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Abstract: Vehicle electrification is a promising approach towards attaining green 

transportation. However, the absence of charging stations limits the penetration of 

electric vehicles. Current approaches for optimizing the locations of charging stations 

suffer from challenges associated with spatial-temporal dynamic travel demands and 

the lengthy period required for the charging process. The present article uses the 

electric taxi (ET) as an example to develop a spatial-temporal demand coverage 

approach for optimizing the placement of ET charging stations in the space-time 

context. To this end, public taxi demands with spatial and temporal attributes are 

extracted from massive taxi GPS data. The cyclical interactions between taxi demands, 

ETs, and charging stations are modeled with a spatial-temporal path tool. A location 

model is developed to maximize the level of ET service on the road network and the 

level of charging service at the stations under spatial and temporal constraints such as 

the ET range, the charging time, and the capacity of charging stations. The reduced 

carbon emission generated by used ETs with located charging stations is also 

evaluated. An experiment conducted in Shenzhen, China demonstrates that the 

proposed approach not only exhibits good performance in determining ET charging 

station locations by considering temporal attributes, but also achieves a high quality 

trade-off between the levels of ET service and charging service. The proposed 

approach and obtained results help the decision-making of urban ET charging station 

siting. 
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1. Introduction 

Currently, the transportation sector contributes 20% to 30% of the total 

production of greenhouse gases (GHGs) such as oxocarbons (CO2 and CO) and 
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nitrous oxide (N2O) (IPCC, 2013). The reduction of GHGs in the transportation sector 

has therefore gained much attention from with respect to technical innovation and 

scientific research. Among various alternatives, vehicle electrification is a promising 

approach towards attaining green transportation (IEA, 2014a). However, relative to 

alternative fuel vehicles, electric vehicles (EVs) generally have a shorter range that is 

compounded by the requirements of an extended charging period (IEA, 2013), which, 

with the absence of charging infrastructure, inspires a severe degree of anxiety 

regarding the allowable vehicle range (i.e., range anxiety). Meanwhile, the return of 

the considerable investment required for charging stations is exceedingly meager 

under conditions of low EV penetration (Carpenter et al., 2014). Therefore, the EV 

market is dropping into a kind of “egg-chicken” paradox (Hiwatari et al., 2011; Xi et 

al., 2013; Jung et al., 2014). Clearly, the relationship between active EVs and 

available EV charging stations must be carefully coordinated (Nie and Ghamami, 

2013; Sathaye, 2014). 

Public transportation, such as bus and taxi, are an appropriate first step towards 

electrification (IEA, 2013), and various cities have made efforts in this direction (IEA, 

2013). For example, London plans to substitute all taxis in the city with EVs with the 

aim of low carbon emissions (IEA, 2014b). New York issues roadmap for electrifying 

one-third of the city’s taxi fleet by 2020 (NYC TLC, 2013). In China, the city of 

Shenzhen plans to add 3000 electric taxis (ETs) by 2015 (Shenzhen Transportation 

Administration, 2012). Therefore, the emerging question is where to locate charging 

stations to serve the various charging demands of a city. 

Location approaches are used to address the facility location problem to serve 

geographically distributed demands (Church, 2002). These methods typically consist 

of two main components: a demand representation and a location model. Usually, the 

demand is represented as points, polygons, or flow in a spatial context (Miller, 1996). 

The magnitude of the demand is generated by a synthetic method based on population 

or travel surveys. Demand is defined as being covered (i.e., fullfilled) if it is within a 

certain travel distance/time to a facility (Church and ReVelle, 1974). A location 

model is designed to select the best locations that achieve maximum system utility, 



minimum cost, or other objective(s). Based on various demand representations and 

objectives, a number of location models have been proposed such as the p-Median 

(Hakimi, 1964), p-Center (Hakimi, 1964), the maximum coverage location problem 

(MCLP; Church and ReVelle, 1974), and the flow capture location model (FCLM; 

Hodgson, 1990). With the aid of geographic information systems (GISs) in the 

integration of spatial data management, visualization, and analysis, location models 

and optimization methods have been implemented and widely applied for facility 

location in public and private sectors (Thill, 2000; Church, 2002; Drezner and 

Hamacher, 2004; Church and Murray, 2009; Gentili, M., Mirchandani, P.B., 2012). 

For appropriately locating ET charging stations, however, time is a crucial factor. 

Firstly, daily taxi demand exhibits spatial-temporal variations from hour to hour and 

from place to place (Wong et al., 2014; Qian and Ukkusuri, 2015). This type of 

spatial-temporal dynamic feature is quite difficult to capture using a synthetic demand 

approach, and has therefore been ignored in current demand representation methods 

(Miller, 1996; Church, 2002). This feature also creates a substantial challenge for 

defining the conditions whereby a charging demand is fulfilled, or formally, is 

covered (Zhou and Lin, 2012). The acquisition of spatial-temporal variations in taxi 

demand is a basic issue. Secondly, the required duration for ET charging at charging 

stations can be quite long, where, depending on the charging mode, the charging 

duration can be from 5 minutes to several hours (IEA, 2013). Such an extensive 

duration will heavily affect the interaction between taxi demand and available ETs. 

Moreover, the capacity of a charging station is limited, depending upon the number of 

charging stakes, and only a limited number of ETs can be charged simultaneously at a 

given charging station. Any ETs in excess of the maximum service number arriving at 

a station for charging must therefore wait for service (Qin and Zhang, 2013), which 

would also affect subsequent ET service on the roads. However, traditional location 

models cannot address these temporal issues at a facility. Clearly, an extension of the 

conventional location model is needed. 

Detailed-rich space-time data is an aid to decision-making and policy analysis. 

Recently, taxis with GPS that track real-time vehicle positions have been widely 



applied in transportation (Tu et al., 2010; Li et al., 2011; Fang et al., 2011; Zhang et 

al., 2013; Yue et al., 2014). Data regarding taxi service with corresponding time 

information in a city could be extracted from raw taxi GPS data. This information 

would not only contribute to traffic monitoring (Li et al., 2011), travel time estimation 

(Zhan et al., 2013; Rahmani et al., 2015), etc., but also deepen our understanding of 

travel patterns (Liu et al., 2010), urban taxi service (Qian and Ukkusuri, 2015), use of 

critical infrastructure (Fang et al., 2013, 2015), etc. Such time rich information also 

provides an opportunity to capture city-wide spatial-temporal variations in taxi 

demands, which could serve as the cornerstone for the optimal siting of ET charging 

stations. 

The present article develops a spatial-temporal demand coverage approach using 

big spatial-temporal data to facilitate charging station siting. To this end, actual 

spatial-temporal taxi demands in the city of Shenzhen, China has been extracted from 

large volume raw taxi GPS data. Using the spatial-temporal path concept, the cyclical 

taxi demand serving on the roads, ET charging, and possible additional ET waiting at 

charging stations are modeled in a spatial-temporal context. A spatial-temporal 

demand coverage location model is proposed according to considerations of EV range, 

the requirements of charging and waiting at charging stations, and the competition of 

taxies. Only the taxi demand covered by an ET is included in the presented model. 

Analysis of the obtained results for Shenzhen, China indicates the good performance 

of the proposed ET charging station siting approach obtained by taking the time 

dimension into account. The daily reduced carbon emission (RCE) generated by the 

ETs with located charging stations is also mapped to evaluate the green effect. 

The remainder of this article is organized as follows. The next section reviews 

existing location approaches and their applications to charging station siting. Section 

3 describes the study area and associated data. Section 4 presents the proposed 

spatial-temporal demand coverage approach. Section 5 illustrates the obtained results, 

and analyzes the environmental effect of used ETs with located charging stations. In 

the final section, we discuss and conclude the study. 



2. Literature review 

Facility location begins with a representation of human demands and locates 

facilities at the places best suited to serve those demands. According to the demand 

representation, current location approaches are divided into two approaches: point 

demand and flow demand. This section briefly reviews the two approaches and their 

implementations in charging station siting. For comprehensive reviews related to 

facility location, please refer to Church (2002), ReVelle & Eiselt (2005), and Murray 

(2010). 

2.1 Point demand location approach 

The point demand location approach assumes that demand is located at distinct 

places, such as residential areas, working places, and shopping centers. The basic 

demand unit is a polygonal area based spatial object in a geographical space (Church 

and Murray, 2009). The demand count or the demand density is usually derived from 

demographic data, topographic data, cadastral data, survey data, etc. Because a 

polygonal area is much too complex for geocomputing, the representation of the 

demand is usually simplified as a point at the center of the polygon by abstracting and 

aggregating (Tong and Murray, 2009). The inherent assumption is that dedicated 

travels between demand locations and facilities are made to fulfill geographical 

distributed needs. Therefore, the travel distance/time is defined as the key system 

utility index. The demand unit is defined as covered if it is within a certain travel 

distance/time to facilities. The objective is to either minimize the total travel cost 

between demands and facilities (the p-Median; Hakimi, 1964), minimize the 

maximum travel cost (the p-Center; Hakimi 1964; Biazaran and SeyediNezhad, 2009), 

maximize the demand coverage with a given number of facilities (MCLP; Church and 

ReVelle, 1974; Drezner and Hamacher, 2004), or optimize some other objectives 

relating to point demands. Thus far, the point demand location approach has been 

widely employed in various decision making applications such as the siting of 

warning sirens (Tong and Murray, 2009; Wei and Murray, 2014), bicycle stations 



(García-Palomares et al., 2012), roads (LI et al., 2009). 

Although the point demand location approach has achieved success in many 

applications, it still faces a number of challenges in transportation such as fuel station 

siting and charging station locating, e.g., the demand occurring during a trip rather 

than a fixed place, the cost index, etc. Rather than engaging in dedicated travels 

between individual facilities and customer locations to procure services, drivers may 

prefer to fulfill side needs during a long trip (Wang and Wang, 2010). Also, travel 

distance/time as the cost in the point demand location approach is not an appropriate 

measure for the system cost in location modeling in transportation. Therefore, both 

the point demand representation and the covering definition are inaccurate in this 

scenario. A new location model is therefore needed to effectively handle this type of 

location problem. 

2.2 Flow demand location approach 

The flow demand location approach assumes that consumers search for a service 

during the travel to their destination locations (Hodgson, 1990; Kuby, 2006). In this 

approach, the basic demand unit is not a polygon-based or a point-based spatial object 

representing aggregated human needs, but, rather, demand is represented as a flow 

passing along consumer routes of travel (Upchurch and Kuby, 2010). Formally, this 

location approach is denoted as the FCLM (Hodgson, 1990), which seeks to locate 

some facilities to intercept as many demand flow pathways as possible. In this method, 

an origin-destination matrix is typically first generated to model the demand 

distribution in the study area. The demand is defined as covered when a facility is 

located at any point along a consumer travel pathway. Because the objective is to 

locate facilities to maximize the passing demand flow, the FCLM is well suited for 

the types of facilities where consumers are served on their routes to travel destinations 

(Upchurch and Kuby, 2010; Zeng et al., 2010). 

With considerations for limited travel distance, the FCLM has been extended to 

the flow-refueling location model (FRLM; Kuby et al., 2009) that locates a given 

number of stations to maximize the number of trips that can be refueled during a long 



travel. Because refueling is also considered, this model is more effective for a larger 

study area (Capar et al., 2013). Both FCLM and FRLM have been successfully 

applied to the transportation sector in the optimal siting of conventional and 

alternative fuel stations (Goodchild and Noronha, 1987; Kuby, 2006; Kuby et al., 

2009; Lim and Kuby, 2010; Kim and Kuby, 2013). However, these methods consider 

only the spatial dimension of demand, and the temporal dimension of demand is 

ignored, such as the time of demand, service duration, and the possible waiting at a 

facility. 

2.3 charging stations siting 

Recently, both location approaches have been used for charging station siting. 

Frade et al. (2011) used the MCLP model for optimal siting of public charging 

stations using household travel survey data for Lisbon, Portugal. Cruz-Zambrano et al. 

(2013) implemented the FCLM to locate fast charging stations in Barcelona, Spain. Xi 

et al. (2013) determined charging demand from demographic data, and employed a 

simulation-optimization approach to optimize the number of charging stakes at 

candidate places for public EV charging. However, the determination of travel 

demand in these applications of location modeling is still conducted without time 

information. You and Hsieh (2014) developed a location model based on round-trip 

itineraries for public EV charging station siting to serve a maximum number of trips. 

Nevertheless, potential waiting at the facility was not modeled. 

To date, Jung et al. (2014) have conducted the only study where the potential 

waiting time of ETs, based on random itinerary information over an 8 hour period in 

Seoul, Korea, was considered to optimize the configuration of charging stations for 

ETs. However, the stochastic demand data were synthesized using transportation 

planning software, which deviates substantially from reality. Detailed spatial-temporal 

taxi demand data is expected to obtain better results. The present study extracted 

actual taxi travel demand from massive taxi GPS data to model the space-time 

interaction between taxi demands, ETs, and charging stations. A spatial-temporal 

demand coverage location model is developed to site ET charging stations in a 



space-time GIS environment, which benefits decision-making regarding ET charging 

station.  

3. Study area and data 

The research was conducted in Shenzhen, a metropolitan area in South China, as 

shown in Fig. 1. To reduce carbon emission in the transportation sector, the local 

administration of Shenzhen plans to implement the use of ETs. Numerous ET 

charging stations are expected to be built. In this study, we propose a spatial-temporal 

demand coverage location approach using massive taxi GPS data to facilitate the 

siting decision-making. Raw taxi GPS data, the transportation network, the ET, and 

charging station data are used. The details of the data are described as follows. 

-Taxi GPS data. Every day in Shenzhen, about 15,000 taxis are actively engaged 

in transferring people between various locations such as homes, workplaces, 

shopping centers, the airport, and parks. According to transportation statistics, 

about 420,000 to 460,000 trips are conducted daily by taxis, which is about 5% of 

the travel occurring in Shenzhen. Each taxi has been installed with a smart 

terminal connected with a GPS receiver, which records data concerning the 

vehicle identification, time, position, speed, and working status with a sampling 

interval between 40 to 80 seconds. Table 1 describes the taxi GPS format, and 

provides an example. In particular, the working status is a binary variable 

indicating whether or not the taxi is serving a client at a given time, where the 

status is recorded as 1 if the taxi is occupied, and 0 otherwise when the taxi is 

vacant. Therefore, both the times and locations at which passengers are picked-up 

and dropped-off can be identified from the taxi GPS data. In the present study, we 

employed raw taxi GPS data for a seven-day period from Oct. 12, 2013 to Oct. 18, 

2013 to extract historical spatial-temporal dynamic taxi demands. 

[place Tab. 1 about here] 

[place Fig. 1 about here] 

-The transportation network. The transportation network, derived from a 



professional navigation company, NavInfo, China, and displayed in Fig. 1, was 

modeled as a directed graph including 13,107 nodes and 20,783 edges. The data 

was used to recover taxi trajectories and extract dynamic taxi demands. 

-The electric taxi. The ET employed in Shenzhen is the E6 model produced by 

BYD (Build Your Dream) Auto Co., Ltd. With a battery charged at full capacity, 

BYD E6 can travel up to 250 km. The charging time of the E6 varies from 1 h to 

3 h depending upon the charging mode. 

-The charging stations. A charging station has multiple charging stakes, which 

transfer power from the grid to an ET. The number of stakes indicates a station’s 

charging capacity. Formally, a charging station s is defined as , where (x, 

y) is the location and n is the number of stakes. The space occupied by the 

charging station is omitted by simplifying it as a point. We set n to 50 according 

to the guide from Shenzhen transportation administration. 

4. The spatial-temporal demand coverage approach for ET charging 

station siting 

The presented location approach for ET charging station siting extends the 

demand representation and the location model into a spatial-temporal context. It 

makes use of massive taxi GPS data for optimizing the placement of ET charging 

station. Fig. 2 illustrates the workflow of the approach. Firstly, dynamic taxi demands 

are extracted from the raw GPS data in conjunction with the transportation network 

data. The cyclical interaction between taxi demands, ETs, and charging stations in the 

spatial-temporal context is modeled with a spatial-temporal path tool which depicts an 

individual’s sequential activities at various locations over a time period (Hägerstrand, 

1970). Then, a spatial-temporal demand coverage location model (STDCLM) is 

proposed to maximize ET service on the roads and charging service at the stations. A 

genetic algorithm is used to solve the STDCLM. Finally, the obtained results are 

analyzed, including the spatial pattern of covered demands, the temporal pattern of 

demand serving, charging and waiting behaviors, the impact of charging speed, the 



marginal utility, and the daily RCE estimation. 

Basic assumptions about ETs and charging stations are: (1) all ETs have the 

identical electricity capacity, E; (2) with full capacity electricity, all ETs have the 

same maximum travel distance, Dmax; (3) the charging speed CS for all ETs in any 

located station are identical. It indicates that time E/CS will be cost to recharge an ET 

from the zero-electricity state to the full capacity electricity. It also specifies that all 

charging stations provide the same charging service; (4) once a charging process 

begins, it can’t be interrupted or stopped until the charging need is completely 

fulfilled; (5) the travelable distance d is proportional to the remaining capacity e 

(Dong et al., 2014), as given in equation (1), where . In other words, the 

remaining electricity is linearly reduced with the traveled distance. 

                             (1) 

 [place Fig. 2 about here] 

4.1 Taxi demand and taxi travel 

In contrast to point demand or flow demand, taxi demand is based on a client’s 

plan to travel from some origin to a given destination at some time. Formally, the taxi 

demand can be defined as the triplet , where to denotes the 

beginning time of the demand, (xo, yo) denotes the spatial location of the origin, and 

(xd, yd) denotes the spatial location of the destination. 

To accommodate a travel demand, a taxi picks up a client at the origin, makes a 

dedicated transit to the destination, and drops off the client. Formally, taxi travel can 

be represented by extending the taxi demand to the quintuplet 

, where the path denotes the driving route from the 

origin to the destination, and td is the arrival time at the destination. 

All taxi demands and taxi travels in the city are extracted from the massive raw 

taxi GPS data. To this end, spatial-temporal trajectories are firstly recovered using the 

map-matching algorithm of Li et al. (2011). Then, in accordance with changes in a 



taxi’s working status, the origin and the destination of a taxi demand is identified. 

Based on the time-series GPS records for a taxi listed in Table.1, if the working status 

shifts from 0 to 1, a taxi demand TD is generated in the spatial-temporal context. The 

recorded position is (xo, yo) of TD, and the recorded time is to. After encountering a 

series of GPS records with a status of 1, the taxi arrives at the destination of TD 

whereupon the status shifts to 0. The last record with a status 1 labels (xd, yd) and td. 

The sequence of road links traversed from the origin to the destination is the path, 

which preserves the effect of numerous factors, such as road conditions, traffic 

congestion, and drivers’ personal preferences. After processing of all raw GPS data, 

all taxi demands and taxi travel data with exact spatial-temporal information are 

stored in a database for charging station siting. 

4.2 The interaction between taxi demands, electric taxies and charging 

stations 

When substituting a number of ETs into the current oil-based fuel taxi system, 

both ET drivers and oil-based fuel taxi drivers explore dynamically changing 

demands to provide good taxi service to the public. If a taxi demand is serviced by an 

ET, we define the taxi demand as covered by the ET. To identify taxi demands 

covered by ETs, we model the daily ET lifecycle using the spatial-temporal path tool, 

which illustrates the spatial-temporal interaction between taxi demands, ETs and 

charging stations. Fig. 3 gives an example of the spatial-temporal paths of ETs. 

Following the sequence of ET driver’s activities, an ET continues serving taxi 

demands (TD1, …, TDn in Fig.3) when the remaining electricity is enough (e.g., after 

serving TDi in Fig.3). Otherwise, the ET goes to a charging station. According the 

charging state of charging station at the arrival time, the charging will be done 

immediately (l1 in Fig.3) or after an essential waiting (l3 in Fig.3). The details of 

interactions are described below. 

[place Fig. 3 about here] 



4.2.1 Taxi demand coverage and charging decision 

With sufficient electrical power, the ET serves emerging taxi demands for the 

public. An idle ET at a position (x, y) at a time t rationally seeks a taxi request from 

the emerging demands nearby its current location. To model the competition between 

taxis, we identify the covered demand from a set of spatially near demands. The 

roulette wheel selection rule is used to determine which demand will be served by the 

ET to simulate the uncertainty in actual taxi service. An uncovered demand neighbor 

list nearby (x, y) after time t is first filled according to distance criteria. Then, a 

random value  within [0, 1] is generated to select the ith nearest demand TDi from 

the list to serve, as given by equation (2), where ai is the accumulated probability that 

the ith nearest demand is served in historical taxi serving. 

                               (2) 

Whether or not the current charge state of the ET is sufficient to serve the 

selected demand TDi is examined before initiation of taxi travel. If the ET’s current 

charge state eto is greater than the threshold required for traveling to the nearest 

charging station after serving TDi, the demand will be covered. The demand is 

covered by picking up the client at the corresponding (xo, yo) and to of TDi, traversing 

the path, and arriving at (xd, yd) at td. Afterwards, the space-time position of the ET is 

updated with (td, xd, yd) of TDi. The remaining charge capacity eto is updated by 

equation (3), where dtd is the length of the corresponding driving path. Otherwise, the 

taxi demand is rejected and the ET travels to the nearest charging station for battery 

recharging. The remaining charge capacity when arriving a charging station will be 

updated according to the travel to the charging station. 

                             (3)

4.2.2 Charging at the station 

The charging of an ET at a station is decided by the arrival time and current 

charge state at the station. If an idle charging stake is found at the station, the charging 

action will begin at once when ET v arrives at time . The charging duration is 



determined by the remaining charge capacity , the expected charge capacity  

and CS. In this paper, we set  as a random value within [0.95E, E] to model the 

diversity of charging decisions. The charging duration tcv of v is given by equation (4). 

The charging of v will be end at time . Finally, the ET’s charge state ev is 

updated with the value . After charging, the ET will return to serving the taxi 

demand in the city.  

                            (4) 

4.2.3 Waiting at the station 

In the absence of an idle charging stake at the station, ET v must wait until a 

charging ET in the station completes its charging action and releases a stake. In this 

case, the wait time tw for v is equal to the difference between the arrival time and 

the earliest charging completion time at the station , as given by equation (5), 

where u denotes a charging ET at a station s and Vs denotes the set of charging ETs at 

s at time Tv
a
. Based upon equations (4) and (5), the charging for v will end at time 

. After charging, the ET leaves the station and proceeds to serve taxi 

demands on the roads. 

                             (5) 

Owing to the cyclical demand serving, vehicle charging, and waiting, the siting 

of charging stations will heavily affect public ET service and the charging service for 

ET drivers. 

4.3 The spatial-temporal demand coverage location model 

The STDCLM aims to locate a set of ET charging stations to maximize both the 

ET service level and the charging service level. The ET service level is indicated by 

the ET covered taxi demands, and we measure it according to the total distances of the 

taxi travel of all ET covered taxi demands. The longer the total distances, the better is 

the level of ET service. The charging service level is indicated by the extent to which 



ET drivers must wait to charge at charging stations, and we measure it according to 

the total wait time at all charging stations. The lower the total wait time, the better is 

the level of charging service. It should be mentioned that travel distance/time to 

located stations is not explicitly included in the STDCLM. Reasons are from two 

aspects. Firstly, a survey of ETs on taxi drivers in Shenzhen, China, indicates that, 

because of the lengthy period required for the charging process, drivers care more 

about the waiting time at stations than the travel time to/from stations. Secondly, as 

Fig. 3 illustrates, in order to calculate the total taxi travel distances of all ET covered 

demands, the travel distances to charging stations (Dn to the charging station in Fig.3) 

have been subtracted from the total travel distances. 

The mathematical formulation of the STDCLM is as below. 

                   (6)

 

Subject to:  

                               (7) 

                              (8) 

                                (9) 

                                      (10) 

                  (11) 

                    (12) 

                        (13) 

                             (14) 

                                 (15) 

Here, S is the set of candidate locations to site charging stations, Q is the set of 

spatial-temporal taxi demands, V is the set of ETs, T is the time period, n is the 

number of stakes in a charging station, M is the number of charging stations to be 



located, q is a taxi demand, and dq is the taxi travel distance (/km) from q’s origin to 

the destination. In addition, we employ the following binary variables, where xvqt is 1 

if q is covered by v at a time t, and is 0 otherwise; yvst is 1 if v is charging at s at time t, 

and is 0 otherwise; wvt is 1 if v is waiting at s at time t, and is 0 otherwise; zs is 1 if s is 

to be located and is 0 otherwise. Furthermore,  is the accumulated travel distance 

of v within a time window [t, ], where t is the leaving time from a station after the 

ith charging, and  is the arrival time at a station for the (i+1)th charging event.  

The objective of (6) is to maximize the ET service level and the charging service 

level. The expression (km) is the total taxi travel distance of all ET 

covered taxi demands, indicating the ET service level, and  (h) is the 

value of total waiting time for all ETs, indicating the charging service level. The 

negative sign and the weight coefficient  before are used to adjust the 

relationship between the ET service and charging service. In this research, we set  

to the average travel speed of all roads across a whole day in the city reported by the 

Shenzhen transportation administration, which is 26 (km/h), with the goal to 

transform waiting time into travel distances for the second objective. Constraint (7) 

indicates that each taxi demand can be covered once only by a single ET. Constraint 

(8) requires that the total number of charging ETs at a given station and time cannot 

exceed the number of stakes at that station. This constraint introduces the temporal 

competition between ET charging actions. Constraint (9) specifies that the charging 

service at a station is available only when that charging station is chosen to be located. 

Constraint (10) requires that the number of charging stations to be located is equal to 

M. Constraint (11) indicates that the travel distance of v between consecutive charging 

events is proportional to the cost electricity over the time period  in 

accordance with the assumption in equation (1). Because  and  are in the range 

[0, E], the limitation of the ET range is also specified. Constraints (12), (13), (14), and 

(15) impose integrality conditions on decision variables. 



4.4 The genetic optimization procedure 

Location problems are difficult to solve due to their inherent complexity. The 

heuristic algorithm is a promising method for complex location problems. Genetic 

algorithms evolve to globally optimal solutions for complex optimization problems by 

simulating natural behavior (Mitchell and Melanie, 1996). Therefore, this method has 

been successfully applied to many location problems (Xiao, 2008; Tong and Murray, 

2009). In the present study, we employ a genetic algorithm to solve the STDCLM. 

Genetic algorithms involve several components, namely, genome coding, 

population generation, fitness function, and selection, crossover, mutation, and 

stopping criteria. For the STDCLM, we use an integer representation to encode sited 

locations as a chromosome. The code length of a genome is equal to the number of 

located stations. The bit value indicates which the candidate places has been selected 

for a charging station. The objective function of the STDCLM (equation (6)) serves as 

the fitness function of each individual. An initial population of selected locations is 

randomly generated. At each generation, the roulette wheel selection is conducted 

according to the fitness value. Crossover is accomplished by the single point 

crossover operator. Mutation is employed at some random bits. Simulated evolution is 

repeated until the maximum number of iterations  have been reached or the 

objective (equation (6)) has not been improved over a fixed number of iterations 

. Finally, the optimal results are reported, and the corresponding charging 

stations are displayed. Details concerning the demand coverage, ET charging, and 

essential waiting at the located stations are also obtained.  

Before optimizing the STDCLM, the parameters of genetic algorithm, such as 

the population size p, the selection rate , the mutation rate , , and , are 

established after intensive experiments using the parameter tuning method of Coy et 

al. (2001). The top-k locations with the greatest taxi demands are generated as 

candidate places. 



4.5 Analysis of results 

According to the performance of used ET BYD E6 in Shenzhen, China, we set 

the maximum travel distance Dmax to 250 km, the charging speed CS to E/120 min
-1

. 

An initial scenario (S0) with 12 charging stations and 2,000 ETs was designed to 

assess the proposed approach. The obtained result is analyzed from both spatial and 

temporal perspective, including the spatial distribution of covered taxi demands, and 

the temporal patterns of ET serving, charging and waiting behaviors. The impact of 

charging speed is investigated by solving the scenario S0 with different settings of the 

parameter CS, from E/240 min
-1

 to E/60 min
-1

. To evaluate the marginal utility of 

various numbers of sited charging stations, another four scenarios (S1-S4) were also 

designed and solved. Scenarios S1 and S2 are with 4 and 8 stations, respectively, 

whereas S3 and S4 are with 16 and 20 stations, respectively. The setting of each 

scenario, including the name, the number of ETs, the number of located stations, the 

number of stakes, and the ratio between ETs and stakes, is presented in Table 2. 

To evaluate the environmental effect of the ET service, the daily RCE is also 

estimated using the evaluation model of Barth and Boriboonsomsin (2008), which 

estimates the carbon emission per mile of a light-duty internal combustion vehicle 

according to the running speed. As the ET releases zero carbon emission to air, we 

measured the ET’s RCE with the carbon emission generated by an oil-taxi travelling 

the same route. So, with the speed information and the travel path obtained from the 

taxi GPS data, the amount of RCE owing to ET covered taxi demands is calculated. 

By accumulating all the RCE on road segments, we map the green effect of the ET 

system based on the number of ETs and the located charging stations. 

[place Tab. 2 about here] 

5. Experiment and results 

5.1 Spatial-temporal distribution of taxi demands 

Fig. 4 displays the temporal variation and the spatial distribution of taxi demands, 



and the aggregation of taxi travel flow for Shenzhen based on taxi GPS data. Fig. 4a 

indicates that the quantity of taxi demands per hour changes from 4,260 in the hour 

range [5:00, 6:00] to 25,660 in the hour range [22:00, 23:00]. Three taxi demand 

peaks are observed in the morning interval of [9:00, 11:00), in the evening interval of 

[14:00, 16:00), and in the night interval of [22:00, 23:00). Fig. 4b demonstrates that 

taxi demands are also non-uniform spatially. Most taxi demands are aggregated in the 

south and west Shenzhen, such as the downtown area, the airport, the railway station, 

and ports to Hong Kong. Demand is low in the north area, and nearly no demand 

appears in east Shenzhen, which is a nature reserve area. Fig. 4c illustrates the taxi 

travel flow. Such temporal and spatial dynamics lead to uneven taxi service requests 

in the city. Fig.5 shows the candidate nodes that have the highest taxi demand for 

charging station siting. 

[place Fig. 4 about here] 

[place Fig. 5 about here] 

5.2 The obtained result 

The obtained results from the scenario S0 are summarized in Table 3, where it is 

demonstrated that the 2,000 ETs served 69,151 taxi demands, or about 15.6% of 

443,201 total daily taxi demands, and traveled a total of 928,240.7 km each day. The 

total distance traveled while specifically covering demands was 642,300.3 km, or 

about 69.2% (i.e., 642,300.3/928,240.7) of the total daily traveling distance by ETs. 

The ET’s limited range is evident by a total of 5,530 charging actions requiring 

9,382.4 total hours in a day. On average, each ET charged 2.765 (i.e., 5,530/2,000) 

times per day for an average charging time of 1.70 h (i.e., 9,382.4/5,530), which is 

clearly a key issue in the siting of ET charging stations. Because numerous ETs travel 

to charging stations simultaneously, 2,033 waiting actions for a total of 1,193.9 h of 

waiting occurred at the 12 stations employed in the scenario, or about 36.8% (i.e., 

2,033/5,530) of all daily charging actions. The average waiting time was 0.59 hours 

(i.e., 1,193.9/2,033). 



Fig. 6 displays the optimized locations of the 12 charging stations. Five stations 

(s1–s5) are located in the downtown area with the highest density of taxi demands. 

Three stations (s6–s8) are located in the west high-technology innovation area with a 

higher density of demands. Three stations (s9–s11) are located in Buji, a sub-center 

area of the city of Shenzhen. Only a single station (s12) is located in Longhua to 

provide essential ET service for taxi demands in north Shenzhen. 

[place Tab. 3 about here] 

[place Fig. 6 about here] 

5.3 The spatial pattern and temporal pattern analysis of the obtained 

result 

The spatial distribution of the covered taxi demands by ETs is displayed in Fig. 7. 

The results indicate that a relatively small number of stations can support the ET 

service for the entire city. Most of these demands are spatially aggregated in the 

downtown area. Some places, like the airport, the railway stations, and ports to Hong 

Kong also have intensive covered demands. However, much dispersed covered 

demands are observed in other areas like the north and east Shenzhen. Fig. 8 displays 

the spatial distribution of the ET covered ratio obtained by dividing the count of ET 

covered taxi demands to the total demands in the same place in the city, based on Fig. 

4b. In contrast to the spatial aggregation observed for the covered taxi demands, the 

ratio distribution is quite spatially homogeneous. The ratios over most areas of the 

city are in the range [10%, 20%]. A ratio of less than 10% is observed in a small area 

in northeast Shenzhen. Ratios greater than 20% are observed for only a few areas at 

the border of the covered area, where taxi demands are quite few, as shown in Fig. 4b. 

Therefore, in these places, when two or three demands are covered by ETs, as shown 

in Fig. 7, the ratios will be high as shown in Fig. 8. 

[place Fig. 7 about here] 

[place Fig. 8 about here] 



In addition to the spatial dynamics, the ET service on the road and the charging 

service at the stations also exhibit highly temporal dynamics. Fig. 9a illustrates the 

temporal variation of ET service on the roads. Following the taxi demand rhythm, the 

ET coverage peaks are in the periods [8:00, 10:00] and [15:00, 22:00]. However, the 

lower period of demand coverage occurs during [11:00, 13:00] because of the large 

number of ETs that travel to charging stations for first charging during that period, 

which leads to a decreased ET service on the road. Fig. 9b displays the varying ET 

charging behaviors at the located charging stations. In contrast to the rhythm of 

demand servicing shown in Fig. 9a, two charging peaks are observed in the periods 

[11:00, 14:00] and [21:00, 1:00], a few hours later than the peaks in demand serving 

on the roads. Such a temporal dynamic feature validates the necessity for including 

the time dimension in the proposed STDCLM. 

The temporal dynamic of ET waiting is shown to be similar to that of charging, 

as indicated by Fig. 9c, where two waiting peaks are observed in the daily ET 

lifecycle. The first peak occurs in the period [12:00, 14:00], one hour later than the 

first charging peak, whereas the other peak occurs in the period [22:00, 3:00], just 

after the nighttime charging peak. Therefore, taxi demand coverage on the road, ET 

charging, and waiting at charging stations can be significantly influenced by temporal 

variations of the taxi demand in the city, none of which can be considered or analyzed 

in point demand or flow demand location approaches. 

 [place Fig. 9 about here] 

5.4 Impact of charging speed 

Table 4 presents the obtained results of scenario S0 with different charging 

speeds. It indicates that the faster the charging speed CS is, the better the obtained 

results are. As the charging speed improves from E/240 min
-1

 to E/60 min
-1

, the total 

charging actions of 2000 used ETs at 4 located stations increase from 4,390 to 6,146, 

while the total charging time per day decreases from 11,758.3 h to 4,172.5 h and the 

total waiting time sharply decreases from 4507.7 h to 17.8 h. As the ET spends will 



spend more time on the roads, the improvement of charging service at stations 

generates a better ET service on the roads. Total travel distance of covered demands 

increases from 476, 469.7 km to 662, 930.8 km. 

[place Tab. 4 about here] 

5.5 Marginal utility of located ET charging stations 

Fig. 10 and Table 5 depict the objectives of each scenario and their tendencies as 

a function of the located stations. With the charging service supply increasing from S1 

to S4, the obtained solutions exhibit a uniform improvement in both the ET service on 

the roads and the charging service at stations. For the ET service, the total length of 

ET covered travel increases from 403,707.3 km (S1) to 659,167.1 km (S4). For the 

charging service, the total waiting time reduces from 8,930.3 h with 1,939 waiting 

actions (S1) to 121.1 h with 498 actions (S4). Meanwhile, the total charging time 

increases from 4,448.4 h (S1) to 9,836.6 h (S4). The total number of charging actions 

increases from 2,733 (S1) to 5,777 (S4). The average charging time at the stations 

also increases from 1.63 h to 1.70 h, which is due to the reduced distance to a station 

with a greater number of charging stations. 

It is noteworthy that new stations may induce an increase in the number of 

waiting actions. As shown in Table 5, the number of waiting actions at stations is 

nearly doubled between scenarios S1 (1,939 waiting actions) and S2 (3,619 waiting 

actions). This is mainly due to the inadequate charging service supply under the 

conditions in S1, in which each ET charges 1.367 times (i.e., 2,733/2,000) on average 

with 4 charging stations. With the addition of 4 more stations in S2, the charging 

service supply increases, and each ET charges an average of 2.52 times (i.e., 

5,040/2,000) per day, which also generates an increased number of waiting actions at 

the stations. Nevertheless, the total waiting time still decreases from 8,930 h (S1) to 

4,379 h (S2), as illustrated in Fig. 10. The average waiting time is also significantly 

improved from 4.61 (i.e., 8,930.3/1,939) h to 1.21 (i.e., 4,379/3,619) h between 

scenarios S1 and S2. This truth validates the improvement of the objectives with more 



charging stations. 

However, the marginal utility of more located charging stations diminishes. 

Between scenarios S1 (4 stations) and S2 (8 stations), both the ET service on the road 

and the charging service at the stations significantly improve with more stations. The 

increase of the total distance of ET covered travel between S1 and S2 is 147,481.6 

(i.e., 551,188.8−403,707.2) km. The increase of total charging time at located stations 

is 3,984.8 (i.e., 8,469.2−44,484.4) h. The decrease of the total waiting time is 4,551.3 

(i.e., 8,930.3−4,379) h. However, with respect to the differences between scenarios S3 

(16 stations) and S4 (20 stations), the improvement of the total distance of ET covered 

travel is only 14,937.6 (i.e., 657,263.0−642,325.4) km. The increase of total charging 

time is only 263 (i.e., 9,615.4−9,352.4) h. The decrease of total waiting time is 

1,078.4 (i.e., 1,199.5−121.1) h. 

Fig. 11 illustrates the positions of the located charging stations for the 5 

scenarios considered. The distributions of located stations are observed to be very 

different with respect to the different numbers of sited stations. Charging stations 

initially appear along main roads in S1 (Fig. 11a). With increasing number of 

charging stations, new stations tend to be located in the high density taxi demand 

areas in S2 (Fig. 11b) and S0 (Fig. 11c). Finally, new stations are sited at the airport 

or low density taxi demand areas in northern Shenzhen in S3 (Fig. 11d) and S4 (Fig. 

11e). 

[place Tab. 5 about here] 

 [place Fig. 10 about here] 

 [place Fig. 11 about here] 

5.6 Mapping the reduced carbon emission 

Table 6 summarizes the total daily RCE when operating 2,000 ETs in 

conjunction with the varying number of charging stations associated with scenarios 

S0–S4. The table indicates that ET use can reduce daily carbon emission from about 



211,118.1 to 339,891.4 kg depending upon the number of charging stations employed. 

Fig. 12 illustrates the spatial distribution of the daily RCE. In accordance with the ET 

footprint, reduced RCE is observed over nearly the entire road network. The most 

prominent effects occur in the downtown area (A), corridors to the downtown area (B), 

and the highway to the airport (C). Once again, the green effect obtained with more 

located charging stations diminishes. Between scenarios S1 (4 stations) and S2 (8 

stations), the total RCE increases by 104,999.7 kg, and a more uniformly distributed 

green effect is generated. However, the total RCE only increases by 1,275.1 kg 

between scenarios S3 (16 stations) and S4 (20 stations) because the charging supply 

provided by 16 stations in S3 is nearly sufficient for the 2000 ETs used. Differences 

between the spatial RCE distributions in Fig. 12d and Fig. 12e are also very slight. 

[place Tab. 6 about here] 

[place Fig. 12 about here] 

6. Conclusion 

The electrification of public transportation has been a pioneer in attaining the 

goal of green transportation. With respect to the electric taxi (ET), one key to success 

lies in the location of charging stations to provide a high quality ET service for the 

public and a convenient charging service for ET drivers (Jung et al., 2014). However, 

in the dynamics of taxi demand and ET charging, time becomes a crucial factor, 

which is neglected in current location approaches that consider only spatial issues. 

In recognition of this limitation, this article has addressed the location problem 

of ET charging stations by presenting a novel spatial-temporal demand coverage 

location approach. Detailed taxi demand data that captures spatial-temporal taxi 

request dynamics have been extracted from massive spatial-temporal GPS data for 

Shenzhen, China. The ET demand coverage is identified according to the 

spatial-temporal path that models the cyclic interaction between taxi demands, ETs, 

and charging stations. The objective of the presented spatial-temporal demand 

coverage location model (STDCLM) is to maximize the ET service on the roads and 



the charging service at the stations. This approach enables the siting of charging 

facilities in a spatial-temporal context rather than merely a spatial context. 

Experiments in Shenzhen, China not only demonstrate the effectiveness of the 

proposed location approach, but also validate the essential nature of the temporal 

dimension in taxi demand representation and the presented STDCLM. It has been 

shown that the optimized siting of charging stations can improve both the ET service 

on the roads and the charging service at stations. The estimation of daily RCEs also 

illustrates the environmental effect of ETs in conjunction with the located ET 

charging stations. 

The main contributions of this research are three fold, as follows. Firstly, a novel 

location model was presented from the spatial-temporal perspective, which extends 

current location approach to address dynamic demand rather than static demand. 

Additionally, the complex interaction between travel demand and transportation 

service supply has been handled in a spatial-temporal context. Secondly, this research 

makes use of massive GPS data to support public policy making in transportation 

sectors, which acknowledges the value of big data and advances towards smart 

decisions in a highly dynamic environment. Thirdly, the problem of optimizing siting 

of ET charging stations has been addressed. This work can not only support 

short-term decision making regarding the use of ETs as a public utility, but can also 

help to promote the long-term development of the electric vehicle (EV) market. 

Clearly, the results offered by the proposed approach are of great practical use 

for ET charging station siting. Nevertheless, the approach also demonstrates some 

notable limitations. Firstly, the located stations are only aimed at servicing ETs, and 

private EVs are not considered. In the future, the presented work should be extended 

towards the fulfillment of the charging requests of all EVs. The second limitation is 

the neglect of the variability of taxi demand. If taxi service is absent for a time, taxi 

demand nearby bus stations or metro stations may transfer to the bus or the metro 

system. Therefore, more public transportation data must be collected and be further 

involved in the presented work. The third limitation is the disregard for the relation 

between charging stations and grids. More data regarding grid infrastructure should be 



collected, and the candidate ET charging station sites should be adjusted accordingly. 

The last limitation is about the parameter , which is set to the mean travel speed of 

all roads across a whole day. However, urban traffic varies significantly across space 

and time (Li et al., 2011), leading to quite different reduced travel distances of the 

waiting. Hence, a spatial-temporal dependent value should be set according to 

historical traffic information in the further. 
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Fig.1. Study area in the city of Shenzhen, China 

Fig.2. The workflow of the spatial-temporal demand coverage approach 

Fig.3. The interaction of taxi demands, electric taxis (ETs) and charging station in the 

spatial-temporal context. 

Fig.4. The varying of spatial-temporal characteristic of taxi demands in Shenzhen, 

China. (a) The temporal variation of taxi demand. (b) The spatial distribution of taxi 
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Fig.1. Study area in the city of Shenzhen, China
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Fig.2. The workflow of the spatial-temporal demand coverage approach
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Fig.3. The interaction of taxi demands, electric taxis (ETs) and charging station in the 

spatial-temporal context. 
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Fig.4. The varying of spatial-temporal characteristic of taxi demands in Shenzhen, 

China. (a) The temporal variation of taxi demand. (b) The spatial distribution of taxi 

demand (counts/km
2
). (c) The taxi travel flow in Shenzhen. All sub-figures are 

generated using the results from massive taxi GPS data. 
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Fig.5. Candidate places for siting charging stations. 
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Fig.6. The optimized location of the 12 charging stations 
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Fig.7. The spatial distribution of electric taxi (ET) covered taxi demands. The 

obtained count of covered demands are summarized in 1km × 1km cells.
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Fig.8. The ratio of electric taxi (ET) covered taxi demands to the total of all taxi 

demands.
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Fig.9. Electric taxi (ET) service on the road, charging, and waiting at the stations. The 

data are summarized from the obtained results. (a) The ET serving. (b) Charging at 

stations (h). (c) Waiting at stations (h).
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Fig.10. The objectives of the STDCLM for scenarios with different number of 

charging stations.
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Fig.11. The optimized locations of charging stations for scenarios given in Table 2
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Fig.12. The spatial distribution of daily reduced carbon emission (RCE) of the electric 

taxi (ET) system (kg/km
2
) 
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Table 1  

The format of taxi GPS data in the city of Shenzhen, China. 

ID VID Time stamp(/sec) Longitude Latitude Status Speed (m/s) 

106411231324 11011 200 113.928*** 22.505*** 0 12.0 

106411231325 8648 280 113.930*** 22.515*** 0 6.2 

… …  … … … … 

106411231998 11011 2000 113.419*** 22.539*** 1 12.0 

106411253724 11011 2040 113.419*** 22.540*** 0 4.8 

106411263340 14899 2041 113.411*** 22.603*** 0 9.2 
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Table 2  

The setting of the electric taxi (ET) charging stations siting scenarios 

Scenarios  Number of ETs Number of stations Number of stakes Ratio(ETs: stakes) 

S0 2000 12 600 10:3 

S1 2000 4 200 10:1 

S2 2000 8 400 10:2 

S3 2000 16 800 10:4 

S4 2000 20 1000 10:5 
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Table 3  

The setting and the result of the ET charging stations location scenario 

Scenario Setting  Results  

Scenario S0 Total travel distance of all ETs per day (km) 928240.7 

Number of ETs 2000 Total travel distance of covered demands per day (km) 642300.3 

Number of Stations 12 Total number of ET covered demand per day 69151 

Number of charging stakes in a station 50 Total charging time at stations per day (hour) 9382.4 

Total number of charging stakes 600 Total number of charging actions per day 5530 

Ratio (ETs: stakes) 10:3 Total waiting time at stations per day (hour) 1193.9 

  Total number of waiting actions per day 2033 
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Table 4  

The variation of objectives with charging speeds 

Charging speed CS (E/min
-1

) E/240 E/180 E/120 E/60 

Total travel distance of covered demands (km) 476469.7 542849.3 642300.3 662930.8 

Total charging time at stations (hours) 11758.3 10379.1 9382.4 4172.5 

Total number of charging actions per day 4390 5137 5530 6146 

Total waiting time at stations (hours) 4507.7 2682.0 1193.9 17.8 

Total number of waiting actions per day 2229 2466 2033 97 
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Table 5 

Daily charging and waiting of ETs at charging stations 

Scenario 
Num of 

ETs 

Num of 

stations 

Num of charging 

actions 

Average charging 

time (/hour) 

Num of waiting 

actions 

Average waiting 

time (/hour) 

S1 2000 4 2733 1.63 1939 4.61 

S2 2000 8 5040 1.68 3619 1.21 

S0 2000 12 5530 1.69 2033 0.59 

S3 2000 16 5665 1.70 1068 0.51 

S4 2000 20 5777 1.70 498 0.24 
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Table 6 

The reduced carbon emission (RCE) by ETs for scenarios given in Table 2 

Scenario Num of ETs Num of stations Total RCE (/kg) Change in RCE (/kg) 

S1 2000 4 211118.1 - 

S2 2000 8 316117.8 104999.7 

S0 2000 12 330174.2 14056.4 

S3 2000 16 338616.3 8442.1 

S4 2000 20 339891.4 1275.1 

 


