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Optimizing the Locations of Electric Taxi Charging Stations: a

Spatial-temporal Demand Coverage Approach

Abstract: Vehicle electrification is a promising approach towards attaining green
transportation. However, the absence of charging stations limits the penetration of
electric vehicles. Current approaches for optimizing the locations of charging stations
suffer from challenges associated with spatial-temporal dynamic travel demands and
the lengthy period required for the charging process. The present article uses the
electric taxi (ET) as an example to develop a spatial-temporal demand coverage
approach for optimizing the placement of ET charging stations in the space-time
context. To this end, public taxi demands with spatial and temporal attributes are
extracted from massive taxi GPS data. The cyclical interactions between taxi demands,
ETs, and charging stations are modeled with a spatial-temporal path tool. A location
model is developed to maximize the level of ET service on the road network and the
level of charging service at the stations under spatial and temporal constraints such as
the ET range, the charging time, and the capacity of charging stations. The reduced
carbon emission generated by used ETs with located charging stations is also
evaluated. An experiment conducted in Shenzhen, China demonstrates that the
proposed approach not only exhibits good performance in determining ET charging
station locations by considering temporal attributes, but also achieves a high quality
trade-off between the levels of ET service and charging service. The proposed
approach and obtained results help the decision-making of urban ET charging station

siting.

Keyword: facility location; spatial-temporal demand; maximum coverage; big data;

electric vehicle

1. Introduction

Currently, the transportation sector contributes 20% to 30% of the total

production of greenhouse gases (GHGs) such as oxocarbons (CO; and CO) and

1
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nitrous oxide (N,O) (IPCC, 2013). The reduction of GHGs in the transportation sector
has therefore gained much attention from with respect to technical innovation and
scientific research. Among various alternatives, vehicle electrification is a promising
approach towards attaining green transportation (IEA, 2014a). However, relative to
alternative fuel vehicles, electric vehicles (EVs) generally have a shorter range that is
compounded by the requirements of an extended charging period (IEA, 2013), which,
with the absence of charging infrastructure, inspires a severe degree of anxiety
regarding the allowable vehicle range (i.e., range anxiety). Meanwhile, the return of
the considerable investment required for charging stations is exceedingly meager
under conditions of low EV penetration (Carpenter et al., 2014). Therefore, the EV
market is dropping into a kind of “egg-chicken” paradox (Hiwatari et al., 2011; Xi et
al., 2013; Jung et al., 2014). Clearly, the relationship between active EVs and
available EV charging stations must be carefully coordinated (Nie and Ghamami,
2013; Sathaye, 2014).

Public transportation, such as bus and taxi, are an appropriate first step towards
electrification (IEA, 2013), and various cities have made efforts in this direction (IEA,
2013). For example, London plans to substitute all taxis in the city with EVs with the
aim of low carbon emissions (IEA, 2014b). New York issues roadmap for electrifying
one-third of the city’s taxi fleet by 2020 (NYC TLC, 2013). In China, the city of
Shenzhen plans to add 3000 electric taxis (ETs) by 2015 (Shenzhen Transportation
Administration, 2012). Therefore, the emerging question is where to locate charging
stations to serve the various charging demands of a city.

Location approaches are used to address the facility location problem to serve
geographically distributed demands (Church, 2002). These methods typically consist
of two main components: a demand representation and a location model. Usually, the
demand is represented as points, polygons, or flow in a spatial context (Miller, 1996).
The magnitude of the demand is generated by a synthetic method based on population
or travel surveys. Demand is defined as being covered (i.e., fullfilled) if it is within a
certain travel distance/time to a facility (Church and ReVelle, 1974). A location

model is designed to select the best locations that achieve maximum system utility,

2
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minimum cost, or other objective(s). Based on various demand representations and
objectives, a number of location models have been proposed such as the p-Median
(Hakimi, 1964), p-Center (Hakimi, 1964), the maximum coverage location problem
(MCLP; Church and ReVelle, 1974), and the flow capture location model (FCLM,;
Hodgson, 1990). With the aid of geographic information systems (GISs) in the
integration of spatial data management, visualization, and analysis, location models
and optimization methods have been implemented and widely applied for facility
location in public and private sectors (Thill, 2000; Church, 2002; Drezner and
Hamacher, 2004; Church and Murray, 2009; Gentili, M., Mirchandani, P.B., 2012).

For appropriately locating ET charging stations, however, time is a crucial factor.
Firstly, daily taxi demand exhibits spatial-temporal variations from hour to hour and
from place to place (Wong et al., 2014; Qian and Ukkusuri, 2015). This type of
spatial-temporal dynamic feature is quite difficult to capture using a synthetic demand
approach, and has therefore been ignored in current demand representation methods
(Miller, 1996; Church, 2002). This feature also creates a substantial challenge for
defining the conditions whereby a charging demand is fulfilled, or formally, is
covered (Zhou and Lin, 2012). The acquisition of spatial-temporal variations in taxi
demand is a basic issue. Secondly, the required duration for ET charging at charging
stations can be quite long, where, depending on the charging mode, the charging
duration can be from 5 minutes to several hours (IEA, 2013). Such an extensive
duration will heavily affect the interaction between taxi demand and available ETs.
Moreover, the capacity of a charging station is limited, depending upon the number of
charging stakes, and only a limited number of ETs can be charged simultaneously at a
given charging station. Any ETs in excess of the maximum service number arriving at
a station for charging must therefore wait for service (Qin and Zhang, 2013), which
would also affect subsequent ET service on the roads. However, traditional location
models cannot address these temporal issues at a facility. Clearly, an extension of the
conventional location model is needed.

Detailed-rich space-time data is an aid to decision-making and policy analysis.

Recently, taxis with GPS that track real-time vehicle positions have been widely

3
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applied in transportation (Tu et al., 2010; Li et al., 2011; Fang et al., 2011; Zhang et
al.,, 2013; Yue et al., 2014). Data regarding taxi service with corresponding time
information in a city could be extracted from raw taxi GPS data. This information
would not only contribute to traffic monitoring (Li et al., 2011), travel time estimation
(Zhan et al., 2013; Rahmani et al., 2015), etc., but also deepen our understanding of
travel patterns (Liu et al., 2010), urban taxi service (Qian and Ukkusuri, 2015), use of
critical infrastructure (Fang et al., 2013, 2015), etc. Such time rich information also
provides an opportunity to capture city-wide spatial-temporal variations in taxi
demands, which could serve as the cornerstone for the optimal siting of ET charging
stations.

The present article develops a spatial-temporal demand coverage approach using
big spatial-temporal data to facilitate charging station siting. To this end, actual
spatial-temporal taxi demands in the city of Shenzhen, China has been extracted from
large volume raw taxi GPS data. Using the spatial-temporal path concept, the cyclical
taxi demand serving on the roads, ET charging, and possible additional ET waiting at
charging stations are modeled in a spatial-temporal context. A spatial-temporal
demand coverage location model is proposed according to considerations of EV range,
the requirements of charging and waiting at charging stations, and the competition of
taxies. Only the taxi demand covered by an ET is included in the presented model.
Analysis of the obtained results for Shenzhen, China indicates the good performance
of the proposed ET charging station siting approach obtained by taking the time
dimension into account. The daily reduced carbon emission (RCE) generated by the
ETs with located charging stations is also mapped to evaluate the green effect.

The remainder of this article is organized as follows. The next section reviews
existing location approaches and their applications to charging station siting. Section
3 describes the study area and associated data. Section 4 presents the proposed
spatial-temporal demand coverage approach. Section 5 illustrates the obtained results,
and analyzes the environmental effect of used ETs with located charging stations. In

the final section, we discuss and conclude the study.
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2. Literature review

Facility location begins with a representation of human demands and locates
facilities at the places best suited to serve those demands. According to the demand
representation, current location approaches are divided into two approaches: point
demand and flow demand. This section briefly reviews the two approaches and their
implementations in charging station siting. For comprehensive reviews related to
facility location, please refer to Church (2002), ReVelle & Eiselt (2005), and Murray
(2010).

2.1 Point demand location approach

The point demand location approach assumes that demand is located at distinct
places, such as residential areas, working places, and shopping centers. The basic
demand unit is a polygonal area based spatial object in a geographical space (Church
and Murray, 2009). The demand count or the demand density is usually derived from
demographic data, topographic data, cadastral data, survey data, etc. Because a
polygonal area is much too complex for geocomputing, the representation of the
demand is usually simplified as a point at the center of the polygon by abstracting and
aggregating (Tong and Murray, 2009). The inherent assumption is that dedicated
travels between demand locations and facilities are made to fulfill geographical
distributed needs. Therefore, the travel distance/time is defined as the key system
utility index. The demand unit is defined as covered if it is within a certain travel
distance/time to facilities. The objective is to either minimize the total travel cost
between demands and facilities (the p-Median; Hakimi, 1964), minimize the
maximum travel cost (the p-Center; Hakimi 1964; Biazaran and SeyediNezhad, 2009),
maximize the demand coverage with a given number of facilities (MCLP; Church and
ReVelle, 1974; Drezner and Hamacher, 2004), or optimize some other objectives
relating to point demands. Thus far, the point demand location approach has been
widely employed in various decision making applications such as the siting of

warning sirens (Tong and Murray, 2009; Wei and Murray, 2014), bicycle stations
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(Garcia-Palomares et al., 2012), roads (LI et al., 2009).

Although the point demand location approach has achieved success in many
applications, it still faces a number of challenges in transportation such as fuel station
siting and charging station locating, e.g., the demand occurring during a trip rather
than a fixed place, the cost index, etc. Rather than engaging in dedicated travels
between individual facilities and customer locations to procure services, drivers may
prefer to fulfill side needs during a long trip (Wang and Wang, 2010). Also, travel
distance/time as the cost in the point demand location approach is not an appropriate
measure for the system cost in location modeling in transportation. Therefore, both
the point demand representation and the covering definition are inaccurate in this
scenario. A new location model is therefore needed to effectively handle this type of

location problem.
2.2 Flow demand location approach

The flow demand location approach assumes that consumers search for a service
during the travel to their destination locations (Hodgson, 1990; Kuby, 2006). In this
approach, the basic demand unit is not a polygon-based or a point-based spatial object
representing aggregated human needs, but, rather, demand is represented as a flow
passing along consumer routes of travel (Upchurch and Kuby, 2010). Formally, this
location approach is denoted as the FCLM (Hodgson, 1990), which seeks to locate
some facilities to intercept as many demand flow pathways as possible. In this method,
an origin-destination matrix is typically first generated to model the demand
distribution in the study area. The demand is defined as covered when a facility is
located at any point along a consumer travel pathway. Because the objective is to
locate facilities to maximize the passing demand flow, the FCLM is well suited for
the types of facilities where consumers are served on their routes to travel destinations
(Upchurch and Kuby, 2010; Zeng et al., 2010).

With considerations for limited travel distance, the FCLM has been extended to
the flow-refueling location model (FRLM; Kuby et al., 2009) that locates a given

number of stations to maximize the number of trips that can be refueled during a long
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travel. Because refueling is also considered, this model is more effective for a larger
study area (Capar et al.,, 2013). Both FCLM and FRLM have been successfully
applied to the transportation sector in the optimal siting of conventional and
alternative fuel stations (Goodchild and Noronha, 1987; Kuby, 2006; Kuby et al.,
2009; Lim and Kuby, 2010; Kim and Kuby, 2013). However, these methods consider
only the spatial dimension of demand, and the temporal dimension of demand is
ignored, such as the time of demand, service duration, and the possible waiting at a

facility.
2.3 charging stations siting

Recently, both location approaches have been used for charging station siting.
Frade et al. (2011) used the MCLP model for optimal siting of public charging
stations using household travel survey data for Lisbon, Portugal. Cruz-Zambrano et al.
(2013) implemented the FCLM to locate fast charging stations in Barcelona, Spain. Xi
et al. (2013) determined charging demand from demographic data, and employed a
simulation-optimization approach to optimize the number of charging stakes at
candidate places for public EV charging. However, the determination of travel
demand in these applications of location modeling is still conducted without time
information. You and Hsieh (2014) developed a location model based on round-trip
itineraries for public EV charging station siting to serve a maximum number of trips.
Nevertheless, potential waiting at the facility was not modeled.

To date, Jung et al. (2014) have conducted the only study where the potential
waiting time of ETs, based on random itinerary information over an 8 hour period in
Seoul, Korea, was considered to optimize the configuration of charging stations for
ETs. However, the stochastic demand data were synthesized using transportation
planning software, which deviates substantially from reality. Detailed spatial-temporal
taxi demand data is expected to obtain better results. The present study extracted
actual taxi travel demand from massive taxi GPS data to model the space-time
interaction between taxi demands, ETs, and charging stations. A spatial-temporal

demand coverage location model is developed to site ET charging stations in a
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space-time GIS environment, which benefits decision-making regarding ET charging

station.

3. Study area and data

The research was conducted in Shenzhen, a metropolitan area in South China, as

shown in Fig. 1. To reduce carbon emission in the transportation sector, the local
administration of Shenzhen plans to implement the use of ETs. Numerous ET
charging stations are expected to be built. In this study, we propose a spatial-temporal
demand coverage location approach using massive taxi GPS data to facilitate the
siting decision-making. Raw taxi GPS data, the transportation network, the ET, and

charging station data are used. The details of the data are described as follows.

-Taxi GPS data. Every day in Shenzhen, about 15,000 taxis are actively engaged
in transferring people between various locations such as homes, workplaces,
shopping centers, the airport, and parks. According to transportation statistics,
about 420,000 to 460,000 trips are conducted daily by taxis, which is about 5% of
the travel occurring in Shenzhen. Each taxi has been installed with a smart
terminal connected with a GPS receiver, which records data concerning the
vehicle identification, time, position, speed, and working status with a sampling
interval between 40 to 80 seconds. Table 1 describes the taxi GPS format, and
provides an example. In particular, the working status is a binary variable
indicating whether or not the taxi is serving a client at a given time, where the
status is recorded as 1 if the taxi is occupied, and 0 otherwise when the taxi is
vacant. Therefore, both the times and locations at which passengers are picked-up
and dropped-off can be identified from the taxi GPS data. In the present study, we
employed raw taxi GPS data for a seven-day period from Oct. 12, 2013 to Oct. 18,

2013 to extract historical spatial-temporal dynamic taxi demands.

[place Tab. 1 about here]

[place Fig. 1 about here]

-The transportation network. The transportation network, derived from a
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professional navigation company, NavInfo, China, and displayed in Fig. 1, was
modeled as a directed graph including 13,107 nodes and 20,783 edges. The data
was used to recover taxi trajectories and extract dynamic taxi demands.

-The electric taxi. The ET employed in Shenzhen is the E6 model produced by
BYD (Build Your Dream) Auto Co., Ltd. With a battery charged at full capacity,
BYD E6 can travel up to 250 km. The charging time of the E6 varies from 1 h to
3 h depending upon the charging mode.

-The charging stations. A charging station has multiple charging stakes, which

transfer power from the grid to an ET. The number of stakes indicates a station’s

charging capacity. Formally, a charging station s is defined as <ux,y,n>, where (x,

y) is the location and »n is the number of stakes. The space occupied by the
charging station is omitted by simplifying it as a point. We set n to 50 according

to the guide from Shenzhen transportation administration.

4. The spatial-temporal demand coverage approach for ET charging
station siting

The presented location approach for ET charging station siting extends the
demand representation and the location model into a spatial-temporal context. It
makes use of massive taxi GPS data for optimizing the placement of ET charging
station. Fig. 2 illustrates the workflow of the approach. Firstly, dynamic taxi demands
are extracted from the raw GPS data in conjunction with the transportation network
data. The cyclical interaction between taxi demands, ETs, and charging stations in the
spatial-temporal context is modeled with a spatial-temporal path tool which depicts an
individual’s sequential activities at various locations over a time period (Hagerstrand,
1970). Then, a spatial-temporal demand coverage location model (STDCLM) is
proposed to maximize ET service on the roads and charging service at the stations. A
genetic algorithm is used to solve the STDCLM. Finally, the obtained results are
analyzed, including the spatial pattern of covered demands, the temporal pattern of

demand serving, charging and waiting behaviors, the impact of charging speed, the
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marginal utility, and the daily RCE estimation.

Basic assumptions about ETs and charging stations are: (1) all ETs have the
identical electricity capacity, E; (2) with full capacity electricity, all ETs have the
same maximum travel distance, D,,,; (3) the charging speed CS for all ETs in any
located station are identical. It indicates that time E/CS will be cost to recharge an ET
from the zero-electricity state to the full capacity electricity. It also specifies that all
charging stations provide the same charging service; (4) once a charging process
begins, it can’t be interrupted or stopped until the charging need is completely
fulfilled; (5) the travelable distance d is proportional to the remaining capacity e
(Dong et al., 2014), as given in equation (1), where 0<e<E. In other words, the

remaining electricity is linearly reduced with the traveled distance.

d=D_ ¢/E (1)

[place Fig. 2 about here]

4.1 Taxi demand and taxi travel

In contrast to point demand or flow demand, taxi demand is based on a client’s

plan to travel from some origin to a given destination at some time. Formally, the taxi

demand can be defined as the triplet 7D=(r,.(x,.»,)(x,.v,)), Where ¢, denotes the

beginning time of the demand, (x,, y,) denotes the spatial location of the origin, and
(x4, yq) denotes the spatial location of the destination.

To accommodate a travel demand, a taxi picks up a client at the origin, makes a
dedicated transit to the destination, and drops off the client. Formally, taxi travel can

be represented by extending the taxi demand to the quintuplet
TD=(1,.(x,.y, ) patht,,(x;.y,) , Where the path denotes the driving route from the
origin to the destination, and #, is the arrival time at the destination.

All taxi demands and taxi travels in the city are extracted from the massive raw

taxi GPS data. To this end, spatial-temporal trajectories are firstly recovered using the

map-matching algorithm of Li et al. (2011). Then, in accordance with changes in a
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taxi’s working status, the origin and the destination of a taxi demand is identified.
Based on the time-series GPS records for a taxi listed in Table.1, if the working status
shifts from O to 1, a taxi demand 7D is generated in the spatial-temporal context. The
recorded position is (x,, y,) of TD, and the recorded time is #,. After encountering a
series of GPS records with a status of 1, the taxi arrives at the destination of 7D
whereupon the status shifts to 0. The last record with a status 1 labels (x4, y4) and ¢,.
The sequence of road links traversed from the origin to the destination is the path,
which preserves the effect of numerous factors, such as road conditions, traffic
congestion, and drivers’ personal preferences. After processing of all raw GPS data,
all taxi demands and taxi travel data with exact spatial-temporal information are

stored in a database for charging station siting.

4.2 The interaction between taxi demands, electric taxies and charging

stations

When substituting a number of ETs into the current oil-based fuel taxi system,
both ET drivers and oil-based fuel taxi drivers explore dynamically changing
demands to provide good taxi service to the public. If a taxi demand is serviced by an
ET, we define the taxi demand as covered by the ET. To identify taxi demands
covered by ETs, we model the daily ET lifecycle using the spatial-temporal path tool,
which illustrates the spatial-temporal interaction between taxi demands, ETs and
charging stations. Fig. 3 gives an example of the spatial-temporal paths of ETs.
Following the sequence of ET driver’s activities, an ET continues serving taxi
demands (7Dy, ..., TD, in Fig.3) when the remaining electricity is enough (e.g., after
serving 7D; in Fig.3). Otherwise, the ET goes to a charging station. According the
charging state of charging station at the arrival time, the charging will be done
immediately (/; in Fig.3) or after an essential waiting (/; in Fig.3). The details of

interactions are described below.

[place Fig. 3 about here]
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4.2.1 Taxi demand coverage and charging decision

With sufficient electrical power, the ET serves emerging taxi demands for the
public. An idle ET at a position (x, y) at a time ¢ rationally seeks a taxi request from
the emerging demands nearby its current location. To model the competition between
taxis, we identify the covered demand from a set of spatially near demands. The
roulette wheel selection rule is used to determine which demand will be served by the
ET to simulate the uncertainty in actual taxi service. An uncovered demand neighbor
list nearby (x, y) after time ¢ is first filled according to distance criteria. Then, a
random value § within [0, 1] is generated to select the ith nearest demand 7D, from
the list to serve, as given by equation (2), where a; is the accumulated probability that

the ith nearest demand is served in historical taxi serving.
a;<0<a,, @)

Whether or not the current charge state of the ET is sufficient to serve the
selected demand 7D;is examined before initiation of taxi travel. If the ET’s current
charge state e, is greater than the threshold required for traveling to the nearest
charging station after serving 7D;, the demand will be covered. The demand is
covered by picking up the client at the corresponding (x,, y,) and ¢, of TD,, traversing
the path, and arriving at (x4, y4) at #4. Afterwards, the space-time position of the ET is
updated with (¢4, x4, v4) of TD;. The remaining charge capacity e, is updated by
equation (3), where d,; is the length of the corresponding driving path. Otherwise, the
taxi demand 1is rejected and the ET travels to the nearest charging station for battery
recharging. The remaining charge capacity when arriving a charging station will be
updated according to the travel to the charging station.

etd = eto _dtdE/Dmax (3)

4.2.2 Charging at the station

The charging of an ET at a station is decided by the arrival time and current

charge state at the station. If an idle charging stake is found at the station, the charging

action will begin at once when ET v arrives at time 7,°. The charging duration is

12
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determined by the remaining charge capacity e,, the expected charge capacity e

and CS. In this paper, we set ¢, as a random value within [0.95E, E] to model the

diversity of charging decisions. The charging duration fc, of v is given by equation (4).

The charging of v will be end at time 7.° =T/ +¢c,. Finally, the ET’s charge state e, is

updated with the value ¢ . After charging, the ET will return to serving the taxi

demand in the city.

te, = (¢, -e,)/CS @)

4.2.3 Waiting at the station

In the absence of an idle charging stake at the station, ET v must wait until a

charging ET in the station completes its charging action and releases a stake. In this
case, the wait time ¢, for v is equal to the difference between the arrival time 7”and

the earliest charging completion time at the station minT,, as given by equation (5),

uev

where u denotes a charging ET at a station s and ¥ denotes the set of charging ETs at

s at time 7,°. Based upon equations (4) and (5), the charging for v will end at time
TS =T +mw, +1c, . After charging, the ET leaves the station and proceeds to serve taxi

demands on the roads.

fw, =min (T; )— T, (%)

Owing to the cyclical demand serving, vehicle charging, and waiting, the siting
of charging stations will heavily affect public ET service and the charging service for

ET drivers.
4.3 The spatial-temporal demand coverage location model

The STDCLM aims to locate a set of ET charging stations to maximize both the
ET service level and the charging service level. The ET service level is indicated by
the ET covered taxi demands, and we measure it according to the total distances of the
taxi travel of all ET covered taxi demands. The longer the total distances, the better is

the level of ET service. The charging service level is indicated by the extent to which
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ET drivers must wait to charge at charging stations, and we measure it according to

the total wait time at all charging stations. The lower the total wait time, the better is

the level of charging service. It should be mentioned that travel distance/time to

located stations is not explicitly included in the STDCLM. Reasons are from two

aspects. Firstly, a survey of ETs on taxi drivers in Shenzhen, China, indicates that,

because of the lengthy period required for the charging process, drivers care more

about the waiting time at stations than the travel time to/from stations. Secondly, as

Fig. 3 illustrates, in order to calculate the total taxi travel distances of all ET covered

demands, the travel distances to charging stations (D, to the charging station in Fig.3)

have been subtracted from the total travel distances.

The mathematical formulation of the STDCLM is as below.

Maximize F = Z Z Z Xty - lz thv,

teT velV qeQ teT veV

Subject to:

Zvaq, <1 VgeQ

teT veV

Zym <n VseSVteT

velV

max(y,, )=z, VseS

ZZS=M

seS
d;" = (e} —€)D

max
ee>FE e >FE

min > >y min

/E YveV,t<ft

X, =101} VveV,VqeQVieT
Vo =101} VveV VseSVteT
w,={01} VvelV VteT

2 ={0} Vse$

(6)

()
(8)
)
(10)

(1)

(12)
(13)
(14)

(15)

Here, S is the set of candidate locations to site charging stations, Q is the set of

spatial-temporal taxi demands, V is the set of ETs, T is the time period, n is the

number of stakes in a charging station, M is the number of charging stations to be
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located, ¢ is a taxi demand, and d, is the taxi travel distance (/km) from g’s origin to
the destination. In addition, we employ the following binary variables, where x,,,1s 1
if g is covered by v at a time ¢, and is 0 otherwise; y, 1s 1 if v is charging at s at time ¢,

and is 0 otherwise; w,, 1s 1 if v is waiting at s at time #, and is 0 otherwise; z; is 1 if s 1s
to be located and is 0 otherwise. Furthermore, dé’t is the accumulated travel distance

of v within a time window [¢, '], where ¢ is the leaving time from a station after the
ith charging, and ¢ is the arrival time at a station for the (i+7)th charging event.

The objective of (6) is to maximize the ET service level and the charging service

level. The expression Zzzxvqldq (km) is the total taxi travel distance of all ET

teT velV qeQ

covered taxi demands, indicating the ET service level, and ZZMW (h) is the
teT velV

value of total waiting time for all ETs, indicating the charging service level. The

negative sign and the weight coefficient 4 before zszvt are used to adjust the

teT veV

relationship between the ET service and charging service. In this research, we set 4
to the average travel speed of all roads across a whole day in the city reported by the
Shenzhen transportation administration, which is 26 (km/h), with the goal to
transform waiting time into travel distances for the second objective. Constraint (7)
indicates that each taxi demand can be covered once only by a single ET. Constraint
(8) requires that the total number of charging ETs at a given station and time cannot
exceed the number of stakes at that station. This constraint introduces the temporal
competition between ET charging actions. Constraint (9) specifies that the charging
service at a station is available only when that charging station is chosen to be located.
Constraint (10) requires that the number of charging stations to be located is equal to

M. Constraint (11) indicates that the travel distance of v between consecutive charging

events is proportional to the cost electricity @—e}') over the time period [./] in

accordance with the assumption in equation (1). Because e; ande; are in the range

[0, E], the limitation of the ET range is also specified. Constraints (12), (13), (14), and

(15) impose integrality conditions on decision variables.
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4.4 The genetic optimization procedure

Location problems are difficult to solve due to their inherent complexity. The
heuristic algorithm is a promising method for complex location problems. Genetic
algorithms evolve to globally optimal solutions for complex optimization problems by
simulating natural behavior (Mitchell and Melanie, 1996). Therefore, this method has
been successfully applied to many location problems (Xiao, 2008; Tong and Murray,
2009). In the present study, we employ a genetic algorithm to solve the STDCLM.

Genetic algorithms involve several components, namely, genome coding,
population generation, fitness function, and selection, crossover, mutation, and
stopping criteria. For the STDCLM, we use an integer representation to encode sited
locations as a chromosome. The code length of a genome is equal to the number of
located stations. The bit value indicates which the candidate places has been selected
for a charging station. The objective function of the STDCLM (equation (6)) serves as
the fitness function of each individual. An initial population of selected locations is
randomly generated. At each generation, the roulette wheel selection is conducted
according to the fitness value. Crossover is accomplished by the single point

crossover operator. Mutation is employed at some random bits. Simulated evolution is

1
max

repeated until the maximum number of iterations »~,, have been reached or the

objective (equation (6)) has not been improved over a fixed number of iterations

N2, . Finally, the optimal results are reported, and the corresponding charging

max

stations are displayed. Details concerning the demand coverage, ET charging, and
essential waiting at the located stations are also obtained.

Before optimizing the STDCLM, the parameters of genetic algorithm, such as

1
max

,and N2 ., are

max

the population size p, the selection rate « , the mutation rate S, N

established after intensive experiments using the parameter tuning method of Coy et
al. (2001). The top-k locations with the greatest taxi demands are generated as

candidate places.
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4.5 Analysis of results

According to the performance of used ET BYD E6 in Shenzhen, China, we set
the maximum travel distance Dp,x to 250 km, the charging speed CS to £/120 min’’.
An initial scenario (S0) with 12 charging stations and 2,000 ETs was designed to
assess the proposed approach. The obtained result is analyzed from both spatial and
temporal perspective, including the spatial distribution of covered taxi demands, and
the temporal patterns of ET serving, charging and waiting behaviors. The impact of
charging speed is investigated by solving the scenario SO with different settings of the
parameter CS, from E/240 min" to E/60 min"'. To evaluate the marginal utility of
various numbers of sited charging stations, another four scenarios (S1-S4) were also
designed and solved. Scenarios S1 and S2 are with 4 and 8 stations, respectively,
whereas S3 and S4 are with 16 and 20 stations, respectively. The setting of each
scenario, including the name, the number of ETs, the number of located stations, the
number of stakes, and the ratio between ETs and stakes, is presented in Table 2.

To evaluate the environmental effect of the ET service, the daily RCE is also
estimated using the evaluation model of Barth and Boriboonsomsin (2008), which
estimates the carbon emission per mile of a light-duty internal combustion vehicle
according to the running speed. As the ET releases zero carbon emission to air, we
measured the ET’s RCE with the carbon emission generated by an oil-taxi travelling
the same route. So, with the speed information and the travel path obtained from the
taxi GPS data, the amount of RCE owing to ET covered taxi demands is calculated.
By accumulating all the RCE on road segments, we map the green effect of the ET

system based on the number of ETs and the located charging stations.

[place Tab. 2 about here]
S. Experiment and results

5.1 Spatial-temporal distribution of taxi demands

Fig. 4 displays the temporal variation and the spatial distribution of taxi demands,
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and the aggregation of taxi travel flow for Shenzhen based on taxi GPS data. Fig. 4a
indicates that the quantity of taxi demands per hour changes from 4,260 in the hour
range [5:00, 6:00] to 25,660 in the hour range [22:00, 23:00]. Three taxi demand
peaks are observed in the morning interval of [9:00, 11:00), in the evening interval of
[14:00, 16:00), and in the night interval of [22:00, 23:00). Fig. 4b demonstrates that
taxi demands are also non-uniform spatially. Most taxi demands are aggregated in the
south and west Shenzhen, such as the downtown area, the airport, the railway station,
and ports to Hong Kong. Demand is low in the north area, and nearly no demand
appears in east Shenzhen, which is a nature reserve area. Fig. 4c illustrates the taxi
travel flow. Such temporal and spatial dynamics lead to uneven taxi service requests
in the city. Fig.5 shows the candidate nodes that have the highest taxi demand for

charging station siting.

[place Fig. 4 about here]

[place Fig. 5 about here]

5.2 The obtained result

The obtained results from the scenario SO are summarized in Table 3, where it is
demonstrated that the 2,000 ETs served 69,151 taxi demands, or about 15.6% of
443,201 total daily taxi demands, and traveled a total of 928,240.7 km each day. The
total distance traveled while specifically covering demands was 642,300.3 km, or
about 69.2% (i.e., 642,300.3/928,240.7) of the total daily traveling distance by ETs.
The ET’s limited range is evident by a total of 5,530 charging actions requiring
9,382.4 total hours in a day. On average, each ET charged 2.765 (i.e., 5,530/2,000)
times per day for an average charging time of 1.70 h (i.e., 9,382.4/5,530), which is
clearly a key issue in the siting of ET charging stations. Because numerous ETs travel
to charging stations simultaneously, 2,033 waiting actions for a total of 1,193.9 h of
waiting occurred at the 12 stations employed in the scenario, or about 36.8% (i.e.,
2,033/5,530) of all daily charging actions. The average waiting time was 0.59 hours
(i.e., 1,193.9/2,033).
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Fig. 6 displays the optimized locations of the 12 charging stations. Five stations
(s1—s5) are located in the downtown area with the highest density of taxi demands.
Three stations (s6—s8) are located in the west high-technology innovation area with a
higher density of demands. Three stations (s9—s11) are located in Buji, a sub-center
area of the city of Shenzhen. Only a single station (s12) is located in Longhua to

provide essential ET service for taxi demands in north Shenzhen.

[place Tab. 3 about here]

[place Fig. 6 about here]

5.3 The spatial pattern and temporal pattern analysis of the obtained

result

The spatial distribution of the covered taxi demands by ETs is displayed in Fig. 7.
The results indicate that a relatively small number of stations can support the ET
service for the entire city. Most of these demands are spatially aggregated in the
downtown area. Some places, like the airport, the railway stations, and ports to Hong
Kong also have intensive covered demands. However, much dispersed covered
demands are observed in other areas like the north and east Shenzhen. Fig. 8 displays
the spatial distribution of the ET covered ratio obtained by dividing the count of ET
covered taxi demands to the total demands in the same place in the city, based on Fig.
4b. In contrast to the spatial aggregation observed for the covered taxi demands, the
ratio distribution is quite spatially homogeneous. The ratios over most areas of the
city are in the range [10%, 20%]. A ratio of less than 10% is observed in a small area
in northeast Shenzhen. Ratios greater than 20% are observed for only a few areas at
the border of the covered area, where taxi demands are quite few, as shown in Fig. 4b.
Therefore, in these places, when two or three demands are covered by ETs, as shown

in Fig. 7, the ratios will be high as shown in Fig. 8.

[place Fig. 7 about here]

[place Fig. 8 about here]
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In addition to the spatial dynamics, the ET service on the road and the charging
service at the stations also exhibit highly temporal dynamics. Fig. 9a illustrates the
temporal variation of ET service on the roads. Following the taxi demand rhythm, the
ET coverage peaks are in the periods [8:00, 10:00] and [15:00, 22:00]. However, the
lower period of demand coverage occurs during [11:00, 13:00] because of the large
number of ETs that travel to charging stations for first charging during that period,
which leads to a decreased ET service on the road. Fig. 9b displays the varying ET
charging behaviors at the located charging stations. In contrast to the rhythm of
demand servicing shown in Fig. 9a, two charging peaks are observed in the periods
[11:00, 14:00] and [21:00, 1:00], a few hours later than the peaks in demand serving
on the roads. Such a temporal dynamic feature validates the necessity for including
the time dimension in the proposed STDCLM.

The temporal dynamic of ET waiting is shown to be similar to that of charging,
as indicated by Fig. 9c, where two waiting peaks are observed in the daily ET
lifecycle. The first peak occurs in the period [12:00, 14:00], one hour later than the
first charging peak, whereas the other peak occurs in the period [22:00, 3:00], just
after the nighttime charging peak. Therefore, taxi demand coverage on the road, ET
charging, and waiting at charging stations can be significantly influenced by temporal
variations of the taxi demand in the city, none of which can be considered or analyzed

in point demand or flow demand location approaches.

[place Fig. 9 about here]

5.4 Impact of charging speed

Table 4 presents the obtained results of scenario SO with different charging
speeds. It indicates that the faster the charging speed CS is, the better the obtained
results are. As the charging speed improves from E/240 min™ to £/60 min™, the total
charging actions of 2000 used ETs at 4 located stations increase from 4,390 to 6,146,
while the total charging time per day decreases from 11,758.3 h to 4,172.5 h and the
total waiting time sharply decreases from 4507.7 h to 17.8 h. As the ET spends will
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spend more time on the roads, the improvement of charging service at stations
generates a better ET service on the roads. Total travel distance of covered demands

increases from 476, 469.7 km to 662, 930.8 km.

[place Tab. 4 about here]

5.5 Marginal utility of located ET charging stations

Fig. 10 and Table 5 depict the objectives of each scenario and their tendencies as
a function of the located stations. With the charging service supply increasing from S1
to S4, the obtained solutions exhibit a uniform improvement in both the ET service on
the roads and the charging service at stations. For the ET service, the total length of
ET covered travel increases from 403,707.3 km (S1) to 659,167.1 km (S4). For the
charging service, the total waiting time reduces from §,930.3 h with 1,939 waiting
actions (S1) to 121.1 h with 498 actions (S4). Meanwhile, the total charging time
increases from 4,448.4 h (S1) to 9,836.6 h (S4). The total number of charging actions
increases from 2,733 (S1) to 5,777 (S4). The average charging time at the stations
also increases from 1.63 h to 1.70 h, which is due to the reduced distance to a station
with a greater number of charging stations.

It is noteworthy that new stations may induce an increase in the number of
waiting actions. As shown in Table 5, the number of waiting actions at stations is
nearly doubled between scenarios S1 (1,939 waiting actions) and S2 (3,619 waiting
actions). This is mainly due to the inadequate charging service supply under the
conditions in S1, in which each ET charges 1.367 times (i.e., 2,733/2,000) on average
with 4 charging stations. With the addition of 4 more stations in S2, the charging
service supply increases, and each ET charges an average of 2.52 times (i.e.,
5,040/2,000) per day, which also generates an increased number of waiting actions at
the stations. Nevertheless, the total waiting time still decreases from 8,930 h (S1) to
4,379 h (S2), as illustrated in Fig. 10. The average waiting time is also significantly
improved from 4.61 (i.e., 8,930.3/1,939) h to 1.21 (i.e., 4,379/3,619) h between

scenarios S1 and S2. This truth validates the improvement of the objectives with more
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charging stations.

However, the marginal utility of more located charging stations diminishes.
Between scenarios S1 (4 stations) and S2 (8 stations), both the ET service on the road
and the charging service at the stations significantly improve with more stations. The
increase of the total distance of ET covered travel between S1 and S2 is 147,481.6
(i.e., 551,188.8—403,707.2) km. The increase of total charging time at located stations
is 3,984.8 (i.e., 8,469.2—44,484.4) h. The decrease of the total waiting time is 4,551.3
(i.e., 8,930.3—4,379) h. However, with respect to the differences between scenarios S3
(16 stations) and S4 (20 stations), the improvement of the total distance of ET covered
travel is only 14,937.6 (i.e., 657,263.0—642,325.4) km. The increase of total charging
time is only 263 (i.e., 9,615.4-9,352.4) h. The decrease of total waiting time is
1,078.4 (i.e., 1,199.5-121.1) h.

Fig. 11 illustrates the positions of the located charging stations for the 5
scenarios considered. The distributions of located stations are observed to be very
different with respect to the different numbers of sited stations. Charging stations
initially appear along main roads in S1 (Fig. 11a). With increasing number of
charging stations, new stations tend to be located in the high density taxi demand
areas in S2 (Fig. 11b) and SO (Fig. 11c). Finally, new stations are sited at the airport
or low density taxi demand areas in northern Shenzhen in S3 (Fig. 11d) and S4 (Fig.
11e).

[place Tab. 5 about here]
[place Fig. 10 about here]

[place Fig. 11 about here]

5.6 Mapping the reduced carbon emission

Table 6 summarizes the total daily RCE when operating 2,000 ETs in
conjunction with the varying number of charging stations associated with scenarios

S0-S4. The table indicates that ET use can reduce daily carbon emission from about
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211,118.1 to 339,891.4 kg depending upon the number of charging stations employed.
Fig. 12 illustrates the spatial distribution of the daily RCE. In accordance with the ET
footprint, reduced RCE is observed over nearly the entire road network. The most
prominent effects occur in the downtown area (A), corridors to the downtown area (B),
and the highway to the airport (C). Once again, the green effect obtained with more
located charging stations diminishes. Between scenarios S1 (4 stations) and S2 (8
stations), the total RCE increases by 104,999.7 kg, and a more uniformly distributed
green effect is generated. However, the total RCE only increases by 1,275.1 kg
between scenarios S3 (16 stations) and S4 (20 stations) because the charging supply
provided by 16 stations in S3 is nearly sufficient for the 2000 ETs used. Differences

between the spatial RCE distributions in Fig. 12d and Fig. 12e are also very slight.

[place Tab. 6 about here]

[place Fig. 12 about here]

6. Conclusion

The electrification of public transportation has been a pioneer in attaining the
goal of green transportation. With respect to the electric taxi (ET), one key to success
lies in the location of charging stations to provide a high quality ET service for the
public and a convenient charging service for ET drivers (Jung et al., 2014). However,
in the dynamics of taxi demand and ET charging, time becomes a crucial factor,
which is neglected in current location approaches that consider only spatial issues.

In recognition of this limitation, this article has addressed the location problem
of ET charging stations by presenting a novel spatial-temporal demand coverage
location approach. Detailed taxi demand data that captures spatial-temporal taxi
request dynamics have been extracted from massive spatial-temporal GPS data for
Shenzhen, China. The ET demand coverage is identified according to the
spatial-temporal path that models the cyclic interaction between taxi demands, ETs,
and charging stations. The objective of the presented spatial-temporal demand

coverage location model (STDCLM) is to maximize the ET service on the roads and
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the charging service at the stations. This approach enables the siting of charging
facilities in a spatial-temporal context rather than merely a spatial context.
Experiments in Shenzhen, China not only demonstrate the effectiveness of the
proposed location approach, but also validate the essential nature of the temporal
dimension in taxi demand representation and the presented STDCLM. It has been
shown that the optimized siting of charging stations can improve both the ET service
on the roads and the charging service at stations. The estimation of daily RCEs also
illustrates the environmental effect of ETs in conjunction with the located ET
charging stations.

The main contributions of this research are three fold, as follows. Firstly, a novel
location model was presented from the spatial-temporal perspective, which extends
current location approach to address dynamic demand rather than static demand.
Additionally, the complex interaction between travel demand and transportation
service supply has been handled in a spatial-temporal context. Secondly, this research
makes use of massive GPS data to support public policy making in transportation
sectors, which acknowledges the value of big data and advances towards smart
decisions in a highly dynamic environment. Thirdly, the problem of optimizing siting
of ET charging stations has been addressed. This work can not only support
short-term decision making regarding the use of ETs as a public utility, but can also
help to promote the long-term development of the electric vehicle (EV) market.

Clearly, the results offered by the proposed approach are of great practical use
for ET charging station siting. Nevertheless, the approach also demonstrates some
notable limitations. Firstly, the located stations are only aimed at servicing ETs, and
private EVs are not considered. In the future, the presented work should be extended
towards the fulfillment of the charging requests of all EVs. The second limitation is
the neglect of the variability of taxi demand. If taxi service is absent for a time, taxi
demand nearby bus stations or metro stations may transfer to the bus or the metro
system. Therefore, more public transportation data must be collected and be further
involved in the presented work. The third limitation is the disregard for the relation

between charging stations and grids. More data regarding grid infrastructure should be
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collected, and the candidate ET charging station sites should be adjusted accordingly.
The last limitation is about the parameter A, which is set to the mean travel speed of
all roads across a whole day. However, urban traffic varies significantly across space
and time (Li et al., 2011), leading to quite different reduced travel distances of the
waiting. Hence, a spatial-temporal dependent value should be set according to

historical traffic information in the further.
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Fig.1. Study area in the city of Shenzhen, China
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Table 1

The format of taxi GPS data in the city of Shenzhen, China.

ID VID Time stamp(/sec) Longitude Latitude Status Speed (m/s)
106411231324 11011 200 113.928*** 22 505%** 12.0
106411231325 8648 280 113.930%** 22 515%** 6.2
106411231998 11011 2000 113.419%*% 22 539%** | 12.0
106411253724 11011 2040 113.419%%%* 22 540%** 0 4.8
106411263340 14899 2041 113.411%** 22.603*** 0 9.2
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Table 2

The setting of the electric taxi (ET) charging stations siting scenarios

Scenarios Number of ETs Number of stations Number of stakes Ratio(ETs: stakes)
SO 2000 12 600 10:3
S1 2000 4 200 10:1
S2 2000 8 400 10:2
S3 2000 16 800 10:4
S4 2000 20 1000 10:5
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Table 3

The setting and the result of the ET charging stations location scenario

Scenario Setting Results

Scenario SO Total travel distance of all ETs per day (km) 928240.7

Number of ETs 2000 Total travel distance of covered demands per day (km) 642300.3

Number of Stations 12 Total number of ET covered demand per day 69151

Number of charging stakes in a station 50 Total charging time at stations per day (hour) 9382.4

Total number of charging stakes 600  Total number of charging actions per day 5530

Ratio (ETs: stakes) 10:3  Total waiting time at stations per day (hour) 1193.9
Total number of waiting actions per day 2033
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Table 4

The variation of objectives with charging speeds

Charging speed CS (E/min™")

Total travel distance of covered demands (km)
Total charging time at stations (hours)

Total number of charging actions per day
Total waiting time at stations (hours)

Total number of waiting actions per day

E240
476469.7
11758.3
4390
4507.7
2229

E/180
542849.3
10379.1
5137
2682.0
2466

E/120
642300.3
9382.4
5530
1193.9
2033

E/60
662930.8
4172.5
6146
17.8
97
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Table 5

Daily charging and waiting of ETs at charging stations

. Numof Numof Num ofcharging Average charging Num of waiting Average waiting
Scenario ETs stations actions time (/hour) actions time (/hour)
S1 2000 4 2733 1.63 1939 4.61
S2 2000 8 5040 1.68 3619 1.21
S0 2000 12 5530 1.69 2033 0.59
S3 2000 16 5665 1.70 1068 0.51
S4 2000 20 5777 1.70 498 0.24
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Table 6

The reduced carbon emission (RCE) by ETs for scenarios given in Table 2

Scenario Num of ETs Num of stations Total RCE (/kg) Change in RCE (/kg)

S1
S2
SO
S3
S4

2000
2000
2000
2000
2000

4
8
12
16
20

211118.1
316117.8
330174.2
338616.3
3398914

104999.7
14056.4
8442.1
1275.1




