
Optimizing the Nominal Introduction Rule in

(Hyper)Tableau Calculi

Boris Motik, Rob Shearer, and Ian Horrocks

Oxford University Computing Laboratory

1 Introduction

A tableau calculus for SHIQ has been known for some time, and it forms the
basis for several highly successful implementations [2, 9, 10]. Extending this cal-
culus to SHOIQ, however, was notoriously difficult due to an interaction be-
tween nominals, inverse roles, and number restrictions, which results in (partial)
loss of the forest-model property for models of SHOIQ knowledge bases. In this
paper, we analyze the problems that arise from this combination of features and
present an overview of two solutions.

The first solution, described in [4], extends the SHIQ calculus with an NN-

rule that extends the non-forest-like portion of a model with new individuals.
Applications of this rule can be highly nondeterministic, however, and can sub-
stantially increase the size of the generated models, which can lead to inefficiency.

We present an alternative solution based on a new NI-rule. Our approach
does not introduce new individuals; instead, existing individuals are incorporated
into the non-forest-like portion of the model. We implemented our solution in
HermiT.1 As we discuss in [8], this approach seems to work well in practice.

2 Preliminaries

To show that a description logic knowledge base K = (R, T ,A) is satisfiable, a
tableau algorithm constructs a sequence of ABoxes A = A0,A1, . . . ,An called
a derivation, where each Ai is obtained from Ai−1 by an application of one
inference rule.2 The inference rules make the information implicit in the axioms
of R and T explicit, and thus evolve the ABox A towards a (representation of a)
model of K. The algorithm terminates either if no inference rule is applicable to
some An, in which case An represents a model of K, or if An contains an obvious
contradiction, in which case the model construction has failed. The following
inference rules are commonly used in DL tableau calculi.

– ⊔-rule: Given (C1 ⊔ C2)(s), derive either C1(s) or C2(s).
– ⊓-rule: Given (C1 ⊓ C2)(s), derive C1(s) and C2(s).

1 http://web.comlab.ox.ac.uk/oucl/work/boris.motik/HermiT/
2 Some formalizations of tableau algorithms work on completion graphs, which have a

natural correspondence to ABoxes.

– ∃-rule: Given (∃R.C)(s), derive R(s, t) and C(t) for t a fresh individual.

– ∀-rule: Given (∀R.C)(s) and R(s, t), derive C(t).

– ⊑-rule: Given a GCI C ⊑ D and an individual s, derive (¬C ⊔ D)(s).

– ≤-rule: Given ≤ n R.C(s), R(s, t0), ..., R(s, tn), and C(t0), ..., C(tn), choose
ti and tj for some 0 ≤ i < j ≤ n and merge ti and tj .

The individuals present in the original ABox A are called named individuals,
and they can be connected by role assertions in an arbitrary way. The individuals
introduced by the ∃- and ≥-rules are called blockable individuals. For example, if
∃R.C(a) is expanded into R(a, s) and C(s), then s is a blockable successor of a.
Descendant is the transitive closure of the successor relation. It is not difficult
to see that no SHIQ tableau inference rule can connect s with an existing
element of A other than a: the individual s can participate only in inferences
that derive an assertion of the form D(s) or create a new successor of s. Hence,
each ABox A′ derived from A can be seen as a “forest”: each named individual
can be arbitrarily connected to other named individuals and to a tree of blockable
successors. The concept label LA(s) is defined as the set of all concepts C such
that C(s) ∈ A, and the edge label LA(s, s′) as the set of all atomic roles such
that R(s, s′) ∈ A.

The ≤-rule requires that we merge two individuals s and t. As described in
[3], simply replacing one individual with the other in all assertions can lead to
nontermination. Instead, when t is merged into s, all assertions involving descen-
dants of t are removed; this process is called pruning. In order to avoid “circular
pruning”, tableau algorithms never merge an individual into its descendant.

A näıve application of the tableau rules does not terminate if the TBox
contains existential quantifiers in cycles: given a TBox T = {⊤ ⊑ ∃R.⊤}, näıve
applications of the ∃-rule produce an infinite chain of blockable individuals. To
ensure termination is such cases, tableau algorithms employ blocking [5]. DLs
such as SHIQ and SHOIQ allow for inverse roles and number restrictions,
which require pairwise blocking [5, 7]: given a strict ordering ≺ on the individuals
of an ABox A, for s′ and t′ any individuals and s and t blockable successors of
s′ and t′, respectively, in A, t blocks s if and only if t ≺ s, LA(s) = LA(t),
LA(s′) = LA(t′), LA(s, s′) = LA(t, t′), and LA(s′, s) = LA(t′, t); an individual
s is blocked if it is blocked by another individual t or if it is a successor of a
blocked individual. In tableau algorithms, the ∃- and ≥-rules are applicable only
to nonblocked individuals, which ensures termination: the number of different
concept and edge labels is exponential in |K|, so an exponentially long branch in
a forest-like ABox must contain a blocked individual, thus limiting the length of
each branch in an ABox. Let A be an ABox to which no tableau inference rule
is applicable, and in which s is blocked by t. We can construct a model from A
by unraveling—that is, by replicating the fragment between s and t infinitely
often. Intuitively, blocking ensures that the part of the ABox between s and s′

“behaves” just like the part between t and t′, so unraveling indeed generates a
model. If our logic were able to connect blockable individuals in a non-tree-like
way, then unraveling would not generate a model.

a

A

∃R.B

s1

B

∃R.C

s2

C

∃S.{c}

R R

b

A

∃R.B

s3

B

∃R.C

s4

C

∃S.{c}

R R

c

S

S

a

A

∃R.B

s1

B

∃R.C

s2

C

∃S.{c}
R

R

b

A

∃R.B

s3

B

∃R.C

R

R

c
S

(a) Non-Tree-Like Structures due to Merging

a

∃R.A

B

b

A

∃R.A

∃S.{a}

c

A

∃R.A

∃S.{a}

d

A

∃R.A

∃S.{a}

R

S

R

S

R

S

(b) Blocking and Unraveling

Fig. 1: Problems caused by nominals. Named individuals are shown in black,
blockable individuals in white, and blocking is indicated with a dashed line.

3 Nominals, Inverse Roles, and Number Restrictions

We now discuss the difficulties that arise when tableau calculi are extended to
handle nominals, inverse roles, and number restrictions. We summarize both
the original solution presented in [4], as well as our novel approach, which we
incorporated into our hypertableau calculus.

3.1 The Main Problems

There are two primary problems that must be addressed when extending any of
the known SHIQ tableau calculi with nominals.

Nonforest models. Nominals can make ABoxes non-forest-like, as the follow-
ing simple example demonstrates.

A1 = { A(a), A(b) }
T1 = { A ⊑ ∃R.B, B ⊑ ∃R.C, C ⊑ ∃S.{c} }

(1)

Successive rule applications on A1 and T1 can produce the ABox A1

1 shown
in the left-hand side of Figure 1a. This ABox is clearly not forest-shaped: the
two role-paths in A1

1 start at the named individuals a and b, and end in a named
individual c. If role relations between blockable individuals remain forest-like,
however, termination of model construction can be ensured easily. Some DLs
that include nominals produce only such extended forest-like ABoxes, but the
property is lost if the DL also includes both inverse roles and number restrictions
[3].

Assume now that we extend T1 with the axiom ⊤ ⊑ ≤ 1 S−. On A1

1, this
forces us to merge s2 and s4. Mergine s4 into s2 produces the ABox A2

1
shown

in the right-hand side of Figure 1a. The assertion R(s3, s2) makes the blockable
portion of A2

1
non-forest-shaped. By extending the example, it is possible to use

nominals, inverse roles, and number restrictions to arrange blockable individuals
in cycles. This loss of forest-shaped models prevents the use of blocking and
pruning, thus invalidating the standard termination arguments.

a s1 s2

b s3 s4

c

a s1 s2

b s3 s4

c

a s1

s2

b s3

c

Fig. 2: The Introduction of Root Individuals

Blocking and unraveling. Even if the blockable individuals in a tableau main-
tain a forest structure, nominals can prevent the successful application of block-
ing and unraveling. Consider the following knowledge base.

A2 = { A(a), (∃R.B)(a) }

T2 =

{

A ⊑ ∀R−.⊥, B ⊑ ∃R.B ⊓ ∃S.{a},
⊤ ⊑ ≤ 1 R−, ⊤ ⊑ ≤ 3 S−

}

(2)

This knowledge base contains an individual a that can have no R−-neighbors,
and that serves as the root of an infinite chain of individuals, each of which must
be an S−-neighbor of a.

A tableau expansion of A2 and T2 would produce the ABox A1

2
shown in

Figure 1b. The individual d is blocked in A1
2 by the individual c, so the derivation

terminates. Note that the last axiom from T2 is satisfied: a is the only individual
in A1

2
that has S−-neighbors and it has only three such neighbors. To construct a

model from A1
2, we unravel the blocked parts of the ABox—that is, we construct

an infinite path that extends past d by “duplicating” the fragment of the model
between c and d an infinite number of times. This, however, creates additional
S−-neighbors of a, which invalidates the last axiom from T2; thus, the unraveled
ABox does not define a model of A2 and T2.

3.2 A Näıve Solution

To solve the above problems, we need to extend the arbitrarily interconnected
part of the ABox. To this end, in addition to named and blockable individu-
als, we introduce root individuals—freshly introduced individuals that can be
arbitrarily connected to named individuals and other root individuals. We ap-
ply the following test (*): if an ABox A contains assertions R(s, a), A(s), and
≤ n R−.A(a), with a a root or a named individual and s a blockable individual
that is not a successor of a, then we change s into a root individual.

Applied to A2
1, this condition changes the status of s2 and s4 from a blockable

individuals into a root individuals. After this change, only s1 and s3 are blockable
in A2

1
, so the ABox has the extended forest-like shape and we can apply blocking

and pruning as usual. This is schematically shown in Figure 2.
Promotion of blockable individuals to roots also elegantly solves the blocking

and unraveling problem. In A2 and T2, because a must satisfy an at-most restric-
tion of the form ≤ 3 S−, as soon as S(d, a) is derived, condition (*) is fulfilled
and we turn d into a root individual, which prevents premature blocking.

This solution, however, introduces another problem: the number of root in-
dividuals can now grow arbitrarily, as shown in the following example.

(3) A3 = { A(b) } T3 = { A ⊑ ∃R.A, A ⊑ ∃S.{a} ⊤ ⊑ ≤ 2 S }

b

ac

d

S

S

S

R

R

A

∃R.A

∃S.{a}

b

R

ad

S

S

R

b

R

ad

e

S

S

R

R
S

Fig. 3: A Yo-Yo With Root Individuals

On A3 and T3, rule applications can produce the derivation sequence shown in
Figure 3: after c and d are introduced as descendents of b, they satisfy condition
(*) so we change them into root individuals. Subsequently, the third axiom from
T3 is not satisfied, so we merge two neighbors of a; we choose to merge c into b.
Since d is now not a blockable individual, we cannot prune it. The first axiom of
T3 is not satisfied for d, so we must extend the ABox with a new successor e. This
fresh (blockable) individual also satisfies (*) and becomes a root individual. If we
continue to merge the R-neighbors of b into b, we can repeat the same inferences
forever by introducing an infinite number of root individuals as S−-neighbors of
a in the course of the derivation.

Even if only a finite number of root individuals were introduced as neighbors
for any given root individual, a different problem can cause the introduction of
an arbitrarily large number of root individuals. Consider the following knowledge
base:

A4 =

{

S(a, a),
∃R.B(a)

}

T4 =

{

B ⊑ ∃R.C, C ⊑ ∃S.D,

D ⊑ {a}, ⊤ ⊑ ≤ 1 S−

}(4)

Applications of the ∃-rule introduce two new blockable individuals, the second
of which satisfies (*) and thus becomes a root individual. The resulting ABox,
A1

4
, is shown in the left-hand side of Figure 4. Due to the inverse-functionality

of S, individuals a and c are merged. Both are root individuals, so neither is a
descendant of the other; hence, we can choose which of the two individuals to
merge into the other. Suppose we merge a into c. Then the blockable individual
b is pruned; the result is shown in the center of Figure 4. Due to pruning, the
existential ∃R.B is no longer satisfied, so applications of the ∃-rule produce two
more blockable individuals, the second of which again becomes a root individual.
The resulting ABox, shown in the right-hand side of Figure 4, is isomorphic to
A1

4
, and the same inferences can be repeated forever with fresh individuals.

3.3 The Existing Solution

To guarantee termination, the calculus from [4] uses an NN -rule that refines
condition (*). Assume that an ABox A contains assertions R(s, a) and A(s)
where s is a blockable individual that is not a successor of a root or named
individual a; furthermore, assume that a must satisfy an at-most restriction of

a

S

b

c

R

R

S

∃R.B

D

B

∃R.C

C

∃S.D

c
S

C

∃S.D

∃R.B

D

c

S

d

e

R

R

S

C

∃S.D

∃R.B

D

B

∃R.C

C

∃S.D

Fig. 4: A Caterpillar Example

the form ≤ n R−.A. If A already contains root individuals z1, ..., zn such that
⋃

1≤i≤n{A(zi), R(zi, a)} ∪ {zi 6= zj | 1 ≤ i < j ≤ n} ⊆ A, then the ≤-rule simply
merges s into some zi; no new root individual needs to be introduced. If A does
not contain such z1, ..., zn, the NN -rule nondeterministically guesses the exact
number m ≤ n of R−-neighbors of a that are members of A, generates m fresh
root individuals w1, ..., wm, and extends A with the assertions

{A(wi), R(wi, a) | 1 ≤ i ≤ m} ∪ {wi 6= wj | 1 ≤ i < j ≤ m} ∪ {≤ m R.A(a)}.

This allows the NN -rule to be applied at most once for each concept of the form
≤ n R−.A and each root individual, which ensures termination in the “yo-yo”
case: the number of neighbors introduced for each root individual is clearly finite.
The “caterpillar” case is avoided by requiring that, whenever two root individuals
are merged, the “newer” individual is always merged into the “older” one.

For example, Figure 5 shows applications of the NN - and ≤-rules to the ABox
A5 = { ∃R.∃R.{c}(a), ≤ 3 R−.⊤(c) }. In A1

5, shown in the left-hand side of the
figure, the named individual c has a blockable R−-neighbor and must satisfy
the restriction ≤ 3 R−.⊤. The NN -rule nondeterministically chooses whether to
introduce one, two, or three fresh root individuals; the parallel branches of the
derivation are shown in the center of the figure. The introduction of a single
individual, shown in the top branch of Figure 5, results in deterministic appli-
cation of the ≤-rule as the blockable individual b is merged into the fresh root
individual z1, shown in the upper right of the figure. For derivation paths on
which more than one fresh root individual is introduced, application of the ≤-
rule is nondeterministic: b can be merged into any of the new root individuals,
with each choice resulting in a new branch of the derivation. Such branching
can be costly in practice: all derivation paths must be fully explored in order to
identify an unsatisfiable knowledge base.

Although the NN -rule does ensure termination of the tableau algorithm, it
is a potential source of inefficiency in knowledge bases in which large numbers
appear within at-most concepts: an application of the NN -rule involving a con-
cept ≤ n R.C guesses among n different possible sizes for the neighbor set, and
subsequent applications of the ≤-rule must choose how to merge the new roots
with blockable individuals. In the case of just a single blockable neighbor, this

a

∃R.∃R.{c}

b

∃R.{c}
R

c

≤ 3R−.⊤
R

a

∃R.∃R.{c}

b

∃R.{c}

c

≤ 1R−.⊤
≤ 3R−.⊤

z1 a

∃R.∃R.{c}

z1

∃R.{c}

c

≤ 1R−.⊤
≤ 3R−.⊤

a

∃R.∃R.{c}

b

∃R.{c}

c

≤ 2R−.⊤
≤ 3R−.⊤ z1

z2

a

∃R.∃R.{c}

z1

∃R.{c}

c

≤ 2R−.⊤
≤ 3R−.⊤

z2

a

∃R.∃R.{c}

z2

∃R.{c}

c

≤ 2R−.⊤
≤ 3R−.⊤

z1

a

∃R.∃R.{c}

b

∃R.{c}

c

≤ 3R−.⊤
z1

z2

z3

a

∃R.∃R.{c}

z1

∃R.{c}

c

≤ 3R−.⊤ z2

z3

a

∃R.∃R.{c}

z2

∃R.{c}

c

≤ 3R−.⊤ z1

z3

a

∃R.∃R.{c}

z3

∃R.{c}

c

≤ 3R−.⊤ z1

z2

Fig. 5: An application of the NN -rule

results in a derivation tree with n2 branches. Furthermore, the introduction of
new root individuals can result in unnecessary processing and large models.

3.4 The NI -rule

As a replacement for the NN -rule described above, we introduce a new NI -
rule, which refines the generation of root individuals. Let us again consider the
ABox A containing assertions R(s, a) and A(s), and ≤ n R−.A(a), where s is a
blockable individual that is not a successor of the root or named individual a. In
any model of A, we can have at most n different individuals bi that participate in
assertions of the form R(bi, a) and A(bi). Hence, we associate with a in advance a
set of n fresh root individuals {b1, . . . , bn}; unlike the root individuals introduced
by the NN -rule, we do not assume that bi 6= bj . Instead of choosing some subset
of these individuals to introduce and relying upon the ≤-rule to merge them
with blockable neighbors, however, we promote blockable individuals to root
individuals directly: to turn s into a root individual, we nondeterministically
choose bj from this set and merge s into bj. In this way, the number of new
root individuals that can be introduced for a number restriction in the label
of an individual a is limited to n. An application of our NI-rule to the ABox
A5 = { ∃R.∃R.{c}(a), ≤ 3 R−.⊤(c) } is given in Figure 6. As with the NN -rule,
by exploiting a bound on the length of paths of blockable individuals in an
ABox, we can establish a bound on the number of root individuals introduced
in a derivation, which ensures termination of the algorithm.

a

∃R.∃R.{c}

b

∃R.{c}
R

c

≤ 3 R−.⊤
R

a

∃R.∃R.{c}

z1

∃R.{c}

c

≤ 3 R−.⊤

a

∃R.∃R.{c}

z2

∃R.{c}

c

≤ 3 R−.⊤

a

∃R.∃R.{c}

z3

∃R.{c}

c

≤ 3 R−.⊤

Fig. 6: An application of the NI-rule

4 A Hypertableau NI -Rule

We have extended the hypertableau calculus for SHIQ described in [7] and [6]
with the NI -rule in order to support nominals. We summarize here only the
aspects of the algorithm relevant to the new NI -rule; a complete discussion of
the hypertableau calculus for SHOIQ is given in [8]. Our reasoning procedure
consists of two phases: preprocessing and hypertableau reasoning.

4.1 Preprocessing

Our algorithm first preprocesses a SHOIQ knowledge base into an ABox and a
set of DL-clauses—implications of the form

∧n

i=1
Ui →

∨m

j=1
Vj , where Ui are of

the form R(x, y) or A(x), and Vj are of the form R(x, y), A(x), ≥ n R.C(x), or
x ≈ y. In fact, the preprocessing produces HT-clauses—DL-clauses of a certain
syntactic structure which guarantees termination of the model construction. Due
to lack of space, we leave the details of the transformation and the precise defi-
nition of HT-clauses to [8]. Roughly speaking, HT-clauses can have the form (5),
where Ri and Si are roles, Ai and Bi are atomic concepts, and Ci and Di are
either atomic concepts or concepts of the form ≥ n R.A or ≥ n R.¬A. Further-
more, ar is a function defined as ar(R, s, t) = R(s, t) and ar(R−, s, t) = R(t, s) for
R an atomic role and s and t individuals or variables.

∧

Ai(x) ∧
∧

ar(Ri, x, yi) ∧
∧

Bi(yi) ∧
∧

Oai
(yai

) →
∨

Ci(x) ∨
∨

Di(yi) ∨
∨

ar(Si, x, yi) ∨
∨

x ≈ yai
∨

∨

yi ≈ yj @x
≤n R.C

(5)

A simple transformation would encode nominals in DL-clauses using con-
stants: the axiom C ⊑ {a} could be translated into C(x) → x ≈ a. We prefer,
however to “push” all individuals from DL-clauses into the ABox; this avoids
the need to rewrite our clause set if individuals are merged. To this end, we
associate with each nominal {a} an atomic nominal guard concept Oa and add
the assertion Oa(a) to the ABox. Nominals are then encoded in DL-clauses
using a new variable ya which can bind only to the (single) member of the ap-
propriate nominal guard: the axiom C ⊑ {a} is translated into the HT-clause
C(x) ∧ Oa(ya) → x ≈ ya.

When formulating the NI -rule, we are faced with a technical problem: con-
cepts of the form ≤ n R.A are translated in our calculus into DL-clauses, which

makes testing the condition from Section 3.4 difficult. For example, an appli-
cation of the Hyp-rule to the third DL-clause in (3) (obtained from the axiom
⊤ ⊑ ≤ 2 S−.⊤) can produce an equality such as c ≈ b. This equality alone does
not reflect the fact that a must satisfy the at-most restriction ≤ 2 S−.⊤. To en-
able the application of the NI -rule, we introduce a notion of annotated equalities,
in which the annotations establish an association with the at-most restriction.

The translation of at-most concepts differs from the SHIQ case only in that,
instead of generating equalities yi ≈ yj , our SHOIQ transformation produces
annotated equalities yi ≈ yj @x

≤n R.C . For example, ⊤ ⊑ ≤ 1 R.⊤ is translated
into R(x, y1) ∧ R(x, y2) → y1 ≈ y2 @x

≤1 R.⊤. The annotation @x
≤1 R.⊤ does not

affect the meaning of the equality; it merely records its provenance, and we shall
discuss the usage of this provenance information shortly.

4.2 Hypertableau Reasoning

The hypertableau reasoning phase decides satisfiability of a set of HT-clauses C
and an ABox A.

Individuals In our algorithm, we call the individuals that occur in the input
ABox named. Furthermore, for a named individual a, the NI -rule might need to
introduce individuals that are unique for a, a role R, a literal concept B, and
some integer i; we represent such individuals as a.〈R, B, i〉. Since the NI -rule
might be applied to these individuals as well, we introduce the notion of root

individuals—finite strings of the form a.γ1.γn where a is a named individual
and each γℓ is of the form 〈R.B.i〉.

In standard tableau algorithms, the tree structure of the model is encoded in
the edges between individuals, which always point from parents to children. In
contrast, our algorithm encodes the parent-child relationships into individuals
themselves: it represents individuals as finite strings of the form s.i1, i2, . . . , in,
where s is a root individual and ij are integers. For example, a.2 is the second
child of the named individual a. Individuals with n ≥ 1 are called blockable.

ABoxes The hypertableau algorithm operates on generalized ABoxes, which
can contain renamings of the form a 7→ b where a and b are root individuals.
The relation 7→ in A must be acyclic, A can contain at most one renaming
a 7→ b for an individual a, and, if A contains a 7→ b, then a must not occur in
any assertion or (in)equality in A. An individual b is the canonical name of a
root individual a in A, written b = canA(a), iff a 7→∗

A b and no individual c 6= b

exists such that b 7→∗
A c, where 7→∗

A is the transitive-reflexive closure of 7→ in A.

Derivation Rules Table 1 specifies derivation rules that, given an ABox A and
a set of HT-clauses C, derive the ABoxes A1, . . . ,An. The main derivation rule
is similar to the one of the hypertableau calculus for first order logic [1]: given an
HT-clause

∧m

i=1
Ui →

∨n

j=1
Vj and an ABox A, the Hyp-rule tries to unify the

atoms U1, . . . , Um with a subset of the assertions in A; if a unifier σ is found, the
rule nondeterministically derives σ(Vj) for some 1 ≤ j ≤ n. For example, given
R(x, y) → ∃R.C(x) ∨ D(y) and an assertion R(a, b), the Hyp-rule derives either
∃R.C(a) or D(b). The ≥-rule deals with existential quantifiers: given ∃R.C(a),

Table 1: Derivation Rules of the Tableau Calculus

Hyp-rule

If 1. U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn ∈ C, and
2. a mapping σ of variables to the individuals of A exists such that
2.1 σ(x) is not indirectly blocked for each variable x ∈ NV ,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 := A∪ {⊥} if n = 0;
Aj := A∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥ n R.C(s) ∈ A,
2. s is not blocked in A, and
3. A does not contain individuals u1, . . . , un such that
3.1 {ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A, and
3.2 either s is blockable or no ui, 1 ≤ i ≤ n, is indirectly blocked in A

then A1 := A∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh distinct successors of s.

≈-rule
If 1. s ≈ t ∈ A (the equality can possibly be annotated), and

2. s 6= t

then A1 := mergeA(s → t) if t is a named individual, or t is a root
individual and s is not a named individual, or s is a descendant of t;
A1 := mergeA(t → s) otherwise.

⊥-rule
If s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A
then A1 := A∪ {⊥}.

NI -rule

If 1. s ≈ t @u
≤n R.B ∈ A or t ≈ s @u

≤n R.B ∈ A,
2. u is a root individual,
3. s is a blockable nonsuccessor of u, and
4. t is a blockable individual

then Ai := mergeA(s → canA(u.〈R, B, i〉)) for each 1 ≤ i ≤ n.

the rule introduces a fresh individual t and derives R(a, t) and C(t). The ≈-
rule deals with equality: given a ≈ b, the rule replaces the individual a in all
assertions with the individual b, and it introduces a renaming a 7→ b in order
to keep track of the merging. We take ≈ to have built-in symmetry; thus, a ≈ b

should also be read as b ≈ a. The ⊥-rule detects obvious contradictions such as
A(a) and ¬A(a), or a 6≈ a.

The NI -rule uses the provenance information on annotated equalities intro-
duced by applications of the Hyp-rule to identify blockable individuals which
must be replaced with root individuals due to at-most restrictions. Note that
the NI -rule is never applied to an annotated equality of the form s ≈ t @u

≤n R.B

if u is not a root individual, so such an equality can be eagerly simplified into
s ≈ t. The NI -rule, however, must be applied to s ≈ t @u

≤n R.B even if s = t;
hence, such an equality must be derived even though it is a logical tautology. Fi-
nally, if C is the translation of a DL knowledge base that does not use nominals,
inverse roles, and number restrictions, then the precondition of the NI -rule will
never be satisfied, so we need not keep track of annotations at all.

Rule Priority The NI -rule is given higher precedence than other rules: the
≈-rule can be applied to a (possibly annotated) equality s ≈ t in an ABox A
only if A does not contain an equality s ≈ t @u

≤n R.B to which the NI -rule is
applicable.

Derivations For a set of HT-clauses C and an ABox A, a derivation is a pair
(T, λ) where T is a finitely branching tree and λ is a function that labels the
nodes of T with ABoxes such that, for each node t ∈ T ,

– λ(t) = A if t is the root of T ,
– t is a leaf of T if ⊥ ∈ λ(t) or no derivation rule is applicable to λ(t) and C,

and
– t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are exactly the results of

applying one (arbitrarily chosen, but respecting the rule precedence) appli-
cable rule to λ(t) and C otherwise.

Theorem 1. Checking whether a SHOIQ knowledge base K is satisfiable can

be performed by computing the translation of K into a set of HT-clauses C and

an ABox A, and then checking whether some derivation for C ∪ A contains a

leaf node labeled with a clash-free ABox. Furthermore, such an algorithm can be

implemented in 2NExpTime in |K|.

5 Conclusion

In this paper, we analyzed the problems arising in tableau calculi due to an
interaction between nominals, inverse roles, and number restrictions. We also
presented a new hypertableau calculus for SHOIQ, which we implemented in
our reasoner HermiT. As we report in [8], our reasoner seems to perform well on
many practical problems.

References

1. P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In Proc. JELIA
’96, pages 1–17, Évora, Portugal, September 30–October 3 1996.

2. V. Haarslev and R. Möller. RACER System Description. In Proc. IJCAR 2001,
pages 701–706, Siena, Italy, June 18–23 2001.

3. I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description
Logic. In Proc. IJCAI 2001, pages 199–204, 2001.

4. I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ. In Proc.
IJCAI 2005, pages 448–453, Edinburgh, UK, July 30–August 5 2005.

5. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Descrip-
tion Logic SHIQ. In Proc. CADE-17, pages 482–496, Pittsburgh, USA, 2000.

6. B. Motik, R. Shearer, and I. Horrocks. A Hypertableau Calculus for SHIQ. In
Proc. of the 2007 Description Logic Workshop (DL 2007), pages 419–426, 2007.

7. B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in Description Logics
using Hypertableaux. In Proc. CADE-21, volume 4603 of LNAI, pages 67–83, 2007.

8. B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description
Logics. Technical report, University of Oxford, 2008. Submitted to an international
journal. http://web.comlab.ox.ac.uk/oucl/work/rob.shearer/HtShoiq.pdf.

9. B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner. Poster, In Proc. ISWC
2004, Hiroshima, Japan, November 7–11, 2004.

10. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. IJCAR 2006, pages 292–297, Seattle, WA, USA, 2006.

