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Abstract
This paper summarizes the presentations and discussions at a workshop held during the Fourth
International BCI Meeting charged with reviewing and evaluating the current state, limitations
and future development of P300-based brain–computer interface (P300-BCI) systems. We
reviewed such issues as potential users, recording methods, stimulus presentation paradigms,
feature extraction and classification algorithms, and applications. A summary of the
discussions and the panel’s recommendations for each of these aspects are presented.

Introduction

Described by Farwell and Donchin (1988), the P300-BCI is
an EEG-based BCI system that relies on a brain response
known as the P300 to allow individuals to communicate
without utilizing voluntary muscle activity. The P300, whose
attributes have been studied for four decades, is elicited by
rare, task-relevant events and is often recorded in what has
come to be called the ‘oddball’ paradigm (Donchin 1981).
The oddball paradigm requires applying a classification rule
to a random sequence of events so that each event belongs to
one of two categories, one of which is presented infrequently.
The participant is required to perform a task that cannot be
accomplished without categorizing the events. The P300-BCI
10 Both authors contributed equally to this work.

presents the participant with random intensifications of either
a row or a column in a matrix. Each cell of the matrix contains
a character or a symbol. The participant focuses attention
on the cell containing a character to be communicated. The
BCI system identifies the row and the column that elicited a
P300, and in this way the chosen character is identified (i.e. the
intersection of the row/column targets). Note that successful
use of the system does not require any training of the user.
Rare events in an oddball sequence elicit a P300 in just about
every subject (Fabiani et al 1987). However, as is true for
all event-related potentials (ERPs), P300 signals are subject-
specific and vary even between recording sessions of the same
subject. Therefore, to allow optimal and stable use, calibration
of spatiotemporal filters and classifiers is required to adapt the
P300-BCI to the individual brain signature of each user.
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Table 1. P300-BCI research in the disabled community 2006–10.

P300-BCI studies Subjects Diagnosis
Disability
level Stimuli

Online results
(for N
subjects)

Chance
level Task

Sellers and N = 3 ALS Moderate Visual 69% (N = 3) 25% Word
Donchin 2006 Auditory 61% (N = 3) selection

Visual + Auditory 65% (N = 3)

Sellers et al 2006 N = 16 ALS, stroke Moderate
to severe

Visual >75% (N = 9) 3% Character
selection

Piccone 2006 N = 5 ALS, stroke, spinal
cord injury, Guillain
Barre, multiple
sclerosis

Moderate
to severe

Visual 69% (N = 5) 25% Virtual object
movement

Hoffmann et al
2008

N = 5 Cerebral palsy,
multiple sclerosis,
ALS, traumatic brain
injury, post-anoxic
encephalopathy

Moderate
to severe

Visual 100%, (N = 4) 17% Image
selection

Kübler and
Birbaumer 2008

N = 11 ALS Moderate
to severe

Visual 66% (N = 11) 3% Character
selection

Nijboer et al 2008 N = 6 ALS Moderate
to severe

Visual 62% (N = 4). 2% Character
selection

Kübler et al 2009 N = 4 ALS Severe Auditory 13% (N = 4) 4% Character
selection

Silvoni et al 2009 N = 21 ALS Mild Visual 78% (N = 21) 25% Cursor
movement

Sellers et al 2010,
at press

N = 1 ALS Severe Visual >80% (N = 1) 1.3% Character
selection

Townsend et al
2010

N = 3 ALS Severe Visual 86% (N = 3) 1.3% Character
selection

In general, members of the panel agreed that an optimal
P300-BCI should be simple to operate, affordable, accurate,
and efficient for communication on a daily basis. In such
a case, we need to make a balance between technological
advancement and practical use in a real-world situation. In
the following paragraphs we will present the major challenges
of current P300-BCIs and the panel’s recommendations for
practical solutions.

Users

The goal of BCI research for the past three decades has
been to create a brain-controlled communication device for
individuals who have lost all voluntary muscle control but are
cognitively intact (locked-in). P300-BCI-related publications
have been dominated by results from young healthy adults
while reports from users with disabilities are limited (Sellers
and Donchin 2006, Piccione et al 2006, Kubler and Birbaumer
2008, Nijboer et al 2008, Silvoni et al 2009, Sellers
et al 2006b, 2010, Hoffmann et al 2008, Kubler et al 2009,
Townsend et al 2010). Table 1 presents a summary of
publications in which different P300-BCI paradigms were used
by small groups of patients with various levels of disabilities
resulting in a wide range of accuracy. The variability
in the classification accuracy may be due to diversity in
experimental designs, subject characteristics, or stimulation
paradigms and tasks. Current methods of optimizing BCI

systems to account for individual differences, again, rely on
data from a population dissimilar to the potential users. The
members of the panel suggested that further investigation
should be done to examine whether knowledge acquired from
healthy subjects could be generalized to patients with different
pathologies.

Most P300-BCI studies among the disabled community
have evaluated subjects diagnosed with amyotrophic lateral
sclerosis (ALS). Successful use of a P300-BCI for
communication over a two year period has been documented in
one individual severely disabled with ALS (Sellers et al 2010),
while another study indicated that some individuals with ALS
might be unable to use the P300-BCI due to challenges related
to disease progression (McCane et al 2009). Loss of ocular
motor function in late-stage ALS and vent-dependent patients
(Pinto and de Carvalho 2008, Mizutani et al 1990) suggests a
possible link between impaired vision and below chance level
of classification in these subjects. Although some attempts
to test auditory paradigms have been initiated (Kubler et al
2009), more research is needed to determine if an auditory
presentation would provide a reliable form of communication
for locked-in individuals with no eye movement.

The group recognized that the BCI community has
traditionally selected subjects based on the BCI system
capabilities and this approach may only benefit a very
limited population. Conversely, augmentative and alternative
communication (AAC) professionals select devices based
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on an individual’s physical capabilities, cognitive abilities,
and the needs of the user and caregiver. Improvements in
system performance, together with a reduction in complexity
(software operation and electrode application), and also
the need for ongoing technical support and training could
accelerate the use of the P300-BCI in a broader range of
disabled users.

Recording methods

Most of the current scalp EEG collection methods allow
efficient recordings, but require proper electrode application
(i.e. skin preparation, application of conductive gel, and
correct positioning of electrodes, etc). This could be a
challenge to caregivers and might cause discomfort to long-
term BCI users. The development of more user-friendly dry
electrodes (Taheri et al 1994, Fonseca et al 2007, Popescu
et al 2007, Gargiulo et al 2010) offers a more convenient way
for recording brain signals and may enhance the usability of
the P300-BCI system, as long as signal quality is comparable
(Searle and Kirkup 2000) with that of standard EEG wet
electrodes. Other than dry electrodes, efforts have been
made by researchers to develop tripolar concentric electrodes
with enhanced recording capability via advanced engineering
techniques (Koka and Besio 2007). Reported superiority of the
tripolar concentric electrode over the standard disc electrode
in capturing imagined motor activity (Besio et al 2008) and
source separation (Cao et al 2009) calls for the examination of
its performance in the P300 and other ERP-based BCI systems.

The performance of the P300-BCI depends on the quality
and amount of information acquired from the scalp surface
of the user. Previous exploratory work by Krusienski and
colleagues (2008) has identified an optimal subset of electrode
sites that could provide reliable and satisfactory classification
by a P300-BCI. The suggested 8-channel electrode set (Fz,
Cz, P3, Pz, P4, PO7, PO8, Oz) requires less preparation
time than the traditional 10–20 sets, and therefore appears
to be more practical for long-term home-use of a P300-
BCI (Vaughan et al 2006). However, it is possible that a
different montage would be required for patients with various
neuromuscular pathologies. The recommendation by the
members of the panel is to start with a full set of electrodes
according to the 10–20 system (covering all areas of head),
and then develop an individualized montage by drastically
reducing the number of required EEG channels while keeping
the classification rate optimal. Further discussion on the
relationship between number of EEG channels utilized and
classification performance will be addressed in the Feature
extraction and classification algorithms section.

Stimulus presentation paradigm

The P300-BCI system relies on an oddball paradigm to elicit
the P300. To date, there are three main visual paradigms
for the P300-BCI: The original, and most commonly used,
is the row/column paradigm (RC) (Donchin et al 2000,
Farwell and Donchin 1988), where the rows and columns
of a visual matrix are flashed in a random order while the

user attends to his/her desired selection within the matrix.
Another paradigm, the single cell paradigm (SC), simply
flashes each element of the matrix individually instead of
within a row or column. The SC paradigm elicits a
larger P300 (Guan et al 2004), but accuracy and speed of
communication are reported to be lower than that of RC
(Guger et al 2009). In the checkerboard paradigm (CB)
(Townsend et al 2010), groups of matrix elements are flashed
in a quasi-random pattern that controls for directly adjacent
flashes and double flashes (i.e. two consecutive flashes of
one single element within the matrix). A recent study with
the CB paradigm reported a better classification performance
when compared with the RC presentation (Townsend et al
2010). In addition to the type of visual presentation, other
parameters have been shown to influence performance, e.g.
flash rate (McFarland et al (at press)), matrix size (Sellers
et al 2006a), inter-stimulus interval (Sellers et al 2006a), and
stimulus intensity (Ma and Gao 2008).

The P300 is not modality specific and can also be elicited
by auditory or tactile stimuli (Donchin 1981), although the
visual paradigm is the primary choice for most P300-BCI
systems as it allows the presentation of multiple stimuli
simultaneously. However, for severely disabled individuals
who have impaired vision, a non-visual P300-BCI might be
of benefit. Recent work by Furdea and colleagues (Furdea
et al 2009) demonstrated the feasibility of BCI communication
based on the auditory evoked responses user performance
was relatively low when compared to visual P300-BCIs. In
another study, a multi-class auditory P300-BCI based on
spatially distributed auditory cues was presented (Schreuder
et al 2010). This paradigm was able to generate high accuracy
results by adding spatial information to the cue. However, the
information transfer rate was still low when compared to the
visual P300-BCI. Another attempt to develop a P300-BCI that
is independent of vision used a tactile paradigm that has two to
six vibratactile stimuli around the waist of subjects (Brouwer
and van Erp 2010). This paradigm resulted in 58% accuracy
for six possible selections and 73% for a binary selection,
again lower than the P300 visual paradigms.

As comparative data on P300-BCI visual paradigms are
limited; the panel advises further systematic comparisons of
CB, SC and RC, and other novel paradigms (Treder and
Blankertz 2010) be conducted in the future. Also, it is possible
to find a set of stimulation parameters that work best for one
paradigm may not generalize to the other visual paradigms.
The current recommendation of the panel is to allow the
selection of a specific visual paradigm and base parameters
based on user preference and performance. Development of
non-visual P300-BCIs are promising, but currently still in their
infancy. Continuous effort should be made to explore non-
visual paradigms for the P300-BCI, and testify their use in
patients with various levels of disabilities.

Feature extraction and classification algorithms

One major challenge in optimizing the performance of
the P300-BCI is enhancing the real-time detection of the
ERP elicited by the chosen stimuli. The process of real-
time detection consists of extraction of ERP features which
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best represent the user’s intentions and classification of the
extracted features into an appropriate output by the selected
algorithm.

Due to the high inter-trial variability and unfavorable
signal-to-noise ratio (SNR), ensemble averaging is commonly
performed to detect a reliable P300 or other task-related
potentials. The need for signal averaging results in a
tradeoff between speed and accuracy of communication. To
improve the information transfer rate, research has focused
on minimizing the amount of signal averaging required for
reliable detection of P300, moving toward the goal of single-
trial ERP detection. Single-trial ERP detection is known
to be challenging, as P300 potentials and/or other task-
related signal components are buried in a large amount of
noise (ongoing task-unrelated neural activities and artifacts).
The essential goal is to improve the SNR significantly, i.e.
to separate the task-related signal from the noise content.
Artifact removal is an important step before the extraction
of task informative features, i.e. the P300. Different methods
have been proposed to remove common sources of artifacts
in raw EEG signals such as eye movement (Mennes et al
2010), eye blink (Li et al 2006), muscle contraction (Gao
et al 2010) and body movement (Gwin et al 2010). Feature
extraction plays a key role in P300-BCI system operation.
Instead of modeling the entire ERP waveform, different
spatial and temporal filtering methods have been proposed by
researchers to extract the most representative ERP features,
components, or patterns that could best represent the user’s
intent. These includes methods based on orthogonal linear
transformation (Dien et al 2003), blind source separation (Xu
et al 2004, Li et al 2009a, Li et al 2009b), wavelet transform
(Quian Quiroga and Garcia 2003, Bostanov and Kotchoubey
2006) and other advanced techniques (Rivet et al 2009). These
advanced feature extractors reduce the dimension of the feature
space and capture the most distinctive information in a single-
trial ERP for subsequent binary classification.

Reliable P300-BCI operation requires accurate
classification of features extracted from the EEG signal.
Numerous studies have attempted to enhance the
classification algorithm by linear methods (Bostanov
2004, Krusienski et al 2006), nonlinear methods (Krusienski
et al 2006, Kaper et al 2004), neural network (Cecotti
and Graser (at press)), and a combination of classifiers
(Rakotomamonjy and Guigue 2008). While debate continues
about the best classification method for a P300-BCI system,
most current BCI designs pair up highly complex feature
extractors with a relatively simple linear classifier (Farquhar
2009). This arrangement is probably due to the preference
for simplicity and the belief that linear classification would be
sufficient after a decent feature extraction process (Muller et al
2003). For a practical P300-BCI with only eight channels,
stepwise linear discriminant analysis (SWLDA) has been
shown to provide the best overall performance over other
classification methods (Krusienski et al 2006). Thus, it has
been widely used in the P300-BCI community. However, in
the context of single-trial ERP classification, more channels
will be required to provide sufficient information for a either
an efficient feature extraction or a competitive classification

(Blankertz et al (at press)). To achieve high classification
accuracy with high dimensional spatiotemporal features,
regularization techniques for classifier have been proposed
(Blankertz et al (at press), Farquhar 2009, Tomioka and
Muller 2010) to avoid the degradation of performance due to
small sample-to-feature ratios. A recent report by Blantertz
et al (at press) compared the performance between SWLDA
and a regularized LDA using the shrinkage technique. Their
results showed a superior performance of shrinkage LDA over
SWLDA when the number of training samples is small.

The panel recommends that data preprocessing, feature
extraction and classification should not be regarded as
isolated processes. Too often researchers have tackled
each of these tasks separately while ignoring the inter-
relationship between them. Recent evidence suggested
that these tasks are not independent of each other and a
unified discriminative approach might provide a better overall
performance (Mirghasemi et al 2006, Farquhar 2009, Tomioka
and Muller 2010). Moreover, for successful implementation
of the practical home system, the panel suggests a systematic
examination of current advanced feature extraction and
classification methods under the framework of an ergonomic
BCI with minimal system complexity and a practical number
of recording channels (i.e. limited information).

Applications

BCI for languages with logographic writing system

Most BCI systems for assistive communication have focused
on spelling languages having an alphabetic writing system,
such as English and German. This approach can be easily
adapted for languages with other types of segmental writing
systems, e.g., Arabic, Devanagari, or a syllabary, e.g., Japanese
kana. However, languages with a logographic writing system,
such as Chinese, pose significant challenges to P300-BCI
systems since only a handful of the thousands of distinct
logograms in the writing system can be presented to the user
at any moment. While some progress has been made in
developing a P300 speller for Chinese (Jin et al 2010, Minett et
al 2010), further development is required to make P300-BCIs
accessible to individuals whose language has a logographic
writing system.

BCI as a switch and as an environmental control

Since the P300-BCI can use matrix entries with symbolic
meaning, the output can be used for many tasks. Although
communication may be foremost among these, environmental
control can provide additional quality of life benefits and can
be used in parallel with communication. The output can be
directed to assistive technology (AT) software such as word
prediction, standalone AT devices, or other environmental
control platforms. For several of these applications, software
interfaces may be defined that will perform adequately. Other
applications, such as interfacing with standalone AT devices
or environmental control devices designed for switch inputs,
may require a hardware interface which ideally would utilize
standard protocols and connections to provide easy setup

4
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Figure 1. A participant using the P300-based BCI with real-world objects on a multi-touch surface. Left: the spoon is being flashed by
surrounding the area underneath it with light; Right: a non-object flash.

(This figure is in colour only in the electronic version)

without customization. In a commercial BCI, such interfaces
(e.g. USB) could be built in, but for researchers investigating
a particular application, the multi-purpose BCI output device
(Thompson et al 2009) can be used to provide plug-and-play
switch, USB keyboard, and USB mouse outputs.

Novel applications of P300 BCIs

Using physical objects in an oddball paradigm, a P300-
BCI system reported by Yuksel et al (2010) allows users to
directly select their object of interest. Real-world objects were
randomly placed on a multi-touch surface, and areas of light
were flashed underneath and around the objects (figure 1).
The mean accuracy rate of 99% was achieved by 20
participants. This demonstration of a novel application of
the P300-BCI hints at a future scenario where physical objects
are overlaid with virtual flashes. For example, in a ‘smart
home’, a projector can highlight physical objects. Computer
vision techniques can be used to recognize objects from scenes
and select target objects for use in the P300 paradigm.

Conclusion

The P300-BCI appears to be the most commonly used BCI
system, and the only system for which regular home use by
locked-in patients has been reported. Despite its popularity
among researchers, it is apparent that many P300-BCI systems
must be improved before they can be considered as an
alternative communication device for individuals who are in
or near a locked-in state. In this paper, the panel has made
recommendations in different areas of P300-BCI operation to
optimize the speed, accuracy, consistency and convenience
of the current system. Further work in all these areas is
needed for P300-BCIs to be used more effectively in real-life
environments.
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