adapting an FPTAS designed for Problem SQK, as well as FPTASs that are developed

based on alternative principles.

6.3.1 Scheduling with machine availability constraints

Kellerer and Strusevich (2010a) show how the FPTAS outlined in Sect. 6.1 can be adapted to

the problems 1|h(1), N − res|
∑

w j C j and 1|h(1), Res|
∑

w j C j of minimizing the total

weighted completion time on a single machine with a single machine non-availability interval.

Both problems can be reformulated in terms of Problem SQK; see Sect. 3.1.

Recall that in order to be able to apply the FPTAS, for each problem we need a polynomial

time approximation algorithm with a constant ratio. These problems admit the algorithms

with a required performance developed by pure scheduling reasoning.

For example, for problem 1|h(1), Res|
∑

w j C j under the resumable scenario Wang et al.

(2005) give a 2−approximation algorithm that requires O(n2) time. An improved algorithm

for this problem is due to Megow and Verschae (2009). The authors notice that an algorithm

that sequences the jobs in the WSPT order is a δ−approximation algorithm, where δ = t/s,

the ratio of the two endpoints of the non-availability interval. On the other hand, they show

that if the jobs that are sequenced to complete before the non-availability interval by a

known FPTAS, the resulting algorithm behaves as a
(
1 + 1

δ
+ ε

)
− approximation algorithm.

Thus, the value of the objective function for the better of the two schedules is at most

Φ + ε times the optimum, where Φ =
(

1 +
√

5
)

/2 is the so-called golden ratio, i.e.,

the larger solution to the equation δ = 1 + 1/δ. The running time of the algorithm is

O(n log n + n/ε).

For problem 1|h(1), N − res|
∑

w j C j , Lee (1996) shows that scheduling the jobs in

the WSPT order leads to an arbitrarily bad schedule. This is also confirmed by Kacem

and Chu (2008) for a modified WSPT rule. Kellerer et al. (2009) show that based on a

ρ−approximation algorithm for problem 1|h(1), Res|
∑

w j C j it is possible to design a

(2ρ) −approximation algorithm for problem 1|h(1), N − res|
∑

w j C j . They also use a

formulation of problem 1|h(1), N − res|
∑

w j C j as Problem SQK and an FPTAS for a

linear knapsack problem to obtain a (2 + ε)−approximation algorithm for the problem that

123

80 Ann Oper Res (2016) 240:39–94

runs in O(n log n + n/ε) time. The same performance can be achieved by applying the

approach of Megow and Verschae (2009) not to the resumable but to the non-resumable

version of the problem. Besides, a 2−approximation algorithm that requires O(n2) time is

developed by Kacem (2008).

Recall that the unweighted problem 1|h(1), N − res|
∑

C j is NP-hard. Lee and Liman

(1992) by refining the analysis by Adiri et al. (1989) demonstrate that for problem 1|h(1),

N − res|
∑

C j an algorithm that finds schedule SS PT in which the jobs are sequenced in the

SPT order (i.e., in non-decreasing order of their processing times) is a (9/7)−approximation

algorithm. An algorithm with a worst-case performance ratio of 20/17 is given by Sadfi et al.

(2005). A further improvement is done by Breit (2007).

The algorithms with constant performance guarantees are needed to compute an upper

bound on the optimal value of the function for the problem under consideration. It is not

important which particular approximation algorithm is taken for this purpose, as long as it

guarantees a constant ratio. Let us agree that for problem 1|h(1), N − res|
∑

w j C j we take

ZU B = Z(SH), where SH is a heuristic schedule found by a 2− approximation algorithm

by Kacem (2008); for problem 1|h(1), N − res|
∑

C j we take ZU B = Z(SS PT) and for

problem 1|h(1), Res|
∑

w j C j we take ZU B = Z(SW), where SW is a heuristic schedule

found by a 2−approximation algorithm by Wang et al. (2005).

We are now ready to apply Algorithm EpsSQK to obtain an FPTAS for problem

1|h(1), N − res|
∑

w j C j . The DP algorithms are applied to Problem SQK of the form

(19). It follows that ZL B = 1
2

ZU B . Suppose that Algorithm EpsSQK finishes, having found

a solution vector xε =
(
xε

1, . . . , xε
n

)
where each xε

j ∈ {0, 1}. As an approximate solu-

tion of problem 1|h(1), N − res|
∑

w j C j we take schedule Sε in which the jobs of set

N1 =
{

j ∈ N |xε
j = 1

}
are sequenced from time zero according to the WSPT rule and com-

plete before time s, while the remaining jobs of set N2 =
{

j ∈ N |xε
j = 0

}
are sequenced

from time t according to the WSPT rule. It follows that Z(Sε)/Z(S∗) ≤ 1+ε and the running

time of the resulting algorithm is O(n2 + n4/ε2) = O(n4/ε2).

Notice that for problem 1|h(1), N − res|
∑

C j with equal weights of jobs minimizing∑
C j is equivalent to solving Problem SQK with all β j = 1. The running time of the resulting

FPTAS for problem 1|h(1), N − res|
∑

C j is O(n3/ε2).

Kacem and Mahjoub (2009) claim that their scheme for problem 1|h(1), N −res|
∑

w j C j

is an FPTAS that requires O
(
n2/ε2

)
time. However, Epstein et al. (2010) express some doubt

whether the analysis by Kacem and Mahjoub (2009) is complete and give their own FPTAS

with the running time O
(
n3/ε2

)
. Marchetti-Spaccamela et al. (2008) outline another FPTAS

for this problem, but they do not give all implementation details and do not estimate the

running time.

In order to design an FPTAS for problem 1|h(1), Res|
∑

w j C j , an approach presented in

Sect. 3.1 is used. We can select a job as crossover, find a schedule Sm for m = n−1 remaining

jobs and then insert the chosen job into the derived schedule. Suppose that a job with the

processing time p and the weight w is chosen as the crossover job, and the remaining jobs

are taken in accordance with the WSPT rule (14) and renumbered by 1, 2, . . . , m. Finding

schedule Sm can be done by adapting a DP algorithms from Sect. 6.1. Define

n = m, A = s,

α j = p j , β j = w j , μ j = w j p j , ν j = w j

⎛
⎝t +

j∑

i=1

pi

⎞
⎠ , j = 1, 2, . . . , m.

123

Ann Oper Res (2016) 240:39–94 81

For the primal algorithm, a typical primal state after the values x1, x2, . . . , xk have been

assigned is represented by a state of the form

(k, Zk, yk, Vk) ,

where k is the number of the assigned variables; Zk is the current value of the objective

function; yk :=
∑k

j=1 p j x j , the total processing time of the jobs processed before the non-

availability interval [s, t]; Vk := p
∑k

j=1 w j (1 − x j), the total weight of the jobs processed

after the interval [s, t] times the processing time of the crossover job.

In iteration k of the primal algorithm a move from a state (k, Zk, yk, Vk) to a state

(k + 1, Zk+1, yk+1, Vk+1) is done in accordance with

Zk+1 = Zk + wk+1 yk + μk+1, yk+1 = yk + pk+1, Vk+1 = Vk, (50)

provided that yk+1 ≤ s, and with

Zk+1 = Zk + wk+1 (Ak − yk) + νk+1; yk+1 = yk, Vk+1 = Vk + wk+1 p, (51)

where Ak =
∑k

j=1 p j .

For each state generated in the last iteration of the primal algorithm, we find x and

compute the value of the function Z by the formula (20). The smallest of the found

Z−values corresponds to an optimal value of the total weighted completion time for problem

1|h(1), Res|
∑

w j C j with a chosen crossover job. If the smallest value of Z(p) is achieved

for x = 1, then the corresponding schedule should be disregarded, since the overall optimal

schedule belongs to a class of schedules with another crossover job.

The DP algorithm outlined above is used as a subroutine in the FPTAS. No removal of

dominated states is allowed in this DP algorithm, i.e., all feasible combinations should be

generated and stored, except those states (k, Zk, yk, Vk) for which either Zk or Vk exceeds

ZU B . For a fixed crossover job such a DP algorithm requires O
(
n A (ZU B)2

)
time, i.e., an

overall optimal solution will be found in O
(
n2 A (ZU B)2

)
time. The dual version of the DP

algorithm can be defined similarly.

Let S∗ denote the optimal schedule that delivers the smallest value Z(S∗) of the objective

function, while S(p) denote a feasible schedule with a fixed crossover job with the processing

time p and weight w. Denote the smallest value of the function among all schedules with the

chosen crossover job by Z∗(p).

Define ZU B = Z(SW) as an upper bound on Z(S∗), where SW is a schedule delivered

by the algorithm by Wang et al. (2005). It follows that ZL B = 1
2

ZU B is a lower bound on

Z(S∗), and therefore on Z∗(p). In Step 2 of Algorithm EpsSQK redefine

δ =
εZL B

3m
.

Change Step 4(a) of the algorithm in the following way. Move from a stored primal state

(k, Zk, yk, Vk) to at most two primal states of the form (k + 1, Zk+1, yk+1, Vk+1), where

Zk+1 ≤ ZU B and Vk+1 ≤ ZU B , using the relations (50) and (51), each time rounding up

each of the updated values of Zk+1 and Vk+1 to the next multiple of δ. For each selection

of states related to the same pair (Zk+1, Vk+1) and a subinterval I r
j , determine the value

ymin
k+1 as the smallest value of yk+1 that belongs to I r

j and the value ymax
k+1 as the largest

value of yk+1 that belongs to I r
j . If these values exist and are distinct, then out of all states

(k +1, Zk+1, yk+1, Vk+1) with the same values of Zk+1, Vk+1 for yk+1 ∈
[
ymin

k+1, ymax
k+1

]
store

only two states (k + 1, Zk+1, ymin
k+1, Vk+1) and (k + 1, Zk+1, ymax

k+1, Vk+1).

123

82 Ann Oper Res (2016) 240:39–94

The description of Step 4(b) of Algorithm EpsSQK is altered similarly; here we manipulate

the corresponding dual states. Step 5 is reformulated accordingly. The chosen crossover job

is inserted into a schedule found by the modified FPTAS, and the best of all found schedules

is accepted as an approximate solution.

For each choice of the crossover job, running a modified FPTAS that finds the val-

ues Zm takes O
(
n5/ε3

)
time. To find an approximate solution to the original problem

1|h(1), Res|
∑

w j C j , we need to run the FPTAS for each job selected as the crossover

job, rejecting the solutions in which the selected job completes before the non-availability

interval. Thus, the overall running time of the FPTAS is O
(
n6/ε3

)
.

Due to the equivalence between problem 1|h(1), Res|
∑

w j C j and the problem with the

floating maintenance period from Sect. 3.2, the described FPTAS is applicable to the latter

problem, see Kellerer and Strusevich (2010a).

For problem1|h(1), Res|
∑

w j C j an FPTAS by Epstein et al. (2010) is not strongly

polynomial, while an FPTAS by Marchetti-Spaccamela et al. (2008) is not accompanied by

sufficient details and estimations of its running time.

6.3.2 Minimizing total weighted earliness and tardiness

As mentioned in Sect. 4.2, problem 1|d j = d, p(N) > d|
∑

w j (E j + T j) with a large

common due date admits an FPTAS via its reformulation in terms of Problem HPAdd. Thus,

below we concentrate on problem 1|d j = d, p(N) ≤ d|
∑

w j (E j+T j)with a small common

due date. In our presentation we follow Kellerer and Strusevich (2010b). As discussed in

Sect. 3.3, for this problem an optimal schedule may belong to one of the two classes: Class 1

with no straddling job and Class 2 with a straddling job. Recall that it is shown in Sect. 3.3 that

for problem 1|d j = d|
∑

w j (E j +T j) searching for the best schedule in Class 1 is equivalent

to solving the quadratic knapsack problem (27). Besides, due to (28), that problem is a special

case of Problem SQK.

It is rather straightforward to adapt a general FPTAS for Problem SQK to handle the case

with no straddling job. For Problem SQK, let x = (x1, x2, . . . , xn) be a vector of the decision

variables that deliver a feasible solution. Denote the corresponding value of the objective

function by Z(x). This solution can be converted into a schedule S(x) that belongs to Class

1 and is feasible for problem 1|d j = d, p(N) ≤ d|
∑

w j (E j + T j) with the value of the

objective function Z(S(x)) = Z(x). In schedule S(x) the jobs j ∈ N with x j = 1 are

assigned in the order that is opposite to their numbering by the WSPT rule to be processed

as a block, without intermediate idle time, with the job with the smallest number completing

exactly at time d . The remaining jobs are processed as a block starting at time d .

Notice that the accepted numbering (14) of jobs in problem 1|d j = d|
∑

w j (E j + T j)

implies that (11) holds for the corresponding Problem SQK. Additionally, due to (28) for

Problem SQK we have that ν j = α jβ j for each j ∈ N . Thus, all conditions of Theorem 9

are valid and Algorithm Round can be applied. Let x H =
(
x H

1 , x H
2 , . . . , x H

n

)
be the solution

vector, which can be found in O(n3) time. As described above, this solution can be converted

into a heuristic schedule S1
H = S(x H) that belongs to Class 1. If there exists an optimal

schedule S∗ with no straddling job, then Theorem 9 guarantees that Z(S1
H) ≤ 3

√
5+13
2

Z(S∗).

We can use the found value Z(x H) as an upper bound on Z∗, the optimal value of the

objective function in Problem SQK. Algorithm EpsSQK is directly applied and the found

solution is converted into a feasible schedule S1
ε as outlined above. Theorem 10 guarantees

that Z(S1
ε) ≤ (1 + ε) Z(S∗), and the required running time does not exceed O

(
n4

ε2

)
.

123

Ann Oper Res (2016) 240:39–94 83

Assume now that for problem 1|d j = d, p(N) ≤ d|
∑

w j (E j + T j) there exists an

optimal schedule S∗ with a straddling job. First, we show that in the case under consideration

Algorithm Round can be adapted to guarantee a smaller worst-case bound than that proved

in Theorem 9.

Below we present an algorithm that finds a heuristic schedule S2
H such that Z(S2

H) ≤
3+

√
5

2
Z(S∗).

Algorithm ETStr

Step 1 Run Steps 1–6 of the first iteration of Algorithm Round. Let xΔ
j , j ∈ I2, be the

components of the found solution to the continuous linear knapsack problem in

Step 6.

Step 2 Define the vector x H = (x H
1 , . . . , x H

n), where x H
j = xΔ

j for j ∈ I2 and x H
j = 0,

otherwise.

Step 3 Output schedule S2
H in which the jobs with x H

j = 1 are processed starting at time zero

in the order opposite to the WSPT sequence, followed by a job ℓ with 0 < x H
ℓ < 1 as

the straddling job, and finally the late jobs with x H
j = 0 are scheduled in the WSPT

order.

The running time of the algorithm is O(n2), since the continuous relaxation of Prob-

lem SQK has to be solved only once. It is proved by Kellerer and Strusevich (2010b)

that Algorithm ETStr is in fact a 1
δ
−approximation algorithm, i.e., Z(S2

H) ≤ 3+
√

5
2

Z(S∗)
= 2. 618 Z(S∗).

To find a feasible (but not necessarily the best) schedule that belongs to Class 2, we select

each job as a possible straddling job, find a Class 1 schedule Sm of the remaining m = n − 1

jobs, and then try to insert the chosen job as straddling in such a way that the first early job

starts at time zero.

To develop an FPTAS for the problem of finding the best schedule of Class 2, we need to

modify the DP algorithms described for the standard Problem SQK in Sect. 6.1. Similarly to

Sect. 6.3.1, let S(p) denote a feasible schedule with a fixed crossover job with the processing

time p and weight w.

Let W denote the total weight of all n jobs. For schedule Sm , define Wm to be the total

weight of the early jobs. The value of the objective function of the resulting schedule S(p)

can be written as

Z(S(p)) = Zm + F(Wm, x), (52)

where F(Wm, x) denotes the total increment of the objective function due to the insertion of

the straddling job. It follows that

F(Wm, x) = Wm px + (W − Wm) p (1 − x) .

Thus, for each choice of the straddling job we need to find the best way of inserting the job

into the schedule for the remaining jobs. The value of Zm can be found either by a primary

dynamic programming algorithm, similar to Algorithm PDP or by its dual counterpart. The

only difference is that now for computing the overall value of the objective function Z we

need to know the value of Wm , or rather pWm that contributes into Z . This value can be

found recursively during the iterations of the DP algorithm. The description of the resulting

algorithm is similar to that of Algorithm PDP.

A typical primal state after the values x1, x2, . . . , xk have been assigned is represented by

a state of the form

(k, Zk, yk, Vk) ,

123

84 Ann Oper Res (2016) 240:39–94

where k, Zk and yk have the same meaning as in Algorithm PDP, while

Vk = p

k∑

j=1

w j x j

denotes the product of the total weight of the jobs processed before the due date and the

processing time of the straddling job.

In iteration k of the primal algorithm a move from a state (k, Zk, yk, Vk) to a state

(k + 1, Zk+1, yk+1, Vk+1) is done in accordance with

Zk+1 = Zk + wk+1 yk, yk+1 = yk + pk+1, Vk+1 = Vk + wk+1 p,

provided that yk+1 ≤ d , and with

Zk+1 = Zk + wk+1 (Ak − yk) + wk+1 pk+1; yk+1 = yk, Vk+1 = Vk,

where Ak =
∑k

j=1 p j .

We may assume 2Wm < W ; otherwise a schedule with the chosen straddling jobs cannot

be optimal. This implies

Z(S(p)) ≥ F(Wm, x) ≥ Wm px + Wm p (1 − x) = Wm p,

i.e., Vm = Wm p ≤ ZU B . As an upper bound ZU B we may take the value Z(S2
H), where S2

H

is a heuristic schedule found by Algorithm ETStr.

For each state generated in the last iteration of the primal algorithm, we find x and compute

the value of the function Z by formula (52). The smallest of the found Z−values corresponds

to an optimal value of the total weighted completion time for the original problem with a

chosen straddling job.

The DP algorithm outlined above is used as a subroutine in the FPTAS, so that all fea-

sible combinations should be generated and stored. For a fixed straddling job, such a DP

algorithm requires O
(
nd (ZU B)2

)
time, i.e., an overall optimal solution will be found in

O
(
n2d (ZU B)2

)
time. We skip the details of the dual version of our DP algorithm for finding

the values of Zm .

For problem 1|d j = d|
∑

w j

(
E j + T j

)
with a chosen straddling job, Algorithm EpsSQK

can be modified as follows. Let Z∗(p, w) denote the smallest value of the objective function

in the class of schedules with the chosen straddling job with processing time p and weight

w.

For ZU B = Z(S2
H) it follows that ZL B = 3−

√
5

2
ZU B is a lower bound on Z(S∗), and

therefore on Z∗(p, w). In Step 1 of Algorithm EpsSQK redefine δ = εZL B

4m
. Change Step

4(a) of the algorithm in the following way. Move from a stored primal state (k, Zk, yk, Vk)

to at most two primal states of the form (k + 1, Zk+1, yk+1, Vk+1), each time rounding up

each of the updated values of Zk+1 and Vk+1 to the next multiple of δ. For each selection

of states related to the same pair (Zk+1, Vk+1) and a subinterval I r
j , determine the value

ymin
k+1 as the smallest value of yk+1 that belongs to I r

j and the value ymax
k+1 as the largest

value of yk+1 that belongs to I r
j . If these values exist and are distinct, then out of all states

(k + 1, Zk+1, yk+1, Vk+1) with the same values of Zk+1 and Vk+1 for yk+1 ∈
[
ymin

k+1, ymax
k+1

]

store only two states (k+1, Zk+1, ymin
k+1, Vk+1) and (k+1, Zk+1, ymax

k+1, Vk+1). The description

of Step 4(b) of Algorithm EpsSQK is altered similarly; here we manipulate the corresponding

dual states. Step 5 is reformulated accordingly.

For each choice of the straddling job, the described FPTAS takes O
(
n5/ε3

)
time. To find

an approximate solution to the original problem we need to run the FPTAS for each job

123

Ann Oper Res (2016) 240:39–94 85

selected as the straddling job, rejecting the solutions in which the selected job completes

before the due date. Thus, the overall running time of the FPTAS is O
(
n6/ε3

)
.

For problem 1|d j = d|
∑(

E j + T j

)
with equal weights, we can take the value of the

function delivered by the algorithm by Hoogeveen et al. (1994) as an upper bound ZU B . Recall

that ZU B/Z∗ ≤ 4/3. For each choice of the straddling job, running a modified FPTAS that

finds the values Zm takes O
(
n4/ε2

)
time. Thus, the overall running time of the FPTAS for

problem 1|d j = d|
∑(

E j + T j

)
is O

(
n5/ε2

)
. See also Kacem et al. (2011) for a discussion

of the problems from this subsection.

6.3.3 Minimizing total weighted tardiness

For the common due date problem 1|d j = d |
∑

w j T j , Fathi and Nuttle (1990) provide a

2−approximation algorithm that requires O(n2) time. Kolliopoulos and Steiner (2006) give

an approximation scheme for the problem with a fixed number of distinct due dates, however,

the running time of their algorithm is pseudopolynomial since it is bounded by a polynomial

of the largest weight.

As shown in Sect. 3.4, for problem 1|d j = d |
∑

w j T j we can select a job as straddling,

find a schedule Sm for m = n − 1 remaining jobs and then insert the chosen job into the

derived schedule. Kellerer and Strusevich (2006) explain how to adapt a general FPTAS for

Problem SQK for handling problem 1|d j = d |
∑

w j T j to obtain an approximation scheme

that requires the running time of O
((

n6 log W
)
/ε3

)
.

The achieved running time, although polynomial is not strongly polynomial and should

be seen as impractical. Still, this algorithm has a certain theoretical importance as the first

evidence that problem 1|d j = d|
∑

w j T j admits an FPTAS. Besides, an adaptation of the

general FPTAS for Problem SQK to solving problem 1|d j = d|
∑

w j T j involves techniques

that might be useful for handling other possible applications. For example, Karakostas et al.

(2012) develop an FPTAS for the problem of minimizing the total weighted tardiness with

a fixed number of distinct due dates, and their consideration is based on the ideas of Algo-

rithm EpsWT above.

A much faster FPTAS for problem 1|d j = d|
∑

w j T j is designed by Kacem (2010). He

gives a modified DP algorithm that scans the jobs in the order opposite to the WSPT, assigns

the jobs form right to left starting from time p(N). This algorithm is converted into an FPTAS

that is based on splitting the solution space into equal subintervals and reducing the number

of states stored in each interval. The running time of the FPTAS is O(n2/ε). See also Kacem

et al. (2011) for a discussion of the problems from this subsection.

7 Differential approximation schemes

In this section, we discussed a less traditional measure of the quality of an approximate

solution. Following Sarto Basso and Strusevich (2014), it is demonstrated that the existence

of an FPTAS for Problem HP, with or without a knapsack constraint, implies the existence

of so-called differential fully polynomial-time approximation schemes for the whole range

of problems reviewed in this paper. Below we mainly use the set-function notation.

As stated in Sect. 4, finding an FPTAS for problem min {F (U) |U ⊆ N } with F (U) =
H (U) + K is not straightforward, even though problem min {H (U) |U ⊆ N } admits an

FPTAS. This reflects a known phenomenon of non-stability of the traditional approximation

measure under linear transformations. This phenomenon has brought numerous researchers

123

86 Ann Oper Res (2016) 240:39–94

to considering an alternative approximation measure for problems of combinatorial opti-

mization. Rather than measuring the relative error of a heuristic solution, it could be more

insightful to study the position of the heuristic solution within the interval of all its possible

values. Such an approximation measure takes the name of differential approximation. Sev-

eral dozens of papers present differential approximation results for traditional problems of

combinatorial optimization; see the review Ausiello and Paschos (2007).

Below we formally give the required definitions, presented in terms of optimizing set-

functions. Let M denote a set of feasible subsets U ⊆ N . For a given set-function ϕ (U), let

U∗ and U∗ be the set-maximizer and the set-minimizer, respectively, i.e., ϕ (U∗) ≤ ϕ (U)

and ϕ (U∗) ≥ ϕ (U) for all sets U ∈ M. Consider the problem min {ϕ (U) |U ∈ M} of

minimizing ϕ (U) over M. An algorithm A that finds a set UA ∈ M is called a δ−differential

approximation algorithm if

ϕ (UA) ≤ δϕ(U∗) + (1 − δ)ϕ
(
U∗) . (53)

Here 0 < δ < 1, and the value of an approximate solution is placed between the best and

the worst objective function values. A good differential approximation algorithm finds a solu-

tion that is fairly close to the optimum, i.e., there is an interest in designing an algorithm that

delivers a δ close to 1 in (53). For any small positive δ, a family of (1 − δ) −differential

approximation algorithms is called a Differential Fully Polynomial-Time Approximation

Scheme (DFPTAS) if its running time depends polynomially on the length of the problem’s

input and additionally is polynomial in 1/δ.

See Ausiello et al. (2003) and Demange and Paschos (1996) for a detailed formal discus-

sion on differential approximation and on comparisons with traditional approximability. It

should be stressed that a problem that admits a good differential approximation algorithm

does not necessarily admits an algorithm with a good traditional approximation ratio, and

vice versa. The examples include the travelling salesman problem and the minimum graph

vertex problem; see, e.g., Demange and Paschos (1996) and Kacem and Paschos (2013).

In particular, in general for problem min {ϕ (U) |U ∈ M} the existence of an FPTAS does

not imply the existence of a DFPTAS. However, for the problems of our interest such a

conversion can easily be done.

Let ϕ(U) be a set-function such that

ϕ(U∗) < 0 = ϕ (∅) ≤ ϕ
(
U∗) . (54)

The following statement holds.

Lemma 5 Let ϕ (U) be a set-function that satisfies (54), and ψ (U) = ϕ (U) + K for a

constant K . If problem min {ϕ (U) |U ∈ M} admits an algorithm that finds a set UA such

that ϕ (UA) − ϕ(U∗) ≤ δ |ϕ(U∗)| , then ϕ (UA) ≤ (1 − δ) ϕ(U∗) + δϕ(U∗) and ψ (UA) ≤
(1 − δ) ψ(U∗) + δψ(U∗) hold.

Proof This lemma is proved in Sarto Basso and Strusevich (2014). If follows from

ϕ (UA) − ϕ(U∗) ≤ δ |ϕ(U∗)| that ϕ (UA) − ϕ(U∗) ≤ −δϕ(U∗) and, therefore, ϕ (UA) ≤
(1 − δ) ϕ(U∗). Since ϕ(U∗) ≥ 0 we have that for any δ > 0 the inequality δϕ(U∗) ≥ 0

holds. Thus, we deduce ϕ (UA) ≤ (1 − δ) ϕ(U∗) + δϕ(U∗) . Adding a constant K to both

sides yields ψ (UA) ≤ (1 − δ) ψ(U∗) + δψ(U∗). ⊓⊔

Lemma 5 illustrates an advantage of using a differential approximation measure: adding

a constant can be handled easily. It forms a basis of converting an FPTAS to a DFPTAS for

the problems with the objectives related to the half-product.

123

Ann Oper Res (2016) 240:39–94 87

Notice that for the half-product function (1) or (12) the assumption (54) holds.

Apply Lemma 5 to problem min {H (U) |U ∈ M}, where either M = 2N or M =
{U |α (U) ≤ A, U ⊆ N }. Each problem min {H (U) |U ⊆ N } and min {H (U) |α (U) ≤ A,

U ⊆ N } admits an FPTAS that requires O
(
n2/ε

)
time; see Sect. 4.1. Thus, for ϕ (U) =

H (U) the inequality ϕ (UA) − ϕ(U∗) ≤ δ |ϕ(U∗)| holds for δ = ε, and an FPTAS for prob-

lem min {H (U) |U ⊆ N } and min {H (U) |α (U) ≤ A, U ⊆ N } behaves as an DFPTAS for

the corresponding problem, even if the objective function changes to H (U) + K .

Theorem 12 For set-functions H (U) of the form (12) and F (U) = H (U)+ K each prob-

lem min {H (U) |U ⊆ N } , min {H (U) |α (U) ≤ A, U ⊆ N } , min {F (U) |U ⊆ N } and

min {F (U) |α (U) ≤ A, U ⊆ N } admits a DFPTAS that requires O
(
n2/ε

)
time.

Problem 1|h(1), N − res|
∑

w j C j formulated in Sect. 3.1 is among the first scheduling

problems that have been studied from the differential approximability point of view. It is

proved in Kacem and Paschos (2013) that the problem admits an O (n log n) −time differ-

ential δ−approximation algorithm for δ = 3−
√

5
2

= 0.381 97. Theorem 12 implies that not

only this problem, but all scheduling problems formulated in Sect. 3 admit a DFPTAS. The

running time of such a DFPTAS is always O
(
n2/ε

)
, even for those scheduling problems for

which the best known FPTAS requires more time than O
(
n2/ε

)
.

8 Maximizing half-product related functions

In this section, we turn to the problem of maximizing functions, related to the half-product,

with and without a knapsack constraint. These problems are of interest in their own right, as

well as due to their possible applications. The results of this section are mainly contained in

Kellerer et al. (2015).

We start with problem max {Q (U) |U ⊆ N } of maximizing a quadratic function (13) in

which the coefficients of the quadratic terms are all non-negative. As stated in Sect. 2.3,

function Q (U) is supermodular. Solving problem max {Q (U) |U ⊆ N } is equivalent to

solving problem min {−Q (U) |U ⊆ N }, where function −Q (U) obtained from Q (U) by

changing the signs of all coefficients is submodular.

It is well-known that minimizing a submodular function (or, equivalently, maximizing a

supermodular function) can be done in polynomial time. See Iwata et al. (2001) and Schrijver

(2000) for algorithms for minimizing an arbitrary submodular function. Due a special struc-

ture, the problem of maximizing a quadratic supermodular function Q (U) can be solved

much faster than in the general case, since it reduces to the problem of finding the maximum

flow in a digraph with O(n2) nodes. This approach is originally due to Rhys (1970), and is

outlined in Wolsey and Nemhauser (1988). It is demonstrated in Kellerer et al. (2015) that

such an algorithm can be implemented in O
(
n3

)
time. The problem of maximizing the half-

product function (12) is a special case of problem max {Q (U) |U ⊆ N } with non-negative

coefficients of the quadratic terms. Thus, the following statement holds.

Theorem 13 Each problem max {H (U) |U ⊆ N } and max {F (U) = H (U) + K |U ⊆ N }
can be solved in O

(
n3

)
time.

This result is in contrast with the fact that the minimization counterparts of these problems,

i.e., problems min {H (U) |U ⊆ N } and min {F (U) |U ⊆ N }, are NP-hard.

We now turn to problem max {H (U) |α (U) ≤ A, U ⊆ N } of maximizing a half-product

function subject to a knapsack constraint. The latter problem belongs to the class of maxi-

123

88 Ann Oper Res (2016) 240:39–94

mization integer programming problems known as supermodular knapsack problems; see,

e.g., Gallo and Simeone (1988) and Rader and Woeginger (2002).

Kellerer et al. (2015) show that if there are negative coefficients γ j in the linear part of the

function that this NP-hard problem is non-approximable. In fact, they show that for problem

max {H (U) |α (U) ≤ A, U ⊆ N } it is NP-hard to decide whether H (U∗) ≥ 1, where U∗

is a set-maximizer. This leads in the following non-approximability result.

Theorem 14 Unless P = N P, for any ρ, 0 < ρ < 1 problem max {H (U) |α (U) ≤ A,

U ⊆ N } does not admit a polynomial-time algorithm which finds a feasible set SH such that

h
(
SH

)
> ρh (S∗).

In the remainder of this section, we focus on problem max {G (U) |α (U) ≤ A, U ⊆ N },
where

G (U) =
∑

i, j∈U ; i< j;
αiβ j + γ (U) + K

with all coefficients being non-negative; an equivalent expression for this function in terms

of Boolean variables is

G (x) =
n∑

1≤i< j≤n

αiβ j xi x j +
n∑

j=1

γ j x j + K . (55)

As stated in Kellerer et al. (2015), problem max {G (U) |α (U) ≤ A, U ⊆ N } can serve

as a mathematical model of a prize collecting routing problem. Suppose that a vehicle,

initially with no passengers, visits all or some of n destinations and picks up p j people from

destination j, 1 ≤ j ≤ n. The vehicle is of a limited capacity, so that at any time no more

than A people can be on board.

When the vehicle leaves destination j , every person on board that has been brought to

this destination is paid a reward of w j points, while each of p j people picked up from

the destination receives a different award of v j points. It is required to maximize the total

collected prize, provided that the vehicle never carries more than A passengers.

Without loss of generality, assume that the destinations are numbered in accordance with

the WSPT rule (14). Adapting the results by Smith (1956) on a single machine scheduling

problem to minimize the weighted sum of the completion times, it can be verified that the

vehicle should visit destinations in the order that is opposite to their numbering.

Introduce the Boolean decision variables

x j =
{

1, if destination j is visited

0, otherwise
.

The vehicle capacity constraint can be written as

n∑

j=1

p j x j ≤ A.

The total profit can be written as

G (x) =
n∑

1≤ j≤n

w j x j

j−1∑

i=1

pi xi +
n∑

j=1

v j p j x j =
n∑

1≤i< j≤n

piw j xi x j +
n∑

j=1

v j p j x j ,

which corresponds to (55) with α j = p j , β j = w j , γ j = v j p j , 1 ≤ j ≤ n, and K = 0.

Thus, this version of the prize collecting problem reduces to max {G (U) |α (U)≤ A, U ⊆ N }.

123

Ann Oper Res (2016) 240:39–94 89

Recall that for a problem of maximizing a set-function ϕ (U), a set U ε is called an

ε- approximate solution if for a given positive ε the inequality ϕ (U∗) − ϕ (U ε) ≤ εϕ (U∗)
holds. A family of algorithms that for any given positive ε find an ε− approximate solution is

called a Fully Polynomial-Time Approximation Scheme (FPTAS), provided that the running

time depends polynomially on both the length of the input and 1/ε.

Kellerer et al. (2015) show that problem max {G (U) |α (U) ≤ A, U ⊆ N } admits an

FPTAS which can be obtained by converting a DP algorithm that finds an optimal solution

of the problem in pseudopolynomial time. Such an algorithm can be easily developed by an

appropriate modification of Algorithm DP1. We only need to modify Step 2 by replacing the

recursive formula (34) by the formula

Zk = Zk−1 + βk yk−1 + γk, yk = yk−1 + αk . (56)

and the recursive formula (35) by

Zk = Zk−1; yk = yk−1. (57)

Besides, in Step 3, we need to find Z∗
n , the largest value of Zn among all found states of

the form (n, Zn, yn).

The running time of the resulting DP algorithm, which we call Algorithm DPMax, does

not exceed O(n AZU B), where ZU B is an upper bound on the value G (x∗). Here and below

an obvious upper bound

ZU B =
n∑

1≤i< j≤n

αiβ j +
n∑

j=1

γ j + K (58)

is used. To convert Algorithm DPMax into an FPTAS, Kellerer et al. (2015) employ the

geometric rounding technique to reduce the number of stored states.

Algorithm EpsGmax

Step 1 Compute ZU B by (58). Introduce the intervals, whose endpoints form geometric

sequences. For the y−values, introduce the intervals

[0, 0], [1, 1 + ε] ,
[
1 + ε, (1 + ε)2

]
,
[
(1 + ε)2 , (1 + ε)3

]
, . . . ,

[
(1 + ε)u−1 , (1 + ε)u

]
,

where
⌈
(1 + ε)u

⌉
= A. Call these intervals Iℓ, ℓ = 0, 1, . . . , u. For the Z−values,

introduce the intervals

[0, 0],
[
1, (1 + ε)

1
n

]
,

[
(1 + ε)

1
n , (1 + ε)

2
n

]
, . . . ,

[
(1 + ε)

v−1
n , (1 + ε)

v
n

]
,

where
⌈
(1 + ε)

v
n

⌉
= ZU B . Call these intervals Jr , r = 0, 1, . . . , v.

Step 2 Store the initial state (0, Z0, y0) with Z0 = K and y0 = 0. For each k, 1 ≤ k ≤ n,

do the following:

(a) In line with Algorithm DPMax, move from a stored state (k − 1, Zk−1, yk−1) to at

most two states of the form (k, Zk, yk), where Zk ≤ ZU B , using the relations (56)

and (57).

(b) If the number of generated states (k, Zk, yk) with the Z -values in the same interval

Jr and with the y-values in the same interval Iℓ exceeds 2, then keep only states two

states, with the largest and the smallest y-value.

Step 3 Determine Z ε as the largest value of Zn among the states (n, Zn, yn). Perform back-

tracking and find the vector xε =
(
xε

1, xε
2, . . . , xε

n

)
that leads to Z ε. Output xε and

G (xε) as an approximate solution of the problem.

123

90 Ann Oper Res (2016) 240:39–94

The required performance of Algorithm EpsGmax is guaranteed by the following state-

ment.

Lemma 6 Let

(0, K , 0) , (1, Z∗
1 , y∗

1), . . . , (n, Z∗
n , y∗

n)

be the sequence of states that lead to the optimal solution with the function value Z∗
n . For each

k, 0 ≤ k ≤ n, for a state (k, Z∗
k , y∗

k) there exists a state (k, Zk , yk) stored by Algorithm FPTAS

such that

(i) yk ≤ y∗
k ;

(ii) (1 + ε) yk ≥ y∗
k ;

(iii) (1 + ε)
k
n Zk ≥ Z∗

k .

Algorithm EpsGmax delivers an approximate solution of a required quality and run in

time that is polynomial (but not strongly polynomial).

Theorem 15 Algorithm EpsGmax is an FPTAS for problem max {G (U) |α (U)≤ A, U ⊆ N }
that requires O

(
n2

ε2 log A log ZU B
)

time.

9 Conclusion

The survey presents the known results on exact and approximation algorithms and schemes

for solving Boolean optimization problems with quadratic objective functions related to

the half-product. Further research in this direction may include extending conditions under

which the problems of the outlined range admit an FPTAS or a constant-ratio approximation

algorithm.

1. An FPTAS resented in Sect. 5.1 for Problems PosHP requires O
(
n2/ε

)
time, provided

that the objective function is convex. Is it possible to develop an FPTAS for problem

Problem HPAdd that runs in O
(
n2/ε

)
time, without any extra assumptions on the shape

of the objective function such as convexity or a representation with positive coefficients?

2. Are there algorithmic techniques that would allow further reducing the running time of

an FPTAS for Problem SQK and its scheduling applications?

3. The continuous relaxation of Problems PosHP and SQK can be solved in O(n2) time,

provided that the objective function is non-separable convex; see Sects. 5.2 and 6.1. On

the other hand, as proved in Moré and Vavasis (1991), the continuous quadratic knapsack

problem is NP-hard if the objective function is separable concave. Does there exist a

strongly polynomial-time algorithm that solves the continuous relaxation of the general

quadratic knapsack problem with a convex function?

4. The search for possible applications of the corresponding Boolean programming prob-

lems is of interest. In particular, the existence of an FPTAS for the problem of minimizing

the total weighted earliness and tardiness with asymmetric weights would resolve the sta-

tus of the problem with respect to the unary encoding; so far the problem is not known

to be solvable in pseudopolynomial time or to admit a polynomial-time approximation

scheme. Are there applications of Problem HPAdd or Problem SQK to a problem area

different from scheduling?

Acknowledgments This research was partly supported by the EPSRC funded Project EP/I018441/1

“Quadratic and Linear Knapsack Problems with Scheduling Applications”.

123

Ann Oper Res (2016) 240:39–94 91

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

Adiri, I., Bruno, J., Frostig, E., & Rinnooy Kan, A. H. G. (1989). Single machine flow-time scheduling with

a single breakdown. Acta Informatica, 26, 679–696.

Agnetis, A., Mirchandani, P. B., Pacciarelli, D., & Pacifici, A. (2004). Scheduling problems with two competing

agents. Operations Research, 52, 229–242.

Ausiello, G., Bazgan, C., Demange, M., & Paschos, V.T. (2003). Completeness in differential approxima-

tion classes. In Rovan, B., Vojtáš, P. (Ed.), Mathematical foundations of computer science 2003, 28th

international symposium, lecture notes computer science (Vol. 2747, pp. 179–188).

Ausiello, G., & Paschos, V. T. (2007). Differential ratio approximation. In T. F. Gonzalez (Ed.), Handbook of

approximation algorithms and metaheuristics, chapter 16. London: Taylor and Francis.

Badics, T., & Boros, E. (1998). Minimization of half-products. Mathematics of Operations Research, 33,

649–660.

Bagchi, U., Sullivan, R. S., & Chang, Y.-L. (1987). Minimizing mean squared deviation of completion times

about a common due date. Management Science, 33, 894–906.

Berman, P., Kovoor, N., & Pardalos, P. M. (1993). Algorithms for the least distance problem. In P. M. Pardalos

(Ed.), Complexity in numerical optimization (pp. 33–56). Singapore: World Scientific.

Boros, E., & Hammer, P. (2002). Pseudo-Boolean optimization. Discrete Applied Mathematics, 123, 155–225.

Breit, J. (2007). Improved approximation for non-preemptive single machine flow-time scheduling with an

availability constraint. European Journal of Operational Research, 183, 516–524.

Bretthauer, K. M., & Shetty, B. (1997). Quadratic resource allocation with generalized upper bounds. Opera-

tions Research Letters, 20, 51–57.

Brucker, P. (1984). An O(n) algorithm for quadratic knapsack problems. Operations Research Letters, 3,

163–166.

Cai, X. (1995). Minimization of agreeably weighted variance in single machine systems. European Journal

of Operational Research, 85, 576–592.

Cheng, J., & Kubiak, W. (2005). A half-product based approximation scheme for agreeably weighted com-

pletion time variance. European Journal of Operational Research, 162, 45–54.

Csirik, J., Frenk, J. B. G., Labbé, M., & Zhang, S. (1991). Heuristics for the 0–1 min-knapsack problem. Acta

Cybernetica, 10, 15–20.

De, P., Ghosh, J. B., & Wells, C. E. (1989). A note on the minimization of mean squared deviation of completion

times about a common due date. Management Science, 35, 1143–1147.

De, P., Ghosh, J. B., & Wells, C. E. (1992). On the minimization of completion time variance with bicriteria

extension. Operations Research, 40, 1148–1155.

Demange, M., & Paschos, V. T. (1996). On an approximation measure founded on the links between optimiza-

tion and polynomial approximation theory. Theoretical Computer Science, 158, 117–141.

Eilon, S., & Chowdhury, I. E. (1972). Minimizing time variance in the single machine problem. Management

Science, 23, 567–575.

Engles, D. W., Karger, D. R., Kolliopoulos, S. G., Sengupta, S., Uma, R. N., & Wein, J. (2003). Techniques

for scheduling with rejection. Journal of Algorithms, 49, 175–191.

Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M., & Stougie, L. (2010).

Universal sequencing on a single machine. In: Eisenbrand, F., Shepherd, B. (Ed.), IPCO 2010, lecture

notes in computer science (Vol. 6080, pp. 230–243).

Erel, E., & Ghosh, J. B. (2008). FPTAS for half-products minimization with scheduling applications. Discrete

Applied Mathematics, 156, 3046–3056.

Fathi, Y., & Nuttle, H. W. L. (1990). Heuristics for the common due date weighted tardiness problem. IIE

Transactions, 22, 215–225.

Foldes, S., & Hammer, P. (2005). Submodularity, supermodularity and higher order monotonicities of pseudo-

Boolean functions. Mathematics of Operations Research, 30, 453–461.

Gallo, G., & Simeone, B. (1988). On the supermodular knapsack problem. Mathematical Programming, 45,

295–309.

123

http://creativecommons.org/licenses/by/4.0/

92 Ann Oper Res (2016) 240:39–94

Gordon, V. S., Potts, C. N., Strusevich, V. A., & Whitehead, J. D. (2008). Single machine scheduling models

with deterioration and learning: Handling precedence constraints via priority generation. Journal of

Scheduling, 11, 357–370.

Güntzer, M. M., & Jungnickel, D. (2000). Approximate minimization algorithms for the 0/1 knapsack and

subset-sum problem. Operations Research Letters, 26, 55–66.

Hall, N. G., & Posner, M. E. (1991). Earliness–tardiness scheduling problems, I: Weighted deviation of

completion times about a common due date. Operations Research, 39, 836–846.

Hall, N. G., Kubiak, W., & Sethi, S. P. (1991). Earliness–tardiness scheduling problems, II: Deviation of

completion times about a restrictive common due date. Operations Research, 39, 847–856.

Hochbaum, D. S. (2005). Complexity and algorithms for convex network optimization and other nonlinear

problems. 4OR—Quarterly Journal of Operations Research, 3, 171–216.

Hochbaum, D. S. (2008). Complexity and algorithms for nonlinear optimization problems. Annals of Opera-

tions Research, 153, 257–296.

Hochbaum, D. S., & Shantikumar, J. G. (1990). Convex separable optimization is not much harder than linear

optimization. Journal of the Association for Computing Machinery, 37, 843–862.

Hoogeveen, J. A., Oosterhout, H., & van de Velde, S. L. (1994). New lower and upper bounds for scheduling

around a small common due date. Operations Research, 42, 102–110.

Hoogeveen, J. A., & van de Velde, S. L. (1991). Scheduling around a small common due date. European

Journal of Operational Research, 55, 237–242.

Hoogeveen, H., & Woeginger, G. J. (2002). Some comments on sequencing with controllable processing times.

Computing, 68, 181–192.

Iwata, S., Fleischer, L., & Fujishige, S. (2001). A combinatorial, strongly polynomial-time algorithm for

minimizing submodular functions. Journal of the Association for Computing Machinery, 48, 761–777.

Janiak, A., Kovalyov, M. Y., Kubiak, W., & Werner, F. (2005). Positive half-products and scheduling with

controllable processing times. European Journal of Operational Research, 165, 416–422.

Jurisch, B., Kubiak, W., & Józefowska, J. (1997). Algorithms for minclique scheduling problems. Discrete

Applied Mathematics, 72, 115–139.

Kacem, I. (2008). Approximation algorithm for the weighted flow-time minimization on a single machine

with a fixed non-availability interval. Computers and Industrial Engineering, 54, 401–410.

Kacem, I. (2010). Fully polynomial-time approximation scheme for the weighted total tardiness minimization

with a common due date. Discrete Applied Mathematics, 158, 1035–1040.

Kacem, I., & Chu, C. (2008). Worst-case analysis of the WSPT and MWSPT rules for single machine scheduling

with one planned setup period. European Journal of Operational Research, 187, 1080–1089.

Kacem, I., Kellerer, H., & Strusevich, V. A. (2011). Single machine scheduling with a common due date: Total

weighted tardiness problems. In A. R. Mahjoub (Ed.), Progress in combinatorial optimization, chapter

13 (pp. 391–421). New York, London: Wiley-ISTE.

Kacem, I., & Mahjoub, A. R. (2009). Fully polynomial time approximation scheme for the weighted flow-

time minimization on a single machine with a fixed non-availability interval. Computers and Industrial

Engineering, 56, 1708–1712.

Kacem, I., & Paschos, V. T. (2013). Weighted completion time minimization on a single-machine with a fixed

non-availability interval: Differential approximability. Discrete Optimization, 10, 61–68.

Kanet, J. T. (1981). Minimizing variation of flow time in single machine systems. Management Science, 27,

1453–1459.

Karakostas, G., Kolliopoulos, S.G., & Wang, J. (2012). An FPTAS for the minimum total weighted tardiness

problem with a fixed number of distinct due dates. ACM Transactions on Algorithms, 8(4), Article 40.

doi:10.1145/2344422.2344430.

Kellerer, H., Kubzin, M. A., & Strusevich, V. A. (2009). Two simple constant ratio approximation algorithms

for minimizing the total weighted completion time on a single machine with a fixed non-availability

interval. European Journal of Operational Research, 199, 111–116.

Kellerer, H., Mansini, R., Pferschy, U., & Speranza, M. G. (2003). An efficient fully polynomial approximation

scheme for the subset-sum problem. Journal of Computer and System Sciences, 66, 349–370.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Berlin: Springer.

Kellerer, H., Rustogi, K., & Strusevich, V. A. (2013). Approximation schemes for scheduling on a single

machine subject to cumulative deterioration and maintenance. Journal of Scheduling, 16, 675–683.

Kellerer, H., Sarto Basso, R., & Strusevich, V. A. (2015). Approximability issues for unconstrained and

constrained maximization of half-product related functions. Report SORG-01-2015.

Kellerer, H., & Strusevich, V. A. (2006). A fully polynomial approximation scheme for the single machine

weighted total tardiness problem with a common due date. Theoretical Computer Science, 369, 230–238.

Kellerer, H., & Strusevich, V. A. (2010a). Fully polynomial approximation schemes for a symmetric quadratic

knapsack problem and its scheduling applications. Algorithmica, 57, 769–795.

123

http://dx.doi.org/10.1145/2344422.2344430

Ann Oper Res (2016) 240:39–94 93

Kellerer, H., & Strusevich, V. A. (2010b). Minimizing total weighted earliness–tardiness on a single machine

around a small common due date: An FPTAS using quadratic knapsack. International Journal of Foun-

dations of Computer Sciences, 21, 357–383.

Kellerer, H., & Strusevich, V. A. (2012). The symmetric quadratic knapsack problem: Approximation and

scheduling applications. 4OR—Quarterly Journal of Operations Research, 10, 111–161.

Kellerer, H., & Strusevich, V. A. (2013). Fast approximation schemes for Boolean programming and scheduling

problems related to positive convex half-product. European Journal of Operational Research, 228, 24–32.

Kolliopoulos, S. V., & Steiner, G. (2006). Approximation algorithms for minimizing the total weighted tardiness

on a single machine. Theoretical Computer Science, 355, 261–273.

Kovalyov, M. Y., & Kubiak, W. (1999). A fully polynomial approximation scheme for weighted earliness–

tardiness problem. Operations Research, 47, 757–761.

Kozlov, M. K., Tarasov, S. P., & Hačijan, L. G. (1979). Polynomial solvability of convex quadratic program-

ming. Soviet Mathematics Doklady, 20, 1108–1111.

Kubiak, W. (1993). Completion time variance on a single machine is difficult. Operations Research Letters,

14, 49–59.

Kubiak, W. (1995). New results on the completion time variance minimization. Discrete Applied Mathematics,

58, 157–168.

Kubiak, W. (2005). Minimization of ordered, symmetric half-products. Discrete Applied Mathematics, 146,

287–300.

Kubiak, W., Cheng, J., & Kovalyov, M. Y. (2002). Fast fully polynomial approximation schemes for minimizing

completion time variance. European Journal of Operational Research, 137, 303–309.

Kubzin, M. A., & Strusevich, V. A. (2005). Two-machine flow shop no-wait scheduling with machine main-

tenance. 4OR—Quarterly Journal of Operations Research, 3, 303–313.

Kubzin, M. A., & Strusevich, V. A. (2006). Planning machine maintenance in two-machine shop scheduling.

Operations Research, 54, 789–800.

Kuo, W.-H., & Yang, D.-L. (2006). Minimizing the makespan in a single machine scheduling problem with a

time-based learning effect. Information Processing Letters, 97, 64–67.

Lawler, E. L., & Moore, J. M. (1969). A functional equation and its application to resource allocation and

sequencing problems. Management Science, 16, 77–84.

Lee, C.-Y. (1996). Machine scheduling with an availability constraint. Journal of Global Optimization, 9,

395–416.

Lee, C.-Y. (2004). Machine scheduling with availability constraints. In J. Y.-T. Leung (Ed.), Handbook

of scheduling: Algorithms, models and performance analysi (pp. 22-1–22-13). London: Chapman &

Hall/CRC.

Lee, C.-Y., & Liman, S. D. (1992). Single machine flow time scheduling with scheduled maintenance. Acta

Informatica, 29, 375–382.

Ma, Y., Chu, C., & Zuo, C. (2010). A survey of scheduling with deterministic machine availability constraints.

Computers and Industrial Engineering, 58, 199–211.

Marchetti-Spaccamela, A., Megow, N., Skutella, M., & Stougie, L. (2008). Robust sequencing on a single

machine. Matheon Preprint 533.

Martello, S., & Toth, P. (1990). Knapsack problems. Algorithms and computer implementation. Chichester:

Wiley.

Merten, A. G., & Muller, M. E. (1972). Variance minimization in single machine sequencing problems.

Management Science, 18, 518–528.

Megow, N., & Verschae, J. (2009). Short note on scheduling on a single machine with one non-availability

period. Matheon Preprint 557.

Monteiro, R. D. C., & Adler, I. (1989). Interior path following primal-dual algorithms. Part II: Convex quadratic

programming. Mathematical Programming, 44, 43–66.

Moré, J. J., & Vavasis, S. A. (1991). On the solution of concave knapsack problems. Mathematical Program-

ming, 49, 397–411.

Nemhauser, G. L., Wolsey, L. A., & Fischer, M. L. (1978). An analysis of approximations for maximizing

submodular set-functions—I. Mathematical Programming, 14, 265–294.

Nowicki, E., & Zdrzałka, S. (1990). A survey of results for sequencing problems with controllable processing

times. Discrete Applied Mathematics, 26, 271–287.

Pisinger, D. (2007). The quadratic knapsack problem—A survey. Discrete Applied Mathematics, 155, 623–648.

Rader, D. J, Jr, & Woeginger, G. J. (2002). The quadratic 0–1 knapsack problem with series–parallel support.

Operations Research Letters, 30, 159–166.

Rhys, M. W. (1970). A selection problem of shared fixed costs and network flows. Management Science, 17,

200–207.

123

94 Ann Oper Res (2016) 240:39–94

Romeijn, H. E., Geunes, G., & Taafe, K. (2007). On a nonseparable convex maximization problem with

continuous knapsack constraints. Operations Research Letters, 35, 172–180.

Rustogi, K., & Strusevich, V. A. (2014). Combining time and position dependent effects on a single machine

subject to rate-modifying activities. Omega, 42, 166–178.

Rustogi, K., & Strusevich, V. A. (2015). Single machine scheduling with time-dependent linear deterioration

and rate-modifying maintenance. Journal of the Operational Research Society, 66, 500–515.

Sadfi, C., Penz, B., Rapin, C., Błažewicz, J., & Formanowicz, P. (2005). An improved approximation algorithm

for the single machine total completion time scheduling problem with availability constraints. European

Journal of Operational Research, 161, 3–10.

Sahni, S. K. (1976). Algorithms for scheduling independent tasks. Journal of the Association for Computing

Machinery, 23, 116–127.

Sarto Basso, R., & Strusevich, V. A. (2014). Differential approximation schemes for half-product related

functions and their scheduling applications. Report SORG-04-2014.

Schrijver, A. (2000). A combinatorial algorithm minimizing submodular functions in strongly polynomial

time. Journal of Combinatorial Theory B, 80, 346–355.

Shabtay, D., & Steiner, G. (2007). A survey of scheduling with controllable processing times. Discrete Applied

Mathematics, 155, 1643–1666.

Shakhlevich, N. V., & Strusevich, V. A. (2006). Single machine scheduling with controllable release and

processing parameters. Discrete Applied Mathematics, 154, 2178–2199.

Skutella, M. (2001). Convex quadratic and semidefinite programming relaxations in scheduling. Journal of

the Association for Computing Machinery, 48, 206–242.

Smith, W. E. (1956). Various optimizers for single stage production. Naval Research Logistics Quarterly, 3,

59–66.

Tamir, A. (1993). A strongly polynomial algorithm for minimum convex separable quadratic cost flow problems

on two-terminal series-parallel networks. Mathematical Programming, 59, 117–132.

Tanaev, V.S., Kovalyov, M.Y., & Shafransky, Y.M. (1998). Scheduling theory. Group technologies, Minsk, pp.

41–44 (in Russian).

Vickson, R. G. (1980). Two single machine sequencing problems involving controllable job processing time.

AII Transactions, 12, 258–262.

Wan, G., Yen, B. P.-C., & Li, C.-L. (2001). Single machine scheduling to minimize total compression plus

weighted flow cost is NP-hard. Information Processing Letters, 79, 273–280.

Wang, G., Sun, H., & Chu, C. (2005). Preemptive scheduling with availability constraints to minimize total

weighted completion times. Annals of Operations Research, 133, 183–192.

Woeginger, G. J. (1999). An approximation scheme for minimizing agreeably weighted variance on a single

machine. INFORMS Journal on Computing, 11, 211–216.

Woeginger, G. J. (2000). When does a dynamic programming formulation guarantee the existence of a fully

polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing, 12, 57–74.

Wolsey, L. A., & Nemhauser, G. L. (1988). Integer and combinatorial optimization. New York: Wiley-

Interscience.

Wu, C.-C., Yin, Y., & Cheng, S.-R. (2011). Some single-machine scheduling problems with a truncation

learning effect. Computers and Industrial Engineering, 60, 790–795.

Xu, Z. (2012). A strongly polynomial FPTAS for the symmetric quadratic knapsack problem. European Journal

of Operational Research, 218, 377–381.

Yang, S.-J., & Yang, D.-L. (2010). Minimizing the makespan single-machine scheduling with aging effects

and variable maintenance activities. Omega, 38, 528–533.

Yuan, J. (1992). The NP-hardness of the single machine common due date weighted tardiness problem. Systems

Science and Mathematical Sciences, 5, 328–333.

Zhao, C.-L., & Tang, H.-Y. (2010). Single machine scheduling with general job-dependent aging effect and

maintenance activities to minimize makespan. Applied Mathematical Modeling, 34, 837–841.

123

	Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications
	Abstract
	1 Introduction
	2 Formulation of half-product and related problems
	2.1 Boolean programming formulations
	2.2 Matrix formulations and convexity
	2.3 Set-function form and supermodularity
	2.4 Approximation algorithms and schemes

	3 Scheduling problems: formulations and reductions to Boolean programming
	3.1 Scheduling with machine non-availability
	3.2 Scheduling with a floating maintenance period
	3.3 Minimizing total weighted earliness and tardiness
	3.4 Minimizing total weighted tardiness
	3.5 Minimizing completion time variance
	3.6 Scheduling with controllable processing times
	3.7 Scheduling with rejection
	3.8 Scheduling with controllable release dates
	3.9 Scheduling on two identical parallel machines

	4 Half-product: approximation and scheduling applications
	4.1 Approximation schemes
	4.2 Scheduling applications

	5 Positive half-product: approximation and scheduling applications
	5.1 Approximation scheme: general principles
	5.2 Continuous relaxation and constant-ratio approximation
	5.3 Scheduling Applications

	6 Symmetric quadratic knapsack: approximation and scheduling applications
	6.1 Approximation scheme
	6.2 Alternative FPTAS
	6.3 Scheduling applications
	6.3.1 Scheduling with machine availability constraints
	6.3.2 Minimizing total weighted earliness and tardiness
	6.3.3 Minimizing total weighted tardiness

	7 Differential approximation schemes
	8 Maximizing half-product related functions
	9 Conclusion
	Acknowledgments
	References

