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Zooplankton biomass and abundance estimation, based on surveys or time-series, is carried out

routinely. Automated or semi-automated image analysis processes, combined with machine-learning

techniques for the identification of plankton, have been proposed to assist in sample analysis. A dif-

ficulty in automated plankton recognition and classification systems is the selection of the number

of classes. This selection can be formulated as a balance between the number of classes identified

(zooplankton taxa) and performance (accuracy; correctly classified individuals). Here, a method is

proposed to evaluate the impact of the number of selected classes, in terms of classification perform-

ance. On the basis of a data set of classified zooplankton images, a machine-learning method

suggests groupings that improve the performance of the automated classification. The end-user can

accept or reject these mergers, depending on their ecological value and the objectives of the research.

This method permits both objectives to be equally balanced: (i) maximization of the number of

classes and (ii) performance, guided by the end-user.

I N T RO D U C T I O N

The study of zooplankton abundance and biomass distri-
bution is important, in order to understand marine eco-
systems. Although a routine task in many laboratories, it
still presents a practical challenge to marine scientists.
Furthermore, the temporal and spatial sampling scales
required to understand distribution (Mackas, 1984;
Steele, 1989) are incompatible with laborious sample
analysis using a microscope. In order to bring zooplank-
ton research to the same level of spatial and temporal
resolution as that of phytoplankton (Chl a), a wide range
of image analysis and automatic recognition methods
have been proposed (Benfield et al., 2007). Image analysis,
combined with automatic classification, offers a number
of advantages in terms of speed of analysis, replication
and error estimation (Culverhouse et al., 2003; Benfield
et al., 2007). Furthermore, it can achieve accuracies
(correctly classified rates) comparable with those achieved
by humans, for a number of classes (e.g. taxa, artifacts,

size-based groups), which are of ecological significance
(Culverhouse et al., 2003; Grosjean et al., 2004).

An exhaustive list of imaging devices and sample digi-
talizing approaches can be found in Culverhouse et al.
(2006) and Benfield et al. (2007). Once the samples have
been digitalized, image analysis is used to separate auto-
matically the different images of individuals present in
each sample. In this step, several measurements or fea-
tures are extracted to represent each of those individuals
(Table I). A comprehensive conceptual diagram of the
image analysis and posterior automated classification
process is provided by Fig. 7a of Benfield et al. (2007). In
the automated classification step, the user has to label
(classify) manually a representative fraction of the individ-
uals. These labeled individuals are used to build a classi-
fier (a computer algorithm or method). This classifier is
then automatically used on the remaining unlabeled indi-
viduals (thousands to millions of them). Such machine-
learning concepts are described in Alpaydin (2004).
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For both humans and machine-learning techniques,
there is a “trade-off ” between the number of classes to be
identified and classification performance (Culverhouse
et al., 2003). On the one hand, an increase in the number
of classes usually leads to a decrease in performance. It is
harder to distinguish between classes and easier to make
labeling mistakes; on the other hand, the aggregation of
groups can bring about an increase in performance. One
of the first challenges faced by the “end-user” who is
undertaking the labeling is whether to create a new group
for an individual or to use a previously defined one.
A large number of classes is desirable for several reasons:
(i) the more ecologically meaningful classes that can be
separated, the more the understanding of the system is
improved; (ii) particle biomass contribution should be
calculated using different conversion factors depending
on the group they belong to (Strathmann, 1967;
Wiebe et al., 1975; Alcaraz et al., 2003); (iii) in imaging
systems, there are particles (such as artifacts or bubbles),

whose contribution to biomass should be assumed to be
zero. However, should there be too many classes, the
classification error can be excessively high and the whole
process undermined. Therefore, during labeling, the
end-user seeks a balance between the number of classes
and accuracy. Such a search is undertaken manually, in a
lengthy and uncertain trial and error process.

Once the number of classes has been set, a classifier
is evaluated to identify the expected performance. At
the same time, the confusion matrix (CM) is generated
(Luo et al., 2004; Hu and Davis, 2006). A CM is a
graphical representation that compares the user classifi-
cation with the classifier classification, showing how the
error has been distributed (Table II). An end-user can
examine the incorrectly classified individuals in the
CM, to assess the conflicting classes and undertake
re-labeling. However, this leads to a manual “trial and
error” loop of building classifiers and CMs, i.e. aggre-
gating these conflicting classes, or labeling more individ-
uals, without any certainty of achieving an improved
performance. As such, it is not easy to decide which
classes to group and to envisage the impact of these
actions on the discrimination between classes. From a
human perspective, it may be difficult to establish
which classes can be differentiated and which could
cause confusion (for machine recognition). Humans
and machines do not necessarily utilize the same classi-
fication factors.

To the best of our knowledge, this class selection
problem has not yet been solved; it is left to the
end-user, in the published literature. Actual machine-
learning techniques are more concerned with merging
images that are similar in shape (clustering techniques),
than their meaning and performance (Donamukkala
et al., 2005). In plankton studies, morphologically
similar classes can be different from an ecological per-
spective and should not be aggregated. Therefore, the
best class grouping for an automatic classifier need not
necessarily be appropriate for an end-user to extract
meaningful information. A balance, taking both points
of view into consideration, is required.

We propose a method that combines human knowl-
edge with machine-learning techniques in order to
allow the end-user to determine if the performed label-
ing, in terms of number of classes, can be improved on
or not. The aim is to maximize both the performance
of the classifier and the number of classes with robust
and meaningful information for the end-user.
A machine-learning method provides the statistics of
performance and the number of classes, whereas the
end-user provides the ecologically meaningful infor-
mation and the initial number of classes.

Table I: Individual features: Morphological and
image measurements extracted by ZooImage,
using the image analysis software, ImageJ

Feature Description

ZooImage (ImageJ) features
ECD Equivalent circular diameter
Area Surface area
Mean Mean of the gray scale of the pixels
Skew The third-order moment, about the mean of the gray

scale
Kurt The fourth-order moment, about the mean of the gray

scale
StdDev Standard deviation of the gray scale of the pixels
Mode Mode of the gray scale of the pixels
Median Median of the gray scale of the pixels
Min Minimum of the gray scale of the pixels
Max Maximum of the gray scale of the pixels
IntDen Sum of the gray values of the pixels
XM Coordinate horizontal of the gray scale center of the

pixels
YM Coordinate vertical of the gray scale center of the pixels
Perim. Perimeter
Width Width of the rectangle, containing the individual
Height Height of the rectangle, containing the individual
Major Longest axis of the ellipsis, containing the individual
Minor Smallest axis of the ellipsis, containing the individual
Circ. Circularity
Feret Diameter of longest distance between the two points of

the individual
Environmental features
Temperature Surface temperature
Salinity Salinity of the sample
Depth Depth of the sample
Latitude Latitude of the sample
Longitude Longitude of the sample

Environmental features collected during the survey have been added
after image analysis to DataSet2.
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M E T H O D A N D R E S U LT S

Procedure

The methodology proposed consists of three steps, as
outlined below.

(1) The end-user distributes the extracted images of
individuals into all the groups, which can be visu-
ally identified (i.e. labeling). A classifier is trained
with this data set and the corresponding estimated
performance is used as a starting point, which will
be improved on subsequently. Any methodology
and tools for data acquisition preferred by the
expert can be used.

(2) All possible mergers of two classes, as a single class
(“a merger”), are evaluated. For each pair of
classes, a new data set is constructed, in which the
two classes are merged into a unique class,
whereas the remainder are left unchanged. A clas-
sifier is constructed from this new data set and its
performance is evaluated. The possible mergers
are ranked, based on their estimated performance
(e.g. accuracy). Optionally, the CM can be used to
reduce the number of mergers to be evaluated
using the classes with more misclassified

individuals’ counts above a certain threshold (e.g.
mean of non-zero misclassified; Table II). This
option significantly reduces computation time. Step
2 is automatically performed by a computer
program (Table III), which outputs a ranking
(Table IV) with all possible class configurations
(mergers of two classes) and their associated stat-
istics (see below). The Java program uses Weka API
machine-learning algorithms (Witten and Frank,
2005). In order to ensure reproducibility (Buckheit
and Donoho, 1995), a Java implementation of the
method is available from the ISG group webpage
(www.sc.ehu.es/ccwbayes/members/jafernandes/).

(3) The end-user evaluates the ranking and decides
which specific mergers to accept considering not
only the performance that can be achieved, but
also the ecological value and the objective of the
research. A new classifier, with end-user selected
mergers, is trained and evaluated. This new classi-
fier can be compared with those established in the
first step (see above) and in previous iterations. The
end-user can perform steps 2 and 3, repeatedly.

The method proposed relates to optimizing the
number of classes (class selection) and the classification

Table II: CM of the classifier before mergers evaluation for DataSet1

The main diagonal in the center represents the correctly classified individuals. The rest of the cells are the misclassified individuals. Columns show
the classifier classification and rows show the user labeled class present in the data set. The selected mergers by the end-user are displayed in gray.
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performance. Therefore, it can be applied to data from
any source and classified with different methods as long
as they are classified into different classes that can be
grouped without losing all the information (e.g. group-
ing different taxonomic levels). The method could be

run “manually” but the expert would be confronted
with hundreds of mergers to explore without previous
knowledge of the potential accuracy gain. Any merger
does not lead to an accuracy gain; in fact, there is a
high rate of mergers that decrease performance
(Table V). Automation and ranking of the results leave
only a limited number of mergers, with higher accuracy,
for the end-user to analyze; as opposed to the end-user
manual “trial and error” exploration without previous
knowledge of the potential performance gain.

The method is independent of any specific machine-
learning paradigm for classification or evaluation and
specific performance metric. The end-user can select
different classification paradigms and performance
metrics taking into account the specific requirements of
the study being undertaken (e.g. taxonomic groups,
compared with ecological impact). In our examples, a
Tree Augmented Naive Bayes classifier (TAN) was used
for classification (Friedman et al., 1997); this has a good
performance record, laying close to Random Forest,
proved to be a good classification algorithm for zoo-
plankton (Grosjean et al., 2004). Indeed, the TAN is
faster to be trained than Random Forest. The TAN
model considers probabilistic dependencies between vari-
ables, in the form of a tree structure. The tree structure
representation permits excellent computing performance,
providing an intuitive and transparent representation that
can be useful for the end-user to extract domain knowl-
edge. The use of TAN is employed for a faster mergers
evaluation. The final model can utilize any classification
paradigm (e.g. Random Forest).

Statistics to evaluate the goodness
of the new classifiers

In order to establish the expected error, the classifier
performance has to be assessed; this is accomplished by
dividing the user-labeled data set into two parts: train-
ing and evaluation. Depending on the selected evalu-
ation technique, this demarcation can be undertaken
once or several times, with different data sampling
techniques. A popular evaluation technique is “k-fold
cross-validation” (Stone, 1974; Geisser, 1975; Schaffer,
1993). Using this technique, the data are randomly
divided into k parts (folds). The classifier is trained and
evaluated k times, each time using a different fold for
evaluation and the rest for training. The classifier per-
formance is the mean of the results in the k-test folds.
The k results can be used to test if differences in per-
formance between the two different classifiers are stat-
istically significant or due to randomness (Bouckaert
and Frank, 2004). Although 10-fold and 20-fold has
been proved to be the best option, since the cross-

Table IV: Ranking of mergers with highest
accuracies for DataSet1, before any merger

Top 10 mergers iteration 1 User decision

66.5%, PRE: 5.1%, Oncaeidae with
Calanoida Lateral

X: One is Poecilostomatoida, the
other Calanoida

66.3%, PRE: 4.5%, Corycaeidae with
Poicilo Lateral

p
: Both are Poecilostomatoida

66.2%, PRE: 4.2%, Scratch with
Temoridae

X: Scratch is an artifact and
Temoridae is not

66.0%, PRE: 3.7%, Oncaeidae with
Poicilo Lateral

p
: Both are Poecilostomatoida

65.9%, PRE: 3.4%, Eucalanidae with
Calanoida Dorsal III

p
: Both are Calanoida

65.8%, PRE: 3.1%, Decapoda
Miscellaneous with Decapoda Zoea
Lateral

p
: Both are Decapoda

65.8%, PRE: 3.1%, Decapoda
Miscellaneous with Malacostraca
Larvae

X: One is Decapoda and the
other Malacostracea

65.7%, PRE: 2.8%, Decapoda Zoea
Lateral with Pisces

X: One is Decapoda the other
Pisces

65.7%, PRE: 2.8%, Decapoda Zoea
Dorsal with Gastropoda

X: One is Decapoda the other is
Gastropoda

65.6%, PRE: 2.5%, Decapoda
Miscellaneous with Malacostraca
Bulky

X: One is Decapoda and the
other Malacostracea

In each row, the accuracy, the PRE, the classes to be merged with the
user-decision are given.

Table III: Pseudocode of the method used to
describe the method

Method pseudocode

1: While User does not end mergers evaluation
2: Build classifier before mergers
3: Evaluate classifier
4: Calculate metrics (accuracy, . . .)
5: Save classifier metrics in mergers ranking
6: For all i[fCLASS 1, CLASS 2, . . ., CLASS n-1g
7: For all j[fCLASS iþ1, . . ., CLASS ng
8: If ((CM) and (CLASS i and CLASS in CM list)) or (not CM)

them
9: Reset data set to original without mergers
10: Merge CLASS i and CLASS j in data set
11: Build classifier with merged data set
12: Evaluate classifier
13: Calculate metrics (accuracy, . . .)
14: Save classifier metrics in mergers ranking
15: End If
16: End For
17: End For
18: Perform user selected mergers
19: End While

Pseudocode is not language-programming dependent; and it omits
programming details that are not relevant to specify the method. CM
represents if the use of confusion matrix has been selected or not.
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validation has to be performed hundreds of times,
5-fold has been considered sufficient to suggest the
mergers (Kohavi, 1995).
In order to assess the classifier performance, several

additional measures are used; percent reduction in error
(PRE), true positive per class (TP), false positive per
class (FP) and whether the classifiers’ accuracy is signifi-
cantly different (corrected paired t-test; Nadeau and
Bengio, 2003). However, this test is conservative and
can result in higher P-values than other less strict tests
(e.g. paired t-test). Accuracy, overall correctly classified, is

used as the main metric because it is a simple way of
assessing performance (Pazzani, 1996; Kohavi and John,
1997). However, the end-user can define other metrics
depending on the study objectives. Finally, the relevance
of a performance gain can be hard to understand. For
example, a 2% accuracy gain on an already high
accuracy (e.g. 90%) is not the same as with a low accu-
racy (e.g. 50%). This can be measured using the PRE
(Hagle and Glen, 1992). PRE¼ (100� (EB 2 EA)/EB),
where EB is error before mergers and EA error after
mergers. TP is the proportion of individuals that have

Table V: For each iteration, several statistics are presented after performing the end-user selected mergers

Merger evaluation DataSet1 DataSet2 DataSet3

Before Accuracy (%) 64.7 85.7 82
After first iteration Accuracy (%) 68.3 87.3 82.1

P-value original 0.585 0.078 0.976
PRE original (%) 10.2 4.7 0.6
#Mergers selected 4 5 4
#Mergers evaluated 666 276 435
Mergers# (%) 78.3 21.4 91
CPU-time 3:01:39 0:32:34 1:30:47
CPU-time CM 0:17:37 0:16:07 0:17:31
#Mergers evaluated CM 58 29 33

After second iteration Accuracy (%) 70.9 88.8 –
P-value previous 0.542 0.7 –
P-value original 0.395 0.006 –
PRE previous (%) 8.2 4.6 –
PRE original (%) 17.6 9 –
#Mergers selected 4 1 –
#Mergers evaluated 528 190 –
Mergers# (%) 74.7 63.7 –
CPU-time 1:57:40 0:17:45 –

After third iteration Accuracy (%) 73 – –
P-value previous 0.514 – –
P-value original 0.179 – –
PRE previous (%) 7.2 – –
PRE original (%) 23.5 – –
#Mergers selected 2 – –
Mergers# (%) 69 – –
CPU-time 1:41:29 – –

After fourth iteration Accuracy (%) 73.9 – –
P-value previous 0.426 – –
P-value original 0.699 – –
PRE previous (%) 3.3 – –
PRE original (%) 26.1 – –
#Mergers selected 1 – –
Mergers# (%) 16.9 – –
CPU-time 1:01:32 – –

After fifth iteration Accuracy (%) 74 – –
P-value previous 0.679 – –
P-value original 0.398 – –
PRE previous (%) 0.4 – –
PRE original (%) 26.3 – –
#Mergers selected 1 – –
Mergers# (%) 20.4 – –
CPU-time 0:40:37 – –

“Before” represents accuracies before performing any merge. The number of evaluated mergers is represented by “#Mergers”. Accuracy is the
overall accuracy after performing selected mergers. “P-value original” is the result of performing a paired t-test, with the original data set before any
merger, whereas “P-value previous” is the test but with the resulting data set of the previous iteration. The same with PRE that is provided both in
relation with the previous iteration data set and in relation with the original. “Mergers#” is the rate of mergers that instead of improving accuracy
reduces it. “CPU-time” is the computer time to evaluate the mergers. “CM” corresponds to statistics when using the confusion matrix to reduce the
mergers to be evaluated.
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been correctly classified as belonging to a class. FP is the
proportion of individuals that not being of a certain class
are incorrectly classified as being part of it.

Application examples

In order to illustrate the method, we have applied it to
three different data sets: a public data set (DataSet1)
available at the ZooImage webpage (www.sciviews.org/
zooimage) has been selected in order to permit repro-
ducibility. In addition, we have used two data sets
obtained at different imaging resolution (Table V).
DataSet2 has been established with zooplankton
samples scanned at 600 dpi; DataSet3 with 2400 dpi
images. Both data sets have been built from samples
obtained in the Bay of Biscay preserved in 4% borax
buffered formalin, then stained with eosin. Eosin

staining avoids the imaging of inorganic debris in the
image analysis step through image filters. Both data sets
were analyzed using ZooImage. The variables con-
sidered were those routinely extracted by ZooImage,
together with a limited number of environmental vari-
ables for DataSet2 (Table I). In DatSet1, 1639 individ-
uals were classified into 37 classes. For the DataSet2,
17803 individuals were classified into 24 classes. For
DataSet3, 6724 were classified into 30 classes (Table VI,
Fig. 1). The data sets are used for illustration purposes;
the method can be applied to data sets obtained with
any other methodology.

The evaluation of the new classifiers with class
mergers is shown in Tables V and VII. In DataSet1,
64.7% accuracy was obtained with the 37 classes. Out
of 666 possible two-class mergers considered, 145
(21.7%) showed an improvement in accuracy. The list of

Table VI: Number of individuals per class in the different data sets, before any merger

DataSet1 DataSet2 DataSet3

Number of individuals Classes Number of individuals Classes Number of individuals Classes

27 Bubble 467 Artifact 110 Artifact
50 Scratch 482 Small Marine Snow 97 Small Marine Snow
50 Shadow 1136 Marine Snow 97 Medium Marine Snow
50 Debris 2228 Small Copepoda 49 Large Marine Snow
50 Diatom 2063 Medium Copepoda 198 Small Copepoda
50 Fiber 2361 Large Copepoda 207 Copepoda multiple
50 Marine Snow 871 Multiple Copepoda 2288 Calanoida
50 Other Phytoplankton 1838 Euphausiacea 1189 Cyclopoida Oncaea
50 Calanoida Dorsal I 208 Decapoda Larvae 110 Cyclopoida Corycaeus
49 Calanoida Dorsal II 122 Decapoda Larvae II 548 Cyclopoida Oithona_sp
50 Calanoida Dorsal III 279 Polychaeta 86 Cyclopoida Oithona_nana
50 Calanoida Lateral 12 Polychaeta Larvae I 168 Harpaticoida Microsetella
50 Eucalanidae 31 Amphipoda 208 Harpaticoida Euterpina
39 Temoridae 209 Appendicularia 174 Appendicularia
50 Oithonidae 1123 Chaetognatha 115 Chaetognatha
39 Miraciidae 107 Doliolida 12 Euphausiacea
50 Corycaeidae 202 Siphonophorae 32 Decapoda Larvae
50 Oncaeidae 57 Hydroidomedusae 244 Cladocera
50 Poicilo Lateral 160 Stained Jelly (rests) 28 Nematoda
8 Sapphirinidae 17 Cephelopoda Larvae 250 Doliolid
50 Annelida 48 Pisces 20 Siphonophora
22 Cirripeda 200 Pisces Larvae 84 Hydroidomedusae
50 Cladocera 3043 Zooplankton small 142 Bivalvia Larvae
26 Decapoda Miscellaneous 539 Round zooplankton 18 Gastropoda
50 Decapoda Zoea Dorsal 58 Pteropoda
50 Decapoda Zoea Lateral 32 Polychaeta
50 Malacostraca Bulky 52 Copepod Egg I
50 Elongated Malacostraca 46 Copepod Egg II
21 Malacostraca Larvae 16 Fish Egg
22 Cnidaria 16 Diatom
37 Appendicularia
50 Chaetognatha
50 Elongated Egg
49 Round Egg
50 Protista
50 Gastropoda
50 Pisces
1639 37 17 803 24 6694 30

Stained Jelly class represents partial gelatinous individuals that can not be identified (See Fig. 1).
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the mergers, which resulted in a higher improvement in
accuracy, was evaluated by a human end-user who
accepted five mergers (Fig. 2). Several iterations were
performed until there were no further mergers accepted
by the user. After the third iteration, there was an 8.3%
accuracy gain, a PRE of 23.5%. However, the impro-
vement in accuracy may not be significant enough
(P , 0.20). In DataSet2, there is a 3.1% accuracy gain
after two iterations, a PRE of 9% and the classifier
with mergers was significantly improved (P , 0.05).
In DataSet3, there is a small accuracy gain of only
0.1% and the new classifier is not significantly different
from the previous one (P . 0.05).

D I S C U S S I O N

The proposed method consists of a semi-automated
investigation of possible mergers, which can balance both
objectives, i.e. the maximization of class number and the
performance. The exhaustive study of all possible class
combinations is computationally unfeasible, e.g. the
number of possible combinations for DataSet1 (37 classes)
is 3.74409 � 1043. The total number of class mergers
to be evaluated (two-classes mergers þ three-classes
mergers þ four-classes mergers þ . . . þ (n 2 1)-classes
mergers) can be calculated by means of Stirling numbers
of second kind (Abramowitz and Stegun, 1965):

Fig. 1. Images representative of each class presented in the original DataSet1. Bubble (A), Scratch (B), Shadow (C), Debris (D), Diatom (E),
Fiber (F), Marine Snow (G), Other Phytoplankton (H), Calanoida Dorsal I (I), Calanoida Dorsal II (J), Calanoida Dorsal III (K), Calanoida
Lateral (L), Eucalanidae (M), Temoridae (N), Oithonidae (O), Miraciidae (P), Corycaeidae (Q), Oncaeidae (R), Poicilo Lateral (S), Sapphirinidae
(T), Annelida (U), Cirripeda (V), Cladocera (W), Decapoda Miscellaneous (X), Decapoda Zoea Dorsal (Y), Decapoda Zoea Lateral (Z),
Malacostraca Bulky (AA), Elongated Malacostraca (AB), Malacostraca Larvae (AC), Cnidaria (AD), Appendicularia (AE), Chaetognatha (AF),
Elongated Egg (AG), Round Egg (AH), Protista (AI), Gastropoda (AJ) and Pisces (AK). See Table VI. Public available images from ZooImage
web page: www.sciviews.org/zooimage.
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X ¼
Pn

k¼0 Sðn; kÞ
� �

� 2 (excluding “not performing any
merger” and “merging in a unique class”). In this
expression, X is the number of possible combinations, n is
the number of classes to consider for possible mergers
and S(n, k) is broken down as

Sðn; kÞ ¼ 1

k!

Xk
i¼0
ð�1Þi k

i

� �
ðk � iÞn:

This number of combinations could be reduced if only
two-class mergers were evaluated in each iteration and

the process performed repeatedly:

X3
k¼n

k

2

� �
¼ n

2

� �
þ n� 1

2

� �
þ n� 2

2

� �
þ � � � þ 3

2

� �
:

As an example, the number of possible two-class mergers,
evaluated in the first iteration in DataSet1, is 666. If only
one merger is performed, the next iteration evaluates 630
mergers. However, if the end-user decides to perform four
mergers, this results in 33 classes in the next merging-
iteration, with 528 mergers to evaluate. In spite of this

Table VII: Classifier overall accuracy (correctly classified), TP rate and FP, per class in each classifier
(generated after “end-user” selected mergers, in each iteration)

Before mergers After iteration 1 After iteration 2 After iteration 3 After iteration 4 After iteration 5

Accuracy 0.647 0.683 0.697 0.73 0.739 0.74

PRE – 0.102 0.142 0.235 0.261 0.263

Classes TP FP TP FP TP FP TP FP TP FP TP FP

Bubble 0.593 0 0.556 0.002 0.63 0.001 0.63 0.003 0.593 0.003 0.481 0
Scratch 0.94 0.001 0.96 0.002 0.96 0.001 0.96 0.002 0.94 0.001 0.95 0.001
Shadow 0.94 0.004 0.86 0.002 0.9 0.001 0.84 0.001
Debris 0.48 0.009 0.54 0.006 0.54 0.009 0.56 0.006 0.52 0.006 0.52 0.009
Diatom 0.86 0.003 0.86 0.003 0.88 0.004 0.86 0.003 0.88 0.004 0.88 0.004
Fiber 0.8 0.006 0.82 0.008 0.71 0.022 0.73 0.025 0.75 0.022 0.77 0.025
Other Phytoplankton 0.58 0.01 0.52 0.01
Marine Snow 0.3 0.02 0.28 0.014 0.3 0.013 0.24 0.013 0.28 0.013 0.26 0.013
Calanoida Dorsal I 0.48 0.022 0.36 0.022 0.41 0.038 0.813 0.069 0.816 0.064 0.806 0.066
Calanoida Lateral 0.24 0.021 0.18 0.012
Calanoida Dorsal II 0.449 0.023 0.408 0.021 0.648 0.026
Temoridae 0.179 0.013 0.282 0.014
Calanoida Dorsal III 0.68 0.009 0.86 0.024 0.87 0.021
Eucalanidae 0.8 0.015
Oithonidae 0.8 0.012 0.72 0.011 0.6 0.01 0.48 0.008 0.62 0.006 0.73 0.006
Miraciidae 0.974 0.002 0.923 0.002 0.897 0.001 0.897 0.003 0.846 0.001
Corycaeidae 0.36 0.014 0.847 0.052 0.813 0.044 0.8 0.056 0.827 0.058 0.807 0.054
Oncaeidae 0.58 0.023
Poicilo Lateral 0.36 0.021
Sapphirinidae 0 0 0 0 0 0.001 0 0 0 0 0 0
Annelida 0.48 0.009 0.54 0.006 0.5 0.005 0.5 0.006 0.5 0.006 0.5 0.006
Cirripeda 0.227 0.004 0.318 0.005 0.273 0.006 0.273 0.003 0.227 0.003 0.318 0.004
Cladocera 0.82 0.004 0.86 0.006 0.82 0.004 0.84 0.004 0.84 0.004 0.84 0.004
Decapoda Miscellaneous 0.423 0.01 0.539 0.025 0.651 0.034 0.651 0.03 0.667 0.03 0.659 0.029
Decapoda Zoea Lateral 0.54 0.012
Decapoda Zoea Dorsal 0.6 0.011 0.56 0.009
Malacostraca Bulky 0.76 0.02 0.76 0.016 0.74 0.014 0.7 0.014 0.76 0.014 0.78 0.015
Elongated Malacostraca 0.88 0.008 0.9 0.008 0.92 0.006 0.9 0.004 0.9 0.005 0.9 0.004
Malacostraca Larvae 0.048 0.002 0.095 0.001 0 0.001 0.095 0.001 0 0.001 0.095 0.001
Cnidaria 0.636 0.003 0.591 0.005 0.636 0.004 0.591 0.006 0.545 0.005 0.591 0.006
Appendicularia 0.568 0.007 0.514 0.009 0.514 0.006 0.514 0.009 0.514 0.009 0.514 0.006
Chaetognatha 0.96 0.004 0.92 0.004 0.94 0.004 0.94 0.004 0.96 0.004 0.92 0.003
Elongated Egg 0.96 0.003 0.98 0.004 0.98 0.003 0.98 0.004 0.96 0.003 0.96 0.003
Round Egg 0.776 0.004 0.755 0.004 0.755 0.004 0.755 0.003 0.776 0.003 0.776 0.003
Gastropoda 0.88 0.004 0.84 0.004 0.86 0.004 0.88 0.003 0.86 0.004 0.88 0.004
Protista 0.94 0.007 0.94 0.005 0.94 0.006 0.94 0.005 0.92 0.004 0.96 0.005
Pisces 0.74 0.021 0.7 0.015 0.6 0.014 0.56 0.013 0.52 0.011 0.56 0.012

TP rate is the percentage of individuals classified in a class by the classifier, which belong to that class in the training set. FP is the percentage of
individuals classified as belonging to a class when they are not. TP and FP experiment low variation in classes not being merged and high
improvement in most of the merged classes. Figure 2 for selected mergers during each iteration.
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reduction in number of evaluations, it remains a compu-
tationally expensive task (several hours for DataSet1 first
iteration, Table V) that can be reduced using the CM to
find a good set of merger candidates instead of trying all
two-class mergers (,20 min, Table V). Occasionally,
more than one merger per iteration could lead to a lower
accuracy. However, this has never been observed in our
experiments and several mergers per iteration are selected
by the user to speed up the process.
The proposed method application presents a number

of benefits: (i) the end-user has a framework within
which to accomplish a “trade-off ” between the number
of classes and performance; (ii) the absence of monoto-
nicity between the number of classes and accuracy can
result in improved performance for more detailed data
sets. The suggestion of commencing with the most
detailed data set benefits from this lack of a strict

dependency; (iii) the user can avoid testing mergers that
actually decrease performance.

The particular objectives of each end-user’s study
have an impact on the decision of accepting or rejecting
mergers. However, the end-user faces the question of
whether the accuracy gains obtained after merging
classes are relevant or not. The proposed metrics (accu-
racy, PRE, TP, FP and the P-value) should help in
taking such decisions and to evaluate classifiers’ effec-
tiveness. The following example using DataSet1 illus-
trates a possible use of these metrics: the accuracy gain
is not significantly higher after the third iteration, so the
end-user could make use of the classifier obtained at
that step. However, the TP rate of Oithonidae and
Miraciidae improves with the classifier obtained after
the fifth iteration (Table VII). If these classes were
important for the end-user’s research, the decision

Fig. 2. Graphical representation of accepted mergers by the end-user in straight lines for each iteration. In dotted lines, some machine
proposed mergers rejected by the end-user.
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would be to select the classifier obtained after the fifth
iteration. Most of merged classes in all data sets present
significant improvements in TP and FP with little vari-
ations in the rest of the classes.
The aim of the proposed method is to reduce the

end-user’s uncertainty, by providing guidance to
balance the number of classes and the classification per-
formance. The end-user can initially separate all the
identifiable groups, check the decision in terms of auto-
matic classification and then evaluate the proposed
changes according to performance (accuracy, PRE, TP,
FP and significance of the improvements) and the
research objectives. Lastly, the method is independent of
any specific machine-learning technique, but sample
techniques are selected and a code implementation is
provided. Future work will focus on the automation of
mergers exploration and on the unbalanced nature of
zooplankton data sets.

S U P P L E M E N TA RY DATA

Supplementary data can be found online at http://plankt.
oxfordjournals.org.
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