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ABSTRACT Acoustic seabed classification (ASC) is a fast and large-scale seabed sediment survey method.

In particular, combining it with an automated classifier can theoretically achieve fast automatic seabed

sediment classification. However, owing to the cost of sampling, a lack of labeled data for sediment

classification based on seabed acoustic images impedes the training and deployment of classifiers. Herein,

we use shallow-water, side-scan sonar images collected from the Pearl River Estuary combined with

deep learning to study sediment classification and optimization methods for a small dataset of seabed

acoustic images. In this paper, we applied different and deeper convolutional neural networks (CNNs) and

used grayscale CIFAR-10 for pretraining to achieve large-span parameter migration and improve model

performance. The best result in the experiment is a 3.459% error rate achieved by ResNet after fine tuning,

verifying the improvement brought by our fine tuning strategy and the deeper models used in such tasks. The

results of data enhancement based on generative adversarial networks (GANs) indicated that this method

can improve the accuracy of sediment classification; however, the effects of GANs are limited and they are

computationally expensive. Overall, our findings resolve, to an extent, the dilemma of using small datasets

of seabed acoustic images for sediment classification and provide a framework for future studies on sediment

classification, which has a certain significance in helping people better understand the seabed.

INDEX TERMS Acoustic seabed classification, side-scan sonar, deep learning, convolutional neural

network, pretraining, generative adversarial network.

I. INTRODUCTION

Inspired by the great success of deep learning (DL) in com-

puter vision and related fields, research on the applications of

DL to underwater imaging has also begun. There are twomain

types of underwater images—optical photographic images

and acoustic images—which typically include underwater

targets, seafloor topography, and seafloor sediments, among

others. Seabed sediment classification is used to investigate

the type and distribution of seabed sediments, which is of

great significance to marine geology and related research.

However, the traditional seabed sampling method is time-

consuming and expensive, and it is also difficult to cover

a large seabed area. Therefore, an effective-cost method for

seabed sediment classification is necessary.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

Acoustic seabed classification (ASC) has been studied for

a long time [1], and its basic principle is to realize classifi-

cation through the information contained in back-scattering

(BS) intensity. When sound waves are transmitted to the

seabed, they will undergo complex reflection and refraction

and return in the direction of the incident angle, which is the

BS intensity. It is usually related to surficial sediments prop-

erties, such as hardness, grain size, and roughness, which is

the basis of ASC [2]–[4]. At present, there are many pioneers

in the research of BS-based sediment classification, such as

the geoacoustic inversion method [5]–[9] and statistical algo-

rithms [10]–[14]. These studies have proved the effectiveness

of this method of ASC.

Side scan sonar (SSS), as a large-scale and rapid seabed

detection equipment, has been widely used in missions such

as seabed topography and geomorphology survey. The prin-

ciple of SSS involves transmitting dense beams to the seabed,

and receiving and recording the BS intensity through the
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transducer. Some researchers have studied the relationship

between SSS data and seabed sediments [15], and the appli-

cation research of seabed sediment classification based on

SSS images shows the effectiveness of this method [16]–

[18]. However, relying on manual operation when classifying

the sediments based on SSS images is a time-consuming

process. Therefore, the automatic seabed sediment classi-

fication method based on acoustic images has become a

research focus in related fields. Sediment classification based

on SSS or other acoustic data usually requires some known

samples or ground truthing, but such ground truthing is

usually very scarce because seabed sampling is expensive

and time-consuming. Therefore, it is difficult to construct

an automatic SSS-based sediment classification method with

small datasets.

There are many precedents in the field of sediment

classification which are based on seabed acoustic images

and use classic machine learning algorithms, such as sup-

port vector machines (SVMs) [19], decision trees [20],

k-means [18], [21], and back-propagation neural net-

works (BPNNs) [22]–[24]. Paired with a combination of

such machine learning algorithms and feature engineering,

the end-to-end training method of DL omits complex feature

engineering, rendering it more convenient in the application.

As a representative algorithm in DL, convolutional neural

networks (CNNs) have facilitated considerable achievements

in various fields, especially in computer vision, making it the

current mainstream method for processing image data.

As convolutional neural networks are excellent algorithms

for processing image data, they are suitable for dealing

with seabed acoustic images; and there have been multiple

studies in which CNNs were applied to sediment classifica-

tion [25], [26], target detection [27]–[31], and semantic seg-

mentation [32]–[34]. The results yielded have been favorable.

Compared with traditional algorithms, CNNs can automati-

cally learn data features without the need for feature engi-

neering and other preprocessing steps required by traditional

algorithms, and theoretically have better generalization and

application deployment capabilities. At present, CNNs have

made considerable development, especially deep CNNs with

better high-dimensional feature extraction capabilities have

been proposed and applied. However, as mentioned earlier,

there is usually a lack of sufficient labeled data in SSS-based

sediment classification tasks, a problem faced when applying

CNNs to the task of the current study. Compared with the

dataset that usually have thousands of samples in the field of

computer vision (such as ImageNet), our dataset is actually

very small, so this is a typical DL application based on small

dataset. Under such data conditions, what kind of CNNs can

achieve the best performance is not conclusive, so in the

experiment we test CNNs of different depths and complexity.

Besides, in this paper, we combine transfer learning and gen-

erative adversarial networks (GANs) in DL to optimize CNN-

based sediment classification under a small SSS dataset.

To the best of our knowledge, fine tuning has already been

applied in sonar image recognition and target detection [35]–

[38], but it is rarely used for sediment classification based

on SSS data. Therefore, we believe that it is necessary to

verify its feasibility for such applications. However, due to the

lack of mature relevant datasets, we can only focus on some

existing datasets of computer vision, such as CIFAR-10 [39].

The CIFAR-10 dataset contains 10 classes of images, such as

cars, airplanes, whereas the content of our SSS image dataset

is of three types of sediments, and there is almost no similarity

between the two datasets. There is little precedent for the

transfer of model parameters between two such extremely

different datasets in sediment classification based on a small

SSS dataset; thus, we termed it fine tuning based on large-

span parameter migration (LSPM) and verified its utility.

Data enhancement is derived from the field of data opti-

mization. In addition to performing a certain geometric trans-

formation on the original data, a generation model such as a

GAN [40], is also a means by which simulation data may be

generated to expand the dataset. At present, some GANs have

been applied in the study of seabed acoustic images for data

enhancement, such as the generation of synthetic aperture

sonar (SAS) data [36], [41] and sonar wreck images [37]. We

believe that generating new SSS data by GANs can enrich

the feature expression of a small SSS dataset, which could

optimize sediment classification performance.

In this study, we apply deeper CNNs, LSPM-based fine

tuning, and GANs to achieve high-accuracy sediment clas-

sification based on a small SSS image dataset. We introduce

several commonly used CNNs for classification testing and

migrate the model parameters, pretrained on the grayscale

CIFAR-10 (GCIFAR-10) dataset, to our target dataset to fine

tune the CNNs. Our experimental results verify that fine

tuning based on LSPM can greatly improve accuracy and

training stability. In particular, compared to SVM combined

with feature engineering, significant improvement in accu-

racy is evident. According to the results, the ResNet-4-2 in

our experiment was able to achieve a very low error rate

of 3.459% after fine tuning, which is suitable for the target

mission. We also expanded the training dataset by applying

GANs to enrich the small SSS dataset, and our results demon-

strate that the enhancement of GANs can improve sediment

classification to a certain extent; but it is limited in application

and computationally expensive. Overall, the results of this

study can be used to alleviate the problem of small datasets

in sediment classification to a certain extent. We believe our

research has practical meaning in helping us to understand

the distribution of seabed sediments, topography, and even

the distribution of some biological habitats.

II. DATA

The study aimed to classify sediments from a small SSS

image dataset and study the optimization of such classifica-

tion. The data we used were taken from SSS images obtained

in the Pearl River Estuary as part of the ‘‘China Offshore and

Ocean Comprehensive Survey and Evaluation Special.’’ The

micro-geomorphology and sediment types of the Pearl River

Estuary are diverse. Based on an analysis of the acquired
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FIGURE 1. SSS image data used in this study.

scanning images, there are large areas of sandwaves and reefs

distributed in the estuary. Mud is concentrated in the inner

Lingtingyang shoal area, where the water depth is relatively

shallow.

Since the data we obtained is post-processing data,

we only have partial experimental parameters. In this sur-

vey, we used a DF1000/560D digital dual-frequency SSS

system (EdgeTech, USA), a differential global positioning

satellite system, an SDH-13D depth sounder (South Survey-

ing & Mapping Instrument Co., Ltd., China), and a CAP-

6600 Chirp II shallow profiler system (Datasonics, Inc., Aus-

tralia). The SSS operating frequency was 500 KHz, and the

analog-to-digital (A/D) resolution of the SSS system was

12 bits/sample. We estimate that its working depth is about

10 meters from the water surface. The width and height of

a pixel in the SSS images correspond to 0.2 m each. The

specific image data are shown in Fig. 1.

SSS data labeling is based on actual seafloor grab samples.

The SSS dataset we used in this research was very small

and, as shown in Fig. 1, the SSS images of each sediment

type were evidently separable; this was suitable for our

research. In practice, grab sampling is used to obtain ground

truth in a small area, and then applied it to train the classifier.

Specifically, the very few seabed samples resulted in a very

small training set, and it is impossible to sample from the

entire dataset like random sampling. Therefore, to get closer

to the actual situation, we cut out about a quarter of the

original data as a training set (the area in the red rectangle

in Fig. 1), and use the rest as training set. We believe that this

division is better aligned with actual application scenarios.

The original data were cut using a window with a core

size of 20 × 20 pixels to avoid losing feature information,

and 2 pixels were filled around the window to appropriate

account for the influence of the surrounding content of the

core, so each sample after cutting is a picture with a size of

24 × 24 pixels. The training dataset adopted sliding-window

sampling, with a spacing of 6 pixels. Such a continuous sam-

pling method can theoretically ensure the feature richness,

and can also expand the training set as much as possible. For

the testing set, the continuous samplingmethod obviously has

no meaning, so there is no intersection between the sliding

windows when cutting. After cutting with different sampling

methods, the total number of the training set was ∼900, and

the number of testing set was ∼300. It is worth noting here

that the reason why the training set, which accounts for about

a quarter of the original data, can be obtained with more

samples is that we adopt the small spacing (6 pixels) sliding

window sampling method.

As the original datasets were very small, we divided the

cutted images into training set and testing set, without setting

a verification dataset. In our experiments, we use the training

set to train the model, and the testing set to measure the

performance of the algorithm. However, the division of data

will inevitably affect the results, which can easily lead to

unreliable results. To weaken the influence of dataset divi-

sion, we combined different parts of the original data as

a training dataset in turn and finally divided the data into

64 subdatasets (SCH-0, 1, 2, . . . , 63). This segmentation

method is very similar to cross validation, in which a quarter

of each type of sediment samples are selected in turn to form a

training set (as shown in the red rectangle area in Fig. 1). Our

model was then applied to each of these 64 datasets, which

weakened the impact of division as much as possible and

made the experimental results more reliable.

III. METHOD

A. CONVOLUTIONAL NEURAL NETWORKS

The basic purpose of a CNN is to extract high-dimensional

features through the combination of a convolution kernel,

nonlinear activation function, and pooling layer, whose struc-

ture is shown in Fig. 2. During forward propagation, the con-

volution kernel automatically extracts the features of the

input. After convolution, features are generally mapped by

a nonlinear activation function, such as the widely used rec-

tified linear unit (ReLU) function [42], given by

ReLU (x) = max(x, 0). (1)

Down sampling underlies the nonlinear activation function,

which usually employs maximum or mean pooling. The

CNNs typically output prediction values through the softmax

function, and the loss function is calculated according to the

output of the CNNs and the real label. The loss function is

the key to training CNNs through a back-propagation (BP)

algorithm, and CNNs rely on BP algorithms for training to

update the network parameters. The cross-entropy formula is

generally used in CNNs to calculate the loss value (LOSS),

given by

LOSS = J (W , b) =
1

N

∑N

i

∑M

j
yij log(pij), (2)

where W is the convolution kernel parameter, b is the bias,

N is the number of samples in the batch, M is the number of

classifications, yij is the label value of the i-th sample on class

j, and pij is the predicted value of the i-th sample output by

the CNNs on class j. These operations are described in detail

by Goodfellow et al. [43].

Since their introduction, the depth and width of CNNs

have increased, and various structures have been introduced

to optimize their performance. As a pioneer in CNNs, LeNet-

5 (hereafter, ‘‘LeNet’’) [44] has a small number of parameters
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FIGURE 2. Basic structure of CNNs, wherein the convolution layer is used to extract features to form a
high-dimensional feature vector, and the classifier establishes the mapping relationship between the
feature vector and the output.

FIGURE 3. Basic structure of a (a) basic residual block, (b) residual block, and (c) dense block.

and a simple structure, which is designed to recognize hand-

written digits. Meanwhile, AlexNet [45] achieved a break-

through on ImageNet in 2012. As an exploratory means of

developing CNNs, VGG [46] has achieved the same receptive

field as large convolution kernels with fewer parameters by

combining convolution kernels, and thereby increasing the

depth of CNNs and improving performance. A milestone was

achieved for CNNs with the development of ResNet [47],

which connects input and output by introducing a residual

module design, as shown in Fig. 3a. Themathematical expres-

sion of the residual is

Output = F (x) + x (3)

where x is the input and F(x) is the convolution operation.

The residual structure utilizes multiscale feature information

and alleviates network degradation. Compared to the ResNet

(Fig. 3b), DenseNet [48] concatenates all of the output from

the previous layer in the depth dimension as input (Fig. 3c).

In theory, DenseNet makes better use of multiscale feature

information and reduces the number of parameters; however,

the calculation speed is also reduced due to excessive con-

catenation and memory operation.

The seabed sediment classification based on SSS images is

actually a computer vision task—tasks for which CNNs are

theoretically suitable. In particular, the end-to-end structure

of CNNs makes feature engineering and other preprocessing

work on the original data unnecessary. At present, the appli-

cation of CNNs to sediment classification based on small

SSS datasets lacks theoretical guidance. Moreover, the model

choice needs to meet both performance and speed require-

ments. In this study, various types of CNNs were used to

measure and evaluate their performances, and we aimed to

determine the optimal solution in the target scenario.

B. FINE TUNING IN TRANSFER LEARNING

Solving the difficulties caused by small datasets is one of the

most pressing challenges in DL. In this section, we present

methods of optimizing sediment classifications based on

small SSS datasets by fine tuning according to transfer learn-

ing. The key contribution of fine tuning in transfer learn-

ing is that it provides a priori knowledge to CNNs, so that

they have better initialization parameters and generalization

capabilities. The fine tuning of CNNs can be regarded as a

method of obtaining better initialization parameters for con-

volution kernels, which also appears to provide CNNs with a

better starting point. A pretrained model already can extract

shallow basic features and deep high-dimensional features.

Therefore, when fine tuning on a target dataset, the updating
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FIGURE 4. (a) Grayscale CIFAR-10 (GCIFAR-10) dataset for pretraining and
(b) SSS image dataset for sediment classification.

of the parameters of the convolutional layer during training

generally uses a small learning rate or is frozen, as it will

otherwise cause losses to the existing feature extraction capa-

bilities. The subsequent classification layer (usually a fully

connected layer) is then redesigned and retrained because it

establishes amapping relationship between high-dimensional

input features and output results.

Sediment classification is mainly based on textures and

other features in sonar images. In previous studies, seabed

acoustic image-based fine tuning has been applied to the

detection and classification of underwater targets [37], [38],

as well as to tasks like the classification of sonar images [35]

and synthetic aperture sonar (SAS) image data [36]. In our

experiments, we used the GCIFAR-10 as our pretraining

dataset, and our sediment classification dataset was based on

the division of SSS image data, as shown in Fig. 4. From the

comparison of these two datasets, it can be seen that there is a

large difference between them. Our assumption is to pretrain

the model on GCIFAR-10 and then migrate the parameters

of the convolution layers to our target mission, which we

term LSPM. To the best of our knowledge, there is currently

no precedent for the application of such fine tuning methods

to the classification of sediments based on small SSS image

datasets. If our assumptions are correct, it means that, given

the current lack of relevant available seabed acoustic image

datasets, fine tuning based on LSPM is useful, and it will

provide insights in related future studies.

C. DATA ENFORCEMENT BASED ON GANs

Transfer learning is the optimization of model parameters,

whereas data enhancement is the optimization of data. In this

paper, we included the geometric deformation data enhance-

ment method (i.e., random flip, random mirror transforma-

tion) by default, but the effect is still limited. To enhance

the data used in this study, we expanded small datasets to

enrich the expression features in the training data. The GANs

were first proposed by Goodfellow [40] and have been widely

used in generation tasks. The theory of GANs is based on

the adversarial relationship between a ‘‘generator’’ and a

‘‘discriminator,’’ and its key contribution is to reduce the

distance between the distributions of the model and real data,

so that the generated image of the generator is as close as

possible to the real image.

Considering that our training dataset included three sedi-

ments, training a GAN model for a single type of sediment

would waste time, and the size of the training data would

be very small. Therefore, we used conditional batch nor-

malization (CBN) [49], which is an improved form of batch

normalization (BN) [50]. The basic principle of BN is shown

in (4), where B = [F1,F2, . . .] is a batch, E stands for the

exception, c represents the channel, ǫ is a constant damping

factor with numerical stability, and γ and β are the learned

BN parameters. The improvement of CBN over BN is the

introduction of conditional labels, which can change γ and

β according to the input labels, as shown in (5).

BN
(

Fi,c | γc, βc
)

=
Fi,c − EB(F·,c)

√

VarB
[

F·,c

]

+ ǫ

γc + βc (4)

{

γCBN = γ + 1γ

βCBN = β + 1β
(5)

Therefore, it can generate different classes of data. By adding

CBN, the algorithm can be directly deployed on the

entire training dataset. As a branch of GAN development,

the Wasserstein GAN-gradient penalty (WGAN-GP) [51],

[52] improves the stability, as well as the performance of

GANs by adding a GP and modifying the LOSS function.

The LOSS function of the WGAN-GP is shown in (6), which

includes a GP term λEx̂∼Px̂
[
(

‖ ∇x̂D
(

x̂
)

‖ −1
)2
], so that the

weight parameters satisfy the 1-Lipschitz limit. In particular,

LOSSWGAN−GP = Ex̃∼Px

[

D (x̃)
]

− Ex∼Pr [D (x)]

+ λEx̂∼Px̂
[
(

‖ ∇x̂D
(

x̂
)

‖ −1
)2
] (6)

whereD represents the discriminator, λ represents the weight

parameter, and x̂ = ǫx − (1 − ǫ)x̃.

To combine with CBN, the class information needs to be

outputted at the end. Additionally, as the LOSS value of the

classification (LOSSCLASS) uses the cross-entropy function

mentioned earlier, the LOSS of the algorithm is combined
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TABLE 1. Parameters and FLOPs of different CNNs and their training time
and testing time.

with LOSSWGAN-GP and LOSSCLASS, as shown in (7), where

α represents the weight parameter.

LOSS = LOSSWGAN−GP + αLOSSCLASS (7)

The specific structural flow of the entire algorithm is shown

in Fig. 5, and is actually a generation algorithm based on

the fusion of ACGAN [53] and WGAN-GP. Such a structure

can generate specified types of image data according to the

conditional label input.

IV. RESULTS

The results of our experiments can be divided into two parts,

based upon the goals: (1) optimization of CNNs; (2) data

enhancement based on DL.

A. COMPUTATIONAL SETUP

The configuration of the workstation we used in the exper-

iments was as follows: the central processing unit (CPU)

was an Intel Core-i9-9820X with a C422 motherboard (Intel

Corp., USA), the memory was 32 GB, and the graphics pro-

cessing unit (GPU)was a single GeForce RTX2080Ti (Nvidia

Corp., USA). We used Python as the programming language.

The architecture used in the CNNs was PyTorch v. 1.2.0, and

for GANs, it was TensorFlow v. 1.17.0.

B. OPTIMIZATION OF CNNs

In our experiments, we tested multiple groups of CNNs and

verified the impact of LSPM-based fine tuning on their clas-

sification accuracy and also added the traditional algorithm

of SVM combined with feature engineering as a comparison.

As shown in Table 1, to measure its influence, we varied

the depth of the models for the ResNet, DenseNet, and VGG

architectures. That of ResNet-3-2 revealed that there were

3 residual blocks in the model, with each residual block hav-

ing 2 basic residual blocks; the numbers behindDenseNet and

VGG represent the depth of the network. The terms AlexNet-

BN and LeNet-BN imply that we added BN layers to improve

these classical CNNs. For fine tuning, we modified the sam-

ple size in our SSS dataset to the same format as GCIFAR-10,

namely, (32,32,1). Regarding the specific parameter settings,

the batch size was 16, the optimizer used stochastic gradient

TABLE 2. Experimental results of fine tuning with the lowest error rates
indicated in bold.

TABLE 3. Experimental results of SVM.

descent (SGD), and the epoch was set to 200. For the learning

rate, the initial learning rate of AlexNet, LeNet and VGGwas

0.01, whereas that of ResNet and DenseNet was set to 0.1.

However, when fine tuning, we set the learning rate of the

convolutional layer part to be the learning rate multiplied by

0.1 (compared to frozen parameters of convolutional layers,

we found this method to be more effective). It is worth noting

that we used geometric transformations to enrich the training

set, including random mirroring, random resized cropping,

and random flipping.

To better compare the accuracy of CNNs to existing tra-

ditional algorithms, we considered the traditional algorithm

based on an SVM [54] and feature engineering. As a well-

known algorithm, SVM occupies an important position in the

field of classification or other missions. In our experiment,

the parameter C of the SVM was set to 1, the kernel function

was the radial basis function (RBF), and the degree of the

kernel function was set to 3. In terms of feature engineer-

ing, we extracted a total of 12 features, including the gray

level co-occurrence matrix features [55], [56] and the mean,

variance, and standard deviation of the grayscale. In order

to optimize the performance of SVM, we introduce principal

component analysis (PCA), a commonly used data compres-

sion method in feature engineering. Thus, we set two groups

of experiments: the first group used the extracted original

features; the second group used PCA to compress features

into 6 dimensions. Besides, the features were normalized

before being inputted into the SVM. The results are shown

in Table 3.

Table 2 shows the averaged classification results of the

application of CNNs to all subdatasets before and after

fine tuning. Furthermore, Fig. 6 provides an illustration of

these results before and after LSPM-based fine tuning under
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FIGURE 5. Structural flow of generative algorithm.

FIGURE 6. Comparison of the classification error rates of different CNNs on all datasets before and after fine tuning.

all subdatasets. Notably, AlexNet-BN and LeNet-BN could

achieve high accuracies and performedmuch better than other

deeper models, even though they were reasonably simple

and small. Meanwhile, other models, such as ResNet and

DenseNet, showed a clear trend of decreasing performance

as complexity and depth increased. However, after fine tun-

ing, the deeper networks showed better results. Through

comparison, it is obvious that fine tuning can allow for

significant improvements to some of the models. Table 3

presents the classification results of SVM as the control

group, which also achieved classification, but the effect was

poor. Although PCA helped its error rate decrease from

13.101% to 10.510%, there was still a performance gap

between the SVM and the CNNs. Ultimately, this showed

that CNNs performed better on this mission than traditional

algorithms.
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As mentioned earlier, there are significant differences

between the results of the CNNs before and after LSPM-

based fine tuning, especially the correlation between the

depth and performance of the model. Before fine tuning,

small and shallow models such as LeNet-BN and AlexNet-

BN performed better than a series of deep and complex

models such as DenseNet and, generally, showed an inverse

proportion between depth and performance. This overall

trend is also in line with the result of our previous exper-

iments [24]. Of course, we noticed that AlexNet-BN and

LeNet-BN are contrary to the overall trend. This may have

been caused by the shallow structure of LeNet-BN; in the

absence of a large enough training set, a small model with

shallow feature extraction ability can only capture basic

features, lacking the ability to acquire high-dimensional

abstract features. The results of ResNet and DenseNet before

fine tuning reflected a poor performance of complex and

deeper models on small datasets, which may have been due

to the small datasets causing the models to learn all the

features of the training sets, resulting in weak inference

capabilities.

However, the deeper models after LSPM-based fine tun-

ing showed better results. As shown in Table 2 and Fig. 6,

the ResNet and DenseNet improved greatly, with DenseNet,

improving from an error rate > 11.4% to ∼4%, and

ResNet-4-2 reaching a minimum error of 3.459%. Addi-

tionally, the relationship between the depth and complex-

ity of the model and its performance showed a generally

proportional trend. Although some models had no substan-

tial improvement before and after fine tuning, the perfor-

mance of ResNet-4-2FT (fine-tuned ResNet-4-2; for simplic-

ity, the abbreviation FT is added to all fine-tuned models

to indicate fine tuning) and DenseNet-151FT is enough to

illustrate the significance of LSPM-based fine tuning.

Against our expectation, AlexNet-BN performed well

before fine tuning. Therefore, we compared AlexNet-BN

with ResNet-4-2FT and DenseNet-151FT, and plotted its test

accuracy on all subdatasets in Fig. 7. According to Fig. 7,

AlexNet-BN seemed to perform well, but the performance of

ResNet-4-2FT and DenseNet-151FT on more than half of the

subdatasets was better than that of AlexNet-BN by one or two

percentage points. Ultimately, the fine tuning based on LSPM

is alleviation, to a certain extent, of the problem of poor

performance of complex and huge models on small datasets.

To analyze the relationship between performance and

depth more intuitively, the averaged testing accuracy for

various CNNs with different depths before and after LSPM

based fine tuning are presented in Fig. 8. ResNet (Fig. 8a) and

DenseNet (Fig. 8b) both showed the same trend as previously

discussed, i.e., the depth and classification accuracy were

inversely proportional after fine tuning, whereas the opposite

was true before fine tuning. However, VGG (Fig. 8c) did

not show the same trend; this may have been caused by

the small dataset or the absence of residual connections.

The improvements brought by LSPM-based fine tuning went

against the supposition that deep CNNs perform poorly on

small datasets, thereby allowing them to exert their high-

dimensional feature extraction capabilities.

Finally, fine tuning based on LSPMaccelerated the training

speed and convergence of the models, resulting in a lower

amount of time required to train the model, which is sig-

nificant in some applications. The better starting point for

parameter initialization allowed by fine tuning can make

CNNs converge more stably and rapidly. Figure 9 shows the

comparison of ResNet-4-2 and AlexNet-BN before and after

fine tuning on the SCH-52 dataset. Notably, both AlexNet-

BN and ResNet-4-2 exhibited faster convergence speeds after

fine tuning, meaning that fine tuning can help CNNs converge

quickly. Moreover, the curves for training loss and testing

accuracy of the model trained from scratch were chaotic,

which may have been caused by random initialization that let

the model fall into some local optimums, resulting in numer-

ous oscillations before it could smooth out. In summary, fine

tuning based on LSPM allows the models to reach a usable

level with a lower training time, being of great significance

for certain application scenarios in which a long-term training

process needs to be avoided.

According to the results, although small CNNs performed

well, especially when they were trained from scratch, they

still had a comparatively performance and convergence

speed. In general, the fine tuning of models based on LSPM

is practical, effective, and can improve the performance of

CNNs, especially for deeper CNNs, such as DenseNet and

ResNet. The LSPM-based fine tuning allowed for the appli-

cation of deep CNNs’ high-dimensional extraction abilities

and, notably, resulted in ResNet-4-2FT achieving a very low

error rate of 3.459%, highlighting the general applicability

of ResNet to this mission. These results may also allow

for theoretically better deep CNNs to be applied to similar

missions. Although different missions should select models

based on their characteristics, our research shows that when

performing sediment classification under a small SSS dataset,

it is useful to use a deeper model and pretrain on other

irrelevant datasets. Based on the discussion above, we believe

that if the needed computing power is available, it is feasible

to use a large model and pretrain it by LSPM based fine

tuning.

C. DATA ENHANCEMENT BASED ON DL

In this study, we used GANs for DL-based data enhance-

ment to improve the richness of the training dataset. This

approach differs from data enhancement based on geometric

transforms, and generates new data by inputting random noise

into the generator after training the GANs. We applied a

CBN-based WGAN-GP algorithm to generate new SSS data.

In contrast to training a GAN on a limited single-sediment

SSS image dataset, after adding the CBN, the algorithm can

train on the entire training set and generate corresponding

SSS images under the control of conditional labels. In the

experiment, a total of 100,000 iterations (not epochs) were

set; the initial learning rate was 0.0002, and the batch size

was 64. All convolutional parts in the algorithmwere residual
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FIGURE 7. Comparison of the classification error rates of AlexNet-BN before fine tuning, and
ResNet-4-2 and DenseNet-151 after fine tuning based on LSPM.

FIGURE 8. Comparison of the classification error rates of (a) ResNet, (b) DenseNet, and (c) VGG before and after fine tuning.

FIGURE 9. Comparison of the training losses (left y-axis) and test errors (right y-axis) of the (a) ResNet-4-2 and (b) AlexNet-BN models before and after
fine tuning with the SCH-52 dataset. The solid line represents the loss function and the dashed line the test accuracy.

networks. The dimension of the feature maps in the discrimi-

nator and generator were both 128, and the discriminator was

trained 5 times per generator update (to ensure the stability of

the algorithm). However, considering the large computational

resources and time consumed by GANs, it is impractical

to apply GAN-based data enhancement to all subdatasets.

Therefore, we selected the following subdatasets for our tests:

SCH-36, SCH-52, SCH-56, and SCH-60. Some generated

images are shown in Fig. 10.

In our experiments, we generated 300 images of each

sediment and put them into the original dataset to expand

the training dataset, which was approximately doubled in

size. For each subdataset, we randomly generated six sets of

enhanced datasets to measure data enhancement performance
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FIGURE 10. Images generated by GANs based on the SCH-52 and
SCH-60 datasets.

TABLE 4. Experimental results of GAN-based data enhancement.

as well as to weaken the impact of random processes (i.e.,

stochasticity). To further weaken the impact of random pro-

cesses in CNNs, the model performed five repeated experi-

ments on each enhanced dataset, and the mean of all results

was taken as the final result. We selected AlexNet-BN,

AlexNet-BNFT, and ResNet-4-2FT for evaluating the effects

of data enhancement, using the same training configurations

as described in the previous section.

FIGURE 11. Training set and testing set in the SCH-60 dataset.

Our experimental results are shown in Table 4. For the

SCH-52 and SCH-56 datasets, the application of CNNs to the

enhanced dataset brought significant improvements, whereas

for the SCH-36, only minor improvements were achieved.

Among them, the degree of improvement for SCH-52 and

SCH-56, facilitated using GANs, was greater. This was espe-

cially the case for SCH-52, with which AlexNet-BNFT and

ResNet-4-2FT achieved substantial improvements in accu-

racy of ∼7%; this confirmed the important role of generating

data for improving training datasets. It is worth noting that

there was a slight decline in accuracy (∼0.4–0.8%) in the

SCH-60 dataset.

However, we are still unsure about the unexpected per-

formance under the SCH-60 dataset, which shows that the

data enhancement based on GANs did not allow for improve-

ment, or even a decline. For this reason, we analyzed what

caused the data enhancement to be unsuccessful or unstable.

Figure 1 shows the data division in the SCH-60, where the red

box is the divided training set, and the specific comparison

of the training set and testing set in the SCH-60 sub-dataset

is shown in Fig. 11. A large deviation between the training

and test set for reefs were seen, with a specific lack of flat

and strong reflection areas in the training set (but a large

number in the testing set). Additionally, strong reflection

areas existed in the training set for mud, which had high

similarity with some areas in the testing set for reefs and sand

waves. Thus, in the SCH-60 subdataset, data quality caused a

similar situation after cutting, which led to misclassification.

In this case, generating a large amount of similar data through

GANs will not significantly improve the situation and may

even cause the classifier to be confused, resulting in a slight

decrease in accuracy. In general, data enhancement based on

GANs does not bring any improvement when data quality is

insufficient and discrimination is low, which may even result

in a slight decrease in the performance of the CNN classifier.

Finally, GANs are used to imitate the original information
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distribution and generate similar information and not to man-

ufacture information.

In view of the fact that the data enhancement of GANs

brought improvements for the SCH-36, SCH-52, and SCH-

56 and a slight decline for the SCH-60, we believe that this

kind of data enhancement is effective to a certain extent, but

it is not universally applicable. In case of good data quality,

it can bring a certain extent of improvement, but this improve-

ment depends on the quality of the original data. In addition

to the improvements brought by GANs, we identified two

problems in the experiments.

(1) The GANs input includes random noise, which results in

differences in the generated images, so that the accuracy

of the CNNs classifier differs slightly between repeated

experiments.

(2) The training of GANs is resource intensive, occupying

approximately 9 GB of GPUmemory, and each iteration

takes 0.212 s on average when the number of iterations

is set to 100,000. It is difficult to accept such costs in

general application scenarios.

Through our analysis, we determined that the GANs in

the experiment could improve model accuracy for some

inferior datasets, but it was not suitable for all application

scenarios (or data). Additionally, GANs demand a substantial

amount of computing resources and time. In general, they

can help to solve the poor performance of classification for

small datasets; however, they are resource-intensive and time-

consuming, and improvement depends on the quality of the

original data. Therefore, we consider data enhancement using

GANs to be a possible effective solution only in certain cases.

V. DISCUSSION AND CONCLUSION

In this study, we optimized the sediment classification of a

small SSS dataset based on DL using deeper CNNs, fine

tuning based on LSPM and data enhancement employing

new data generated by GANs to expand the original dataset.

The experimental results showed that fine tuning allowed for

further breakthroughs in the classification accuracy of CNN

classifiers, whereas the use of GANs for data enhancement

was unstable but could generally improve classification accu-

racy. The small dataset is a bottleneck to sediment classifi-

cation based on seabed acoustic image data and, thus, our

findings have practical implications for related studies.

A. FINE TUNING BASED ON LSPM

Notably, after fine tuning, the CNNs had more rapid

and stable performances, achieving meaningful improve-

ments in classification accuracy, especially for ResNet-4-2.

We observed that, even if the pretraining and target data

were essentially irrelevant, such LSPM-based fine tuning was

of great value in optimizing the performance of CNNs in

small SSS datasets. Compared with existing studies on the

application of fine tuning to seabed acoustic image data,

the key contribution of our research is the broadening of its

application, especially when there is a lack of mature and

relevant datasets.

More importantly, the deep CNNs (e.g., ResNet and

DenseNet) that performed poorly in previous experiments

displayed improved accuracies after fine tuning and achieved

relatively promising results. Contrary to the general recom-

mendation of not applying deep complex models to small

datasets, we applied deep CNNs to our target dataset and

achieved favorable results through fine tuning, thereby broad-

ening the application of CNNs for similar tasks. Considering

the importance of parameter weight initialization, we believe

that training a CNNwith random initialization on limited data

will cause problems in model training, which can be greatly

improved by fine tuning. In general, the fine tuning of LSPM

can optimize the performance of CNNs applied to sediment

classification based on small seabed acoustic images dataset,

and aid in the application of theoretically better deep CNNs

to similar tasks. We suggest, if the computing resources are

sufficient, using a larger model and reasonably pretraining

the CNNs. For example, the use of fine-tuned ResNet is an

effective path.

B. DATA ENHANCEMENT BASED ON GANs

The deployment of our enhanced dataset revealed that the new

data generated by GANs can enhance the feature richness

of a training dataset. GANs generate simulation images by

antagonizing the distance between the distribution of the

model and the real data. However, because sediment images

are composed of textures and gray scales, they often lack a

sufficient number of expressive features and enough labeled

data; therefore, data enhancement based on GANs seems to

be an effective solution.

In contrast to the prevailing research on the application of

GANs to seabed acoustic images [36], [37], [41], we applied

GANs to generate SSS image data with sediment contents

and then added them into the original dataset to enrich its

features, finally verifying the resulting improvements. How-

ever, whether our approach works depends largely on the

quality of the original data. That is, GANs is impractical

for be in common use in optimizing the processing of small

seabed acoustic image datasets. However, GANs still have

considerable potential in the field of data generation and,

in theory, their application can optimize seabed acoustic

image data processing tasks. Therefore, in future research,

we will combine the latest results of current related studies in

an attempt to optimize the data enhancement effects of GANs

and apply them to a wider range of applications for seabed

acoustic image data.

To a certain extent, our methods allowed us to overcome

the lack of labeled data for sediment classification based

on seabed acoustic image data and provided a feasible way

to apply CNNs to such small datasets. However, our meth-

ods also had several limitations, including the unstable data

generation quality and the existence of random processes in

GANs. We will conduct in-depth analyses of these problems

in the future. Finally, DL achieved excellent performance in
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fields such as style transfer, target detection, and few-shot

learning, and still has great development potential. Therefore,

we believe that DL has great application potential for seabed

acoustic image processing tasks, which is the main direction

of our future research.
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