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Abstract. We address the Menezes-Okamoto-Vanstone (MOV) algo-
rithm for attacking elliptic curve cryptosystems which is completed in
subexponential time for supersingular elliptic curves. There exist two
hurdles to clear, from an algorithmic point of view, in applying the MOV
reduction to general elliptic curves: the problem of explicitly determining
the minimum extension degree k such that E[n] ⊂ E(Fqk) and that of
efficiently finding an n-torsion point needed to evaluate the Weil pair-
ing, where n is the order of a cyclic group of the elliptic curve discrete
logarithm problem. We can find an answer to the first problem in a re-
cent paper by Balasubramanian and Koblitz. On the other hand, the
second problem is important as well, since the reduction might require
exponential time even for small k. In this paper, we actually construct a
novel method of efficiently finding an n-torsion point, which leads to a
solution of the second problem. In addition, our contribution ! ! allows
us to draw the conclusion that the MOV reduction is indeed as powerful
as the Frey-Rück reduction under n � |q − 1, not only from the viewpoint
of the minimum extension degree but also from that of the effectiveness
of algorithms.

1 Introduction

1.1 History and Motivation

In 1985, Koblitz [14] and Miller [20] independently proposed the use of elliptic
curves over finite fields for public-key cryptography. Since that time, elliptic
curve cryptosystems have gained a tremendous amount of attention and many
researchers have devoted their time to the study of elliptic curves.
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The security of elliptic curve cryptosystems is based on the presumed in-
tractability of the Elliptic Curve Discrete Logarithm Problem, which we abbre-
viate as the ECDLP. More specifically, the ECDLP can be stated as follows: Let
E be an elliptic curve defined by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (a1, a2, a3, a4, a6 ∈ Fq)

where Fq is a finite field with q = pm (p : a prime number) elements. Given a
base point P ∈ E(Fq) and R ∈ 〈P 〉, one is asked to find an integer l such that
R = lP , where E(Fq) is the set of its Fq-rational points.
In general, thus far, it is believed that the ECDLP requires exponential time

in log q to solve. Nevertheless, it has been known that, for some special cases,
the ECDLP is no more difficult than the Discrete Logarithm Problem (DLP)
in finite fields. Significant developments in this line of research are represented
by the Menezes-Okamoto-Vanstone (MOV) algorithm [19], the Frey-Rück (FR)
algorithm [10] and the Semaev-Smart-Satoh-Araki (SSSA) algorithm [26][29][23].
In the following discussion, we assume that n = #〈P 〉, the order of a base

point P , is a prime number. This condition is not restrictive, since we can reduce
the composite case to the prime one by applying the Chinese Remainder Theorem
and the Pohlig-Hellman algorithm.
Technically, the SSSA algorithm reduces the ECDLP to the DLP of the

additive group structure of the base field for so-called anomalous curves and
solves it in polynomial time. (For more details, see [26][29][23].) Thus, in the
sequel, we will also assume that n � |q, since the SSSA algorithm can be applied
to the case of n|q.
In contrast, the MOV and FR algorithms reduce the ECDLP with the above

assumptions (n prime and n � |q) to the DLP in the multiplicative subgroup of
an extension field Fqk of the base field Fq and then solve the DLP using the
currently known best algorithm. (For example, see [8].) A natural question that
arises from an algorithmic point of view is whether it is possible to realize the
reductions (i.e. transformations from the ECDLP to the DLP in finite fields) in
such a way that they work efficiently.
For the FR reduction, the above question has already been answered (For ex-

ample, see [11][12]): it is known that the FR reduction can work in probabilistic
polynomial time in k log q. Here k is explicitly given as the smallest positive in-
teger with qk ≡ 1 mod n. (Note that this condition follows from the requirement
that Fqk must contain n-th roots of unity.) Thus, if such a k is small enough
to solve the DLP in F ∗

qk in subexponential time in log q, the reduction itself
is always completed in polynomial time in log q. Consequently, in such a case,
the FR algorithm is completed in subexponential time in log q. In particular, if
n|q − 1, we have no need to extend the base field Fq and the FR reduction can
be easily applied.
On the other hand, for the MOV reduction, the above question has not been

explicitly answered yet: thus far, it is well known that, for supersingular curves,

1. the necessary minimum extension degree k is at most six; and
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2. the MOV reduction (transformation from the ECDLP to the DLP in a finite
field) is completed in probabilistic polynomial time in k log q (k ≤ 6),

and so the MOV algorithm for supersingular curves is completed in subexpo-
nential time in log q. However, there exist two major problems to clear, from
an algorithmic point of view, in applying the MOV reduction to general elliptic
curves (assuming that n = #〈P 〉 is prime number and n � |q):
1. the problem of explicitly determining the smallest positive integer k such
that E[n] ⊂ E(Fqk), where E[n] is the set of n-torsion points.

2. the problem of efficiently finding an n-torsion point Q such that en(P,Q)
has order n (i.e. en(P,Q) �= 1 because of the assumption that n is a prime
number.), where en is the Weil pairing. (In the sequel, we refer to such an
n-torsion point Q as a “good” n-torsion point.)

For the first problem, we can find an answer to it in a paper by Balasubra-
manian and Koblitz [3]. They proved that if n � |q − 1, k is the smallest positive
integer such that qk ≡ 1 mod n. (It is interesting to note that this condition
is identical to the one under which the FR reduction is applied.) In the same
paper, they also suggest that we need k = n if n|q− 1 and E[n] �⊂ E(Fq). Thus,
when n is much larger than log q, we may give up applying the MOV algorithm
since the extension degree in this case is too large in order for the reduced DLP
in F ∗

qk to be solved in subexponential time in log q .
For the second problem, we cannot find any answer which covers all the

case: a simple and widely well-known method generally requires exponential
time in log q even if k is small (Section 4.1). Moreover, the methods using the
multiplication by constant maps in a suitable way might also take exponential
time in log q for the general case (Section 4.2).
Thus, in order to reach the valid conclusion that the MOV algorithm is

always completed in subexponential time in log q if the DLP in F ∗
qk is solved in

subexponential time in log q, an efficient method which solve the second problem
above will be desired.

1.2 Main Result

The major contribution of this paper is to solve the second problem described
earlier by constructing a novel method which finds a “good” n-torsion point
required in evaluating the Weil pairing in probabilistic polynomial time in k log q,
under the most reasonable assumptions stated above (i.e. n is a prime such that
n � |q and n � |q−1). This expected running time is optimal, since it always means
probabilistic polynomial time in log q whenever k is small enough to solve the
DLP in F ∗

qk in subexponential time in log q. As a result, we obtain an optimized
MOV algorithm for general elliptic curves.
The key idea which leads us to successfully finding a “good” n-torsion point

efficiently is to construct a homomorphism f : E(Fqk) → E(Fqk ) such that
Imf = E[n]. We will see that it is possible by using the q-th power Frobenius
map under a certain condition.
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Now, we turn our attention to comparing the MOV and FR reductions. It may
have been believed by some cryptographers that assuming n � |q − 1, the MOV
reduction is as powerful as the FR reduction in the sense that their minimum
extension degrees k coincide when the base field Fq is extended to Fqk in order
to apply those reductions. However, so far there has been a lack of a formal proof
that supports the belief. As pointed out in [12], the problem of efficiently finding
a “good” n-torsion point required in evaluating the Weil pairing should be solved
as well. Thus, our contribution allows us to finally draw the conclusion that the
MOV reduction is indeed as powerful as the FR reduction under n � |q − 1, in a
true sense: not only from the viewpoint of the minimum extension degree of the
base field but also from that of the effectiveness of algorithms.
The rest of this paper is organized as follows: In Section 2, we briefly review

some basic facts on elliptic curves over finite fields and the MOV algorithm.
In Section 3, we consider the problem of explicitly determining the minimum
extension degrees and describe the answer to it obtained by Balasubramanian
and Koblitz. In Section 4, we consider the problem of efficiently finding a “good”
n-torsion point. Three different methods are considered to solve the problem.
The third method is completed in probabilistic polynomial time in k log q for
the general case n � |q − 1. Finally, based on the efficient method in the previous
section, in Section 5 we actually realize an optimized MOV algorithm for general
elliptic curves under n � |q − 1 and estimate its running time.

2 Preliminaries

In this section, we briefly review some materials on elliptic curves over finite
fields. (See [27] for more details.)
Let Fq be a finite field with q = pm elements, where p is a prime number,

and F̄q its algebraic closure. Let E be an elliptic curve over Fq given by the
Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

whose coefficients lie in Fq. For each extension field K of Fq, E(K) is given by

E(K) = {(x, y) ∈ K ×K|(x, y) satisfies (1) } ∪ {O}
where O is a special point, called the point at infinity. There is an abelian group
structure on the points of E(K), in which O serves as its identity element, given
by the so-called tangent-and-chord method. We express its abelian structure
additively.
Let n be a positive integer relatively prime to p, the characteristic of Fq. The

Weil pairing is a map

en : E[n]× E[n] −→ µn ⊂ F̄q

where E[n] = {T ∈ E(F̄q)|[n]T = O} is the group of n-torsion points and µn is
the subgroup of n-th roots of unity in F̄q. For properties of the Weil pairing, see
[27] [18].
Let P ∈ E[n] be a point of order n. Then, we have the following:
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Proposition 1. ([27][19]) There exists Q ∈ E[n] such that en(P,Q) is a primi-
tive n-th root of unity. Therefore,

fQ : 〈P 〉 −→ µn, fQ(S) = en(S,Q)

is a group isomorphism.

Based on this fact, the framework of the MOV algorithm can be described
as follows:

Algorithm 1 ([18] [19])

Input: An element P ∈ E(Fq) of order n, and R ∈ 〈P 〉.
Output: An integer l such that R = [l]P .
Step 1: Determine the minimum positive integer k such that E[n] ⊂ E(Fqk ).
Step 2: Find Q ∈ E[n] such that α = en(P,Q) has order n.
Step 3: Compute β = en(R,Q).
Step 4: Compute l, the discrete logarithm of β to the base α in F ∗

qk .

This algorithm is somewhat incomplete in that the methods for determining
k and for finding a point Q are not explicitly given. For supersingular elliptic
curves, the methods which settle those problems are given in [19]; the resulting
minimum k are k = 1, 2, 3, 4, or 6, and for each corresponding k, Q is efficiently
obtained by using the group structure of E(Fqk ). Therefore, for supersingular
elliptic curves, the reduction is completed in probabilistic polynomial time in
log q and the algorithm mentioned above takes probabilistic subexponential time
in log q.
In the following sections, we consider the two problems described in Section 1

not only for the supersingular case but also for the non-supersingular (ordinary)
case .

3 Determining the Minimum Extension Degrees

In this section, we consider the problem of determining the minimum positive
integer k such that E[n] ⊂ E(Fqk ).
The following proposition is proved by Schoof [24].

Proposition 2. ([24]) Let p be the characteristic of Fqk , n a natural number
with p � |n and tk denote the trace of the qk-th power Frobenius map φ of E. The
following are equivalent;

(1) E[n] ⊂ E(Fqk )

(2) n2|#E(Fqk ), n|qk − 1 and either φ ∈ Z or O( tk
2 − 4qk

n2
) ⊂ EndF

qk
(E)

where O( tk
2−4qk

n2 ) is an order of discriminant tk
2−4qk

n2 .
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However, from an algorithmic point of view, a more explicit form of k is
needed to realize the MOV reduction. With the assumption that n is a prime
number such that n|#E(Fq) and n � |q − 1, Balasubramanian and Koblitz [3]
have obtained the following result:

Proposition 3. ([3]) Let E be an elliptic curve defined over Fq, and suppose
that n is a prime number such that n|#E(Fq), n � |q − 1. Then, E[n] ⊂ E(Fqk )
if and only if n|qk − 1.
Remark 1. It is important to note that Balasubramanian and Koblitz’s results
also suggest k = n if n|q − 1 and E[n] �⊂ E(Fq). Thus, in this case, when n is
much larger than log q, we may give up applying the MOV algorithm since the
extension degree in this case is too large in order for the reduced DLP in F ∗

qk to
be solved in subexponential time in log q .

4 Three Methods for Finding n-Torsion Points

In this section, we consider the problem of finding an n-torsion point Q ∈ E[n]
such that α = en(P,Q) has order n. (See Algorithm 1 in Section 2.) We refer to
such an n-torsion point Q as a “good” n-torsion point.
As before, we assume the following:

Assumption 1 (1) n is a prime number; (2) n � |q; (3) n � |q − 1.
The first condition is not restrictive, since we can reduce the composite case
to the prime one by applying the Chinese Remainder Theorem and the Pohlig-
Hellman algorithm; the second one is necessary, since the Weil pairing is not
defined otherwise; the third one is reasonable from the result by Balasubrama-
nian and Koblitz. (See Remark in Section 3.)
Also, as before, we use the following notation: P is a base point of order n.

(Thus, E(Fq)[n] = 〈P 〉 ∼= Z/nZ.); k is the minimum positive integer such that
E[n] ⊂ E(Fqk), or equivalently k is the minimum positive integer with n|qk − 1.
(See Proposition 3 in Section 3.)
Let Nk be the number of Fqk -rational points on E, and E(Fqk )n the n-

primary part of E(Fqk ), i.e.

Nk = #E(Fqk ), E(Fqk )n =
⋃

i≥1

E(Fqk )[ni],

and, let d = vn(Nk) denote the largest integer such that nd|Nk.
Now, we provide three different methods to find a “good” n-torsion point; the

first one, which is considerable simple, repeatedly chooses Q ∈ E(Fqk ) until both
Q ∈ E[n] and en(P,Q) �= 1 are satisfied; the second one is a method using the
multiplication by constant maps and can be regarded as a generalized version of
the algorithm that Menezes, Okamoto, and Vanstone considered in the original
paper [19] on the MOV reduction for supersingular elliptic curves; and the third
one, which is constructed based on Theorem 1 given later, can be applied to
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the general case n � |q − 1 and is completed in probabilistic polynomial time
in k log q. It turns out that the second one takes a smaller expected number of
iterations than the first one in order to obtain a “good” n-torsion point. However,
they generally require exponential time in log q. The third one, our final goal of
this section, is optimal, since it is completed in probabilistic polynomial time in
k log q for general elliptic curves.

4.1 A Simple Method

We assume that E(Fqk ) ∼= Z/cd1nZ × Z/cnZ (cn|qk − 1). (Note that the group
structure of E(Fqk) can be always expressed in this form [18].)
The first method is simple:

Procedure 1

Step 1: Choose Q ∈ E(Fqk ) randomly.
Step 2: Check if Q ∈ E[n] by computing [n]Q. If Q �∈ E[n], go to Step 1.
Step 3: Compute α = en(P,Q). If α = 1, go to Step 1.

In Step 1, we first pick an element x = a in Fqk to substitute it to the equation
(1). Then we check if the quadratic equation with respect to y has a solution
in Fqk . If it does, we solve the quadratic equation in a usual manner. (See, for
example, [15][18] for the details.) Also, for Step 3, there is a standard procedure
to compute the Weil pairing. (See, for example, [18].) Note that we can execute
this method even if the group structure of E(Fqk ) is unknown.
If Procedure 1 is applied, the probability of finding a “good” point Q for each

iteration is

#E[n]
#E(Fqk )

× #E[n]−#〈P 〉
#E[n]

=
n2

d1c2n2
× n2 − n

n2
=

1
d1c2

(1− 1
n
).

Thus, the success probability for each iteration is approximately 1
d1c2 since n is

assumed to be large enough. If n = O(q), the expected number of iterations is
approximately d1c

2 = Nk/n
2 = O(qk−2), where for the last equality n = O(q)

and the Hasse bound [27] have been applied. Therefore, if k > 2, the above
method is no longer efficient, since it takes exponential time in log q.

4.2 Methods Using the Multiplication by Constant Maps

The second method is a generalized version of that considered in the original
paper [19] on the MOV reduction for supersingular elliptic curves. Two versions
of this method are considered. One may use one of these versions depending
on whether the knowledge of the group structure of E(Fqk) is required or not
(Procedure 2 and 3, respectively). Procedure 2 is considered in [12]. However,
Procedure 3 is different from the method in [12], since our method does not need
the information of the complete group structure of E(Fqk ).
We first consider the case that the group structure E(Fqk ) ∼= Z/cd1nZ ×

Z/cnZ (cn|qk − 1) is known.
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Procedure 2

Step 1: Set vn(d1) the largest integer such that nvn(d1)|d1 and set d2 :=d1/n
vn(d1).

Step 2: Choose Q ∈ E(Fqk ) randomly.
Step 3: Set Q′ = [cd2]Q ∈ E[nvn(d1)+1] ∩ E(Fqk ) ∼= Z/nvn(d1)+1 × Z/n.
Step 4: Check if Q′ ∈ E[n] by computing [n]Q′. If Q′ �∈ E[n], go to Step 2.
Step 5: Compute α = en(P,Q′). If α = 1, go to Step 2.

If Procedure 2 is applied, the probability of finding a “good” point Q′ for each
iteration is

#E[n]
#(E[nvn(d1)+1] ∩ E(Fqk)

×#E[n]−#〈P 〉
#E[n]

=
n2

nvn(d1)+2
× n2−n

n2
=

1
nvn(d1)

(1− 1
n
)

In particular, if n � |d1, this method is simplified to:

Procedure 2’

Step 1: Choose Q ∈ E(Fqk ).
Step 2: Set Q′ = [cd1]Q ∈ E[n].
Step 3: Compute α = en(P,Q′). If α = 1, go to Step 1.

The probability of finding a “good” point Q′ for each iteration is 1− 1/n. Note
that, for supersingular elliptic curves, d1 = 1 and this method coincides with
what was used in [19]. In this sense, Procedure 2 can be regarded as a generalized
version of that used in [19].
The probability of finding a “good” point for each iteration in Procedure 2 is

approximately 1/nvn(d1), and the expected number of iterations is approximately
nvn(d1), which is smaller than that of Procedure 1 since nvn(d1) ≤ d1 ≤ d1c

2.
We next consider the case that the group structure of E(Fqk ) is unknown be-

forehand. For finding the group structure of E(Fqk ), we apply Miller’s algorithm,
which finds the pair (n1, n2) such that E(Fqk ) ∼= Z/n1Z×Z/n2Z (n2|n1, n2|qk−
1) assuming the knowledge of the factorization of Nk. (For the details of Miller’s
algorithm, see [18] [19].) However, since we are looking at the n-primary part,
all we need is the information on the group structure of that, i.e. the pair (r, s)
such that E(Fqk)n ∼= Z/nrZ × Z/nsZ (1 ≤ s ≤ r). Then, we can avoid com-
puting the factorization of Nk, and consequently that leads to a great saving of
computation. Thus, in the following procedure (Procedure 3), we make use of
a simplified version of Miller’s algorithm (N Miller) which computes the group
structure of the n-primary part without the knowledge of the factorization of
Nk. The essential difference be! ! tween Procedures 2 and 3 lies in this point.

Procedure 3

Step 1: Compute N1 = #E(Fq).
Step 2: Compute Nk = #E(Fqk ) from N1 = #E(Fq), using the Weil Theorem,

and d = vn(Nk).
Step 3: Execute N Miller to get the pair (r, s).
Step 4: Compute t = Nk/n

r+1.
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Step 5: Choose Q ∈ E(Fqk ) randomly, and compute Q′ = [t]Q.
Step 6: Check if Q′ ∈ E[n] by computing [n]Q′. If Q′ �∈ E[n], go to Step 5.
Step 7: Compute α = en(P,Q′). If α = 1, go to Step 5.

N Miller :

1) Pick V,W ∈ E(Fqk) randomly.
2) Compute V ′ = [Nk/n

d]V and W ′ = [Nk/n
d]W .

3) Compute ord(V ′), ord(W ′) (the orders of V ′,W ′, respectively),
and set r =max{vn(ord(V ′)), vn(ord(W ′))}.

4) Compute δ = enr (V ′,W ′) and its order ns = ord(δ).
5) If r + s = d, then return (r, s). Otherwise, go to 1).

We provide explanation of each step in the above method.
In Step 1, we compute N1 in polynomial time, using the Schoof-Elkies-Atkin

algorithm and its variants [25][5][16][6][1][2][9] [22][17][7][13].
As described earlier, N Miller is regarded as Miller’s algorithm that finds the

group structure of the n-primary part E(Fqk )n of E(Fqk ). In 2), note that the
multiplication by Nk/n

d map [Nk/n
d] : E(Fqk) → E(Fqk) is an abelian group

homomorphism and hence it preserves the uniform distribution. Moreover, since
its image is the n-primary part E(Fqk)n, we can obtain V ′, W ′ ∈ E(Fqk)n
randomly if we pick V, W ∈ E(Fqk ) randomly. In 5), if r + s = d, we can see
that the group structure of the n-primary part is isomorphic to Z/nrZ×Z/nsZ,
and also the probability of success is

ϕ(nr)ϕ(ns)
nr+s

=
nr−1(n− 1)ns−1(n− 1)

nr+s
= (1− 1

n
)2,

where ϕ is the Euler function.
In Steps 4 and 5, we note that t = Nk

nr+1 = Nk

nd · ns−1. Therefore, the image
of the multiplication by t map [t] = [ns−1] ◦ [Nk/n

d] : E(Fqk ) −→ E(Fqk) is
exactly isomorphic to Z/nr−s+1Z × Z/nZ. Thus [t] is an analogue of [cd2] in
Step 3 of Procedure 2, although [t] is not correctly corresponding to [cd2].
Finally, we briefly analyze the time complexity of our method. (i.e. Procedure

2 and 3.) From the considerations described earlier, it follows that the success
probability for each iteration is approximately 1/nvn(d1) and the expected num-
ber of iterations is O(nvn(d1)). Thus, if vn(d1) = 0, i.e. d = vn(Nk) is even and the
group structure of the n-primary part E(Fqk )n is isomorphic to Z/n

d
2 Z×Z/n

d
2 Z,

they are completed in probabilistic polynomial time in k log q. Otherwise, if n is
exponential in log q, they are no longer efficient.

Remark 2. It is possible to improve the method in order to make the success
probability high: after picking a point Q ∈ E(Fqk )n randomly by using the map
[Nk/n

d], we compute its order, say, nl. Then we can obtain Q′ = [nl−1]Q ∈
E[n]. This might be familiar to some people. The success probability of this
method is better than that of the above methods. However, in general cases,
this procedure also requires the expected number of iterations O(nvn(d1)) and the
time complexity remains same. More precisely, we cannot reduce the expected
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running time when 〈P 〉 = 〈nr−1S〉, where E(Fqk )n ∼= Z/nrZ × Z/nsZ (1 ≤ s <
r) and S is an element of order nr. Otherwise, the expected number of iterations
is almost one. In fact, this is clear by considering the two cases: E(Fqk )n ∼=
Z/nsZ×Z/nsZ; E(Fqk)n ∼= Z/nrZ×Z/nsZ (1 ≤ s < r) with 〈P 〉 �= 〈n!!r−1S〉.
The first case has been already considered in the previous methods while the
second case will be addressed in the following section. The above case (i.e. 〈P 〉 =
〈nr−1S〉) is essentially solved by proposing the next method in Section 4.3.
Example 1. As an example that the methods in this subsection are not efficient,
we can consider the case that E(Fq)n ∼= Z/n2Z, E(Fqk )n ∼= Z/n2Z × Z/nZ,
where n is exponential in log q.

4.3 An Efficient Method for General Elliptic Curves.

The methods described before are not always completed in polynomial time in
k log q for the general case. In other words, we need some assumptions in order for
them to be completed in polynomial time in k log q. Thus, we consider to remove
this restriction in this subsection. The key idea is to construct a homomorphism
f : E(Fqk ) → E(Fqk ) such that Imf = E[n], and we will see that it is possible
by using the q-th power Frobenius map φ under a certain condition.
As a natural situation, we assume that the group structure of E(Fqk ) is

unknown beforehand. The following is our proposed method for general elliptic
curves.

Procedure 4

Step 1: Compute N1 = #E(Fq).
Step 2: Compute Nk = #E(Fqk ) from N1, and d = vn(Nk).
Step 3: Execute N Miller to obtain the pair (r, s). If r = s, go to Step 5.
Step 4:

(4-1) Choose Q ∈ E(Fqk) randomly.
(4-2) Compute Q′ = [Nk/n

s+1]Q. If Q′ = O, go to (4-1). Otherwise, com-
pute Q′′ = (φ− 1)Q′.

(4-3) If Q′′ �= O, compute α = en(P,Q′) and go to Step 6.
Step 5:

(5-1) Choose Q ∈ E(Fqk) randomly.
(5-2) Compute Q′ = (φ − 1)r−s ◦ [Nk/n

r+1]Q. (We define (φ − 1)0 := id:
identity map.)

(5-3) Compute α = en(P,Q′). If α = 1, go to (5-1).
Step 6: Store Q′ and α.

We provide explanation of each step in the above method.
In Step 3, we can know the group structure of the n-primary part E(Fqk )n ∼=

Z/nrZ × Z/nsZ (1 ≤ s ≤ r). If r = s, the rest of this method is same as
Procedure 3, which is proposed in Section 4.2.
In Step 4, we assume that E(Fqk )n = 〈S〉 × 〈T 〉 ∼= Z/nrZ × Z/nsZ (1 ≤

s < r), where S and T are generators of orders nr and ns, respectively. The
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image of the multiplication by Nk/n
s+1 = nr−1 ×Nk/n

d map [nr−1] ◦ [Nk/n
d] :

E(Fqk )→ E(Fqk ) is isomorphic to Z/nZ. We can know whether 〈P 〉 = 〈nr−1S〉
or not by checking whether Q′′ = O or not. In fact, since the order of Q′ is n
and Q′(�= O) ∈ 〈nr−1S〉, and since we have assumed E(Fq)[n] = 〈P 〉, it follows
that 〈P 〉 = 〈nr−1S〉 ⇔ Q′ ∈ 〈P 〉 ⇔ (φ − 1)Q′ = O. In order to check whether
〈P 〉 = 〈nr−1S〉, we need Q′ �= O, and its success probability is

ϕ(nr)ns

nr+s
=

nr−1(n− 1)ns

nr+s
= 1− 1

n

if we choose Q ∈ E(Fqk ) randomly. When 〈P 〉 �= 〈nr−1S〉, we can obtain α =
en(P,Q′) �= 1.
In Step 5, we already know that E(Fqk)n ∼= Z/nsZ × Z/nsZ, or E(Fqk)n =

〈S〉 × 〈T 〉 ∼= Z/nrZ × Z/nsZ (1 ≤ s < r) with 〈P 〉 = 〈nr−1S〉. For the first
case, the rest of the method is same as Procedure 3. Therefore, when r = s, the
success probability for each iteration is 1− 1/n. For the second case, in order to
explain the validity of this step, we need the following theorem:

Theorem 1. We assume that

E(Fqk)n = 〈S〉 × 〈T 〉 ∼= Z/nrZ × Z/nsZ (1 ≤ s < r),

〈P 〉 = 〈nr−1S〉,
where S and T are generators of orders nr and ns, respectively.

Consider the map

f = (φ− 1)r−s ◦ [ns−1] ◦ [Nk/n
d] : E(Fqk ) −→ E(Fqk).

Then we have

Imf ∼= Z/nZ × Z/nZ.

Proof. Consider the multiplication byNk/n
d map [Nk/n

d] : E(Fqk ) −→ E(Fqk ).
It is easy to see that its image is the n-primary part E(Fqk )n of E(Fqk). We
define f (r−s) := (φ − 1)r−s : E(Fqk) −→ E(Fqk ), where φ is the q-th power
Frobenius map. Then, from Lemma 1, which will be given below, it follows
that Im(f (r−s) ◦ [Nk/n

d]) =Im(f (r−s)|E(F
qk )n
) ∼= Z/nsZ × Z/nsZ. Moreover,

by composing the map [ns−1] with it, we have Im([ns−1] ◦ f (r−s) ◦ [Nk/n
d]) ∼=

Z/nZ × Z/nZ. Therefore, Imf ∼= Z/nZ × Z/nZ follows, since

[ns−1] ◦ f (r−s) ◦ [Nk/n
d] = f (r−s) ◦ [ns−1] ◦ [Nk/n

d]. ��
Lemma 1. We assume that

E(Fqk)n = 〈S〉 × 〈T 〉 ∼= Z/nrZ × Z/nsZ (1 ≤ s < r),

where S and T are generators of orders nr and ns, respectively, and

〈P 〉 = 〈nr−1S〉.
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We consider the map :

f (i) = (φ− 1)i : E(Fqk ) −→ E(Fqk ) (0 ≤ i ≤ r − s),

where φ is the q-th power Frobenius map. Then we have

Im(f (i)|E(F
qk )n
) ∼= Z/nr−iZ × Z/nsZ

and Im(f (i)|E(F
qk )n
) is generated by f (i)(S) and f (i)(T ) of orders nr−i and ns,

respectively.

Proof. The proof is given in Appendix A. ��

From Theorem 1, it follows that Q′ ∈ E[n] in Step (5-2), since (φ− 1)r − s ◦
[Nk/n

r+1] = (φ−1)r−s◦[ns−1]◦[Nk/n
d]. Moreover, when r > s, the effectiveness

of Step 5 is justified by the following proposition:

Proposition 4. We assume that

E(Fqk )n = 〈S〉 × 〈T 〉 ∼= Z/nrZ × Z/nsZ (1 ≤ s < r)

〈P 〉 = 〈nr−1S〉,

where S and T are generators of orders nr and ns, respectively. Then, in Step 5
of Procedure 4, the probability of obtaining α �= 1 is 1− 1/n.

Proof. Since Nk

nr+1 = ns−1 · NK

nd , we have

f = (φ − 1)r−s ◦ [Nk/n
r+1] = (φ − 1)r−s ◦ [ns−1] ◦ [Nk/n

d].

The map f : E(Fqk ) −→ E(Fqk) is an abelian group homomorphism and it
preserves the uniform distribution. Moreover, its image is isomorphic to Z/nZ×
Z/nZ. (See Theorem 1.) Thus the probability of finding Q ∈ E(Fqk ) such that
en(P, f(Q)) �= 1 is

#E[n]−#〈P 〉
#E[n]

=
n2 − n

n2
= 1− 1

n
. ��

Finally, from the considerations above, it follows that the probability of suc-
cess in Procedure 4 is approximately one and that it is completed in probabilistic
polynomial time in k log q. (See Section 5.2. for more details.)

5 Optimizing the MOV Algorithm for General Elliptic
Curves

In this section, we actually realize the MOV algorithm for general elliptic curves
under Assumption 1, using the results obtained in the previous sections.
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5.1 Description of an Optimized MOV Algorithm

The MOV algorithm is completed, based on the results in previous sections, as
follows:

Algorithm 2 (An Optimized MOV Algorithm)

Input: An elliptic curve E, a base point P ∈ E(Fq) and R ∈ 〈P 〉.
Output: An integer l such that R = [l]P .
Step 1: Determine the minimum positive integer k such that qk ≡ 1 mod n.
Step 2:

(2-1) Compute N1 = #E(Fq).
(2-2) Compute Nk = #E(Fqk ) from N1, and d = vn(Nk).
(2-3) Execute N Miller to obtain the pair (r, s). If r = s, go to (2-5).
(2-4) :

(2-4-1) Choose Q ∈ E(Fqk ) randomly.
(2-4-2) Compute Q′ = [Nk/n

s+1]Q. If Q′ = O, go to (2-4-1). Other-
wise, compute Q′′ = (φ− 1)Q′.

(2-4-3) If Q′′ �= O, compute α = en(P,Q′) and go to (2-6).
(2-5) :

(2-5-1) Choose Q ∈ E(Fqk ) randomly.
(2-5-2) Compute Q′ = (φ− 1)r−s ◦ [Nk/n

r+1]Q.
(2-5-3) Compute α = en(P,Q′). If α = 1, go to (2-5- 1).

(2-6) Store Q′ and α.
Step 3: Compute β = en(R,Q′).
Step 4: Compute l, the discrete logarithm of β to the base α in F ∗

qk .

N Miller :

1) Pick V,W ∈ E(Fqk) randomly.
2) Compute V ′ = [Nk/n

d]V and W ′ = [Nk/n
d]W .

3) Compute ord(V ′), ord(W ′) and set r =max{vn(ord(V ′)), vn(ord(W ′))}.
4) Compute δ = enr (V ′,W ′) and its order ns = ord(δ).
5) If r + s = d, then return (r, s). Otherwise, go to 1).

5.2 Success Probability and Running Time

We consider the success probability and running time of Algorithm 2.

– Success Probability:
1. the success probability in N Miller is approximately (1 − 1/n)2. (See
Section 4.2.)

2. the success probability in Step (2-4) is approximately 1− 1/n. (See Sec-
tion 4.3.)

3. the success probability in Step (2-5) is approximately 1− 1/n. (See Sec-
tion 4.3.)

Therefore, once we determine the value k in Step 1, the success probability
of the rest of the reduction (i.e. Step 2 and Step 3) is approximately one.
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– Running Time:
We assume that the usual multiplication algorithms are used, so that multi-
plying two elements of length N takes time O(N2). We estimate the running
time of the following major computation.
1. Computation of #E(Fq) using the Schoof-Elkies-Atkin algorithm and its
variants (in Step (2-1)): this procedure requires O(log6 q).

2. Picking a random point on E(Fqk ): this procedure requires O(k3 log3 q).
3. Computation of Q′ (and V ′, W ′): computation of Q′ in Step (2-4-2)
requires O((logNk)(k log q)2) = O((k log q)(k log q)2) = O(k3 log3 q),
where Nk = #E(Fqk ). Similarly, computation of V ′ and W ′ requires
O(k3 log3 q). Computation of Q′ in Step (2-5-2) requires
O(k3 log3 q + (r − s)(log q)(k log q)2) = O(k3 log3 q).

4. Computation of the Weil pairing en(P,Q′): this procedure requires
O(k3 log3 q + (log n)(k log q)2) = O(k3 log3 q + k2 log3 q) = O(k3 log3 q).
Similarly, computation of the Weil pairing enr (V ′,W ′) in N Miller re-
quires O(k3 log3 q + (r logn)(k log q)2) = O(k3 log3 q).

Also, each procedure in Step 2 and Step 3, except the above, require at most
O(k3 log3 q). Therefore, once we determine the value k in Step 1, the rest
of the reduction (i.e. Step 2 and Step 3) is completed in polynomial time in
k log q, more precisely, O(k3 log3 q + log6 q).
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Appendix A (Proof of Lemma 1)

Proof of Lemma 1. The proof is completed by induction on i.
The case i = 0 is trivial. We consider the case i = 1. Set S′ := f (1)(S) =

(φ− 1)S and T ′ := f (1)(T ) = (φ− 1)T . We first show that the orders of S′ and
T ′ are nr−1 and ns, respectively. Clearly, nr−1S′ = (φ− 1)(nr−1S) = O. Since

njS′ = O ⇔ (φ− 1)(njS) = O ⇔ njS ∈ 〈P 〉 = 〈nr−1S〉,
it follows that j ≥ r − 1. Thus, the order of S′ is nr−1. Also, clearly, nsT ′ =
(φ − 1)(nsT ) = O. To prove that the order of T ′ is ns, it is sufficient to show
that njT ′ �= O for any j < s. Suppose on the contrary that njT ′ = O, then
we have njT ∈ 〈P 〉 = 〈nr−1S〉. This contradicts the assumption that S and T
are algebraically independent. We next show that S′ and T ′ are algebraically
independent. Suppose on the contrary that there is a non-trivial relation

nm(anr−1−sS′ + bT ′) = O, (GCD(a, n) = 1, GCD(b, n) = 1, 0 ≤ m < s).

(Note that any non-trivial relation can be expressed as above since the orders of
S′ and T ′ are nr−1 and ns, respectively.) Then we have

nm{anr−1−s(φ−1)(S) + b(φ−1)(T )}=O ⇔(φ− 1)(nm(anr−1−sS + bT )) = O

⇔ nm(anr−1−sS + bT ) ∈ 〈P 〉 = 〈nr−1S〉.
Therefore, there is some c ∈ Z/nZ such that nm(anr−1−sS + bT ) = cnr−1S.
The multiplication by ns−m on the both sides of the above equation induces
anr−1S = O, which is a contradiction since the order of S is nr and GCD(a, n) =
1.
Assume that the statement of the lemma is true for i− 2 and i− 1. We first

show that the orders of f (i)(S) and f (i)(T ) are nr−i and ns, respectively. From
the induction hypothesis that f (i−1)(S) has order nr−i+1 and that r− i+1 > s,
we can represent it in the form

f (i−1)(S) = ani−1S + bT, (GCD(a, n) = 1, b ∈ Z/nsZ).

Therefore, we have

nr−if (i)(S) = nr−i(φ− 1)f (i−1)(S)
= nr−i(φ− 1)(ani−1S + bT )
= (φ− 1)(anr−1S + bnr−iT )
= (φ− 1)(anr−1S) = O.

(Note that nr−iT = O since we now consider the case i ≤ r − s ⇔ s ≤ r − i.)
Also, if njf (i)(S) = O, then

(φ− 1)(njf (i−1)(S)) = O ⇔ njf (i−1)(S) ∈ 〈P 〉 = 〈nr−1S〉.
It follows that j+1 ≥ r−i+1⇔ j ≥ r−i since nj+1f (i−1)(S) = O. Thus, the or-
der of f (i)(S) is nr−i. On the other hand, from the induction hypothesis that the
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order of f (i−1)(T ) is ns, it follows that nsf (i)(T ) = (φ−1)(nsf (i−1)(T )) = O. To
prove that the order of f (i)(T ) is ns, it is sufficient to show that njf (i)(T ) �= O
for any j < s. Suppose on the contrary that njf (i)(T ) = O for some j < s, then
we have

nj(φ− 1)f (i−1)(T ) = O ⇔ njf (i−1)(T ) ∈ 〈P 〉 = 〈nr−1S〉.
Therefore, nj+1f (i−1)(T ) = O, from which it follows that j + 1 ≥ s. Thus, we
obtain j = s − 1 (note that j < s), and furthermore, ns−1f (i−1)(T ) = anr−1S
for some a ∈ (Z/nZ)×. Then we have

ns−1f (i−1)(T ) = anr−1S ⇔ (φ− 1)(ns−1f (i−2)(T )) = anr−1S,

and it follows that

φ(ns−1f (i−2)(T )) = ns−1f (i−2)(T ) + anr−1S. (2)

Thus we have

O = ns−1f (i)(T )
= ns−1(φ− 1)2(f (i−2)(T ))
= ns−1(φ2 − 2φ+ 1)(f (i−2)(T ))
= ns−1{(t− 2)φ(f (i−2)(T )) + (1− q)f (i−2)(T )} (since φ2 = tφ− q)
= (t− 2){ns−1f (i−2)(T ) + anr−1S}+ (1− q)(ns−1f (i−2)(T )) (since (2))
= (t− 1− q)(ns−1f (i−2)(T )) + (t− 2)anr−1S

= (t− 2)anr−1S,

where the last equality follows from the assumption that n|#E(Fq) = 1 + q − t
and that the order of f (i−2)(T ) is ns. Thus, we obtain t − 2 ≡ 0 mod n since
a ∈ (Z/nZ)×. Therefore, it follows that q − 1 ≡ 0 mod n. This contradicts the
assumption that n � |q − 1.
We next show that f (i)(S) and f (i)(T ) are algebraically independent. (This

is proved similarly as in the case i = 1.) Suppose on the contrary that there is a
non-trivial relation

nm{anr−i−sf (i)(S) + bf (i)(T )} = O

(GCD(a, n) = 1, GCD(b, n) = 1, 0 ≤ m < s).

(Note that the orders of f (i)(S) and f (i)(T ) are nr−i and ns, respectively, and
that r − i ≥ s.) Then we have

nm(φ− 1)(anr−i−sf (i−1)(S) + bf (i−1)(T )) = O

⇔ nm(anr−i−sf (i−1)(S) + bf (i−1)(T )) ∈ 〈P 〉 = 〈nr−1S〉.
Therefore, the multiplication by ns−m on the above last formula induces

ns{anr−i−sf (i−1)(S) + bf (i−1)(T )} = O

⇔ anr−if (i−1)(S) = O,

which is a contradiction since f (i−1)(S) has order nr−i+1 and GCD(a, n) = 1.
The proof is completed. ��
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