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Abstract: Within speech processing, articulatory-to-acoustic mapping (AAM) methods can apply
ultrasound tongue imaging (UTI) as an input. (Micro)convex transducers are mostly used, which
provide a wedge-shape visual image. However, this process is optimized for the visual inspection
of the human eye, and the signal is often post-processed by the equipment. With newer ultrasound
equipment, now it is possible to gain access to the raw scanline data (i.e., ultrasound echo return)
without any internal post-processing. In this study, we compared the raw scanline representation
with the wedge-shaped processed UTI as the input for the residual network applied for AAM, and
we also investigated the optimal size of the input image. We found no significant differences between
the performance attained using the raw data and the wedge-shaped image extrapolated from it. We
found the optimal pixel size to be 64 × 43 in the case of the raw scanline input, and 64 × 64 when
transformed to a wedge. Therefore, it is not necessary to use the full original 64 × 842 pixels raw
scanline, but a smaller image is enough. This allows for the building of smaller networks, and will be
beneficial for the development of session and speaker-independent methods for practical applications.
AAM systems have the target application of a “silent speech interface”, which could be helpful for the
communication of the speaking-impaired, in military applications, or in extremely noisy conditions.

Keywords: speech processing; ultrasound imaging; deep learning

1. Introduction

Speech is used in our everyday human–computer interfaces when interacting with
mobile or fixed electronic devices. Future speech interfaces will go beyond current human–
machine communication systems because speech has several drawbacks: (1) it can be
easily captured by a third party; (2) speech communication is problematic for the speaking-
impaired (e.g., patients after laryngectomy); (3) speech understanding degrades rapidly in
noisy environments.

There has been an increased interest in the analysis, processing, prediction, and
synthesis of biosignals in the speech processing community. Such biosignals include: the
speech waveform, information about the articulators (larynx, tongue, lips, teeth, etc.),
neural pathways, or the brain itself. These biosignals can be used in scenarios such as
articulatory-to-acoustic mapping (AAM) or acoustic-to-articulatory inversion (AAI). Such
biosignals can typically be recorded with some external sensor or specific device, and
processing this data causes various challenges. In the AAM field, articulatory data (i.e.,
information about the movement of the articulatory organs) are recorded while the subject
is speaking, and machine learning methods (nowadays, typically deep neural networks
(DNNs)) are applied for predicting the speech signal, while the network is conditioned
on the articulatory input. Systems that can perform the automatic articulatory-to-acoustic
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mapping are often referred to as “silent speech interfaces” (SSIs) [1–3], with the final aim of
a target application where silent (mouthed) articulation can be converted to audible speech.
Such an SSI could be helpful for the communication of the speaking-impaired, in military
applications, or in extremely noisy conditions.

In the area of AAM, several different types of articulatory acquisition equipments have
been used, including ultrasound tongue imaging (UTI) [4–22], electromagnetic articulogra-
phy (EMA) [23–27], permanent magnetic articulography (PMA) [28,29], surface electromyo-
graphy (sEMG) [30–32], electro-optical stomatography (EOS) [33], lip video [5,6,34–36],
continuous-wave radar [37], or multimodal combination [38]. There are basically two dis-
tinct methods of SSI solutions, namely “direct synthesis” and “recognition-and-synthesis” [2].
In the first case, the speech signal is generated without an intermediate step, directly from
the articulatory data, typically using vocoders [4,7,9,11,12,15–17,25,26,29–31]. In the second
case, silent speech recognition (SSR) is applied on the biosignal, which extracts the content
spoken by the person (i.e., the result is text). This step is then followed by text-to-speech
(TTS) synthesis [5,6,10,23,24,28,32,33]. The drawback of the SSR+TTS approach might be
that the errors made by the SSR component inevitably appear as errors in the final TTS out-
put [2], and also that it causes a significant end-to-end delay. Furthermore, any information
related to speech prosody is totally lost, while several studies have showed that certain
prosodic components may be estimated reasonably well from the articulatory recordings
(e.g., energy [11] and pitch [12]). Depending on the use-case scenario, the two approaches
may have various advantages; for example, the smaller delay with the direct synthesis
approach might enable conversational use and potential research on human-in-the-loop
scenarios.

In this study, we focus on ultrasound tongue images as the articulatory input, with
the direct synthesis approach used for AAM.

1.1. Representations of Ultrasound Tongue Images

For investigating the tongue movement using ultrasound, a B-mode scan is typically
used with a (micro)convex transducer [39]. In a real-time B-scan ultrasound transducer, a
row of identical piezoelectric crystals emit sound waves and receive their reflected echoes
(for an illustration, see the left-hand side of Figure 1). The received echoes are converted to
an electrical signal, and are then sent to the internal computer of the ultrasound machine.
The internal computer reconstructs the returning echoes into a 2D grayscale image usually
shaped like a 90–120 degree wedge (see the right-hand side of Figure 1). Typically, during
recordings, a midsagittal orientation is maintained with the shadows of the jaw and the
hyoid bones visible at opposite sides of the scan wedge [39]. For linguistic studies, manual
tracing or the automatic tracking of the tongue is frequently performed [40,41], but, for
articulatory-to-acoustic mapping purposes, such a contour extraction is not typically used.

(64x842) 

Figure 1. Ultrasond tongue image representations: raw scanlines during recording (left), array of
raw scanline data (middle), and a wedge-formatted image (right).

In the first AAM studies that had ultrasound images for recording the articulatory
movement, it was not possible to gain access to the raw echo data due to the restrictions
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of the equipment. Instead, the ultrasound scanlines were interpolated and organized as
a “fan-shaped”/“wedge” representation, as described above. In the earliest UTI-based
direct synthesis study by Denby et al. [4], the ultrasound images (recorded at 30 fps) were
first reduced to a 14 by 40 grid and automatic contour tracking was carried out on the fan-
shaped data to reduce dimensionality. A few years later, Hueber et al. [6] used fan-shaped
images (with an Aloka SSD-1000 machine), but post-processing algorithms, such as image
averaging and speckle reduction, were disabled. After this, with an analog system, an NTSC
video was created, limiting the time resolution to 29.97 Hz fps. In their next experimental
setup [5,7,9], a Terason T3000 ultrasound system was used with a dedicated software to
record the wedge-shaped articulatory data at 320 × 240 pixels and 60 fps, doubling the
time resolution. The fan-shaped ultrasound images were resized to 64 × 64 pixels and the
EigenTongues decomposition technique [42] was applied for dimension reduction, keeping
the first 30 coefficients. In the latest relevant study from the same research group [10],
the ultrasound images were resized to 32 × 32 pixels, and these images were used with
CNNs (without EigenTongues compression). Similarly, a 320 × 240 pixels ultrasound video
was recorded for the Silent Speech Challenge (SSC) dataset [14]. Wei et al. [8], with an
unspecified system, used a fan-shaped 64× 48 pixels UTI input (compressed with PCA and
autoencoders) for AAM and AAI. Kimura et al. [18] used a CONTEC CMS600P2 system
and a display-digitizing unit for converting the signal sent to the display to a 30 fps MPEG-4
movie file, and resized the fan-shaped images to 128 × 128 pixels for the AAM input. In
their next study [43], interpolated ultrasound videos were recorded with a resolution of
640 × 445 pixels. In most of the above studies, classical image processing of the ultrasound
input is not performed, and the feature extraction is left to the DNN. This is similar to
how other modalities are processed in related tasks such as lip images [34], MRI [44], or
EMA [27].

In our earlier studies on ultrasound-based articulatory-to-acoustic mapping, we used
raw scanline data as the input of the DNNs, recorded using a “Micro” system (developed
by Telemed Ltd., Vilnius, Lithuania, and distributed by Articulate Instruments Ltd., Mus-
selburgh, UK), a 2–4 MHz/64 element 20 mm radius convex ultrasound transducer at
80–85 fps [11–13,15–17,20,21]. In [11–13], data from a single female speaker were used,
and the raw echo-returns of 64 × 946 were resized to 64 × 119 pixels using a bicubic in-
terpolation. In [17], four speakers were used, and the raw images of 64 × 842 pixels were
resized to 64 × 128. Instead of using the full raw scanline data, in [11], we investigated
correlation-based feature selection, and, in [16], we tested the applicability of autoencoders
for dimensionality reduction. Besides the above works by our research group, there were
only a few studies that used raw scanlines. Ribeiro et al. [45] applied a raw ultrasound for
the classification of phonetic segments. Here, 63 × 412 echo-return data (recorded using
Ultrasonix SonixRP) were utilized as the input of DNNs and CNNs, and the raw data
input was compared with PCA and 2D-DCT-based compression. A subsequent study [46]
applied the raw scanlines of the “Micro” system, resized to 63 × 128 pixels.

The advantage of fan-shaped data is that they correspond to the physical/spatial
orientation of the speaking organs of the subject; therefore, comparisons across sessions
and speakers are relatively easy. Another benefit can be that CNNs might process the
wedge-shaped data easier as they do not contain nonlinear distortions. On the other hand,
the advantage of raw scanline data is that they can be acquired directly from the ultrasound
equipment, without any postprocessing. Therefore, feature extraction can be left up to the
machine learning algorithms. However, the disadvantage is that, because of the convex
transducer, the raw data do not correspond to the original mid-sagittal slice, and non-linear
interpolation is necessary to transform into real-world orientation. Therefore, a comparison
across sessions and speakers using the raw scanline data is a challenge.

1.2. Contributions of This Paper

In our previous studies, we hypothesized that the use of a raw scanline ultrasound
always results in lower errors during the prediction of spectral or excitation parame-
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ters [11–13,15–17]. However, this hypothesis was never tested explicitly (neither by us,
nor by other research groups). In the current paper, we compared raw scanline data with
the wedge-formatted ultrasound tongue image input for articulatory-to-acoustic mapping,
applying deep neural networks. Furthermore, we investigated the effect of reducing the
input image size.

2. Materials and Methods
2.1. Data Acquisition

The same dataset was used as in our previous studies [17,20]. Several Hungarian
male and female subjects with normal speaking abilities were recorded while reading
sentences aloud (altogether, 209 sentences each), of which, a female speaker (#048) was
chosen for the current study. The tongue movement was recorded in midsagittal orientation
using the “Micro” ultrasound system (Articulate Instruments Ltd.) with a 2–4 MHz/64
element 20 mm radius convex ultrasound transducer at 81.67 fps. The speech signal was
recorded with a Beyerdynamic TG H56c tan omnidirectional condenser microphone. At
the time of capturing an ultrasound frame, the “Micro” equipment generates a pulse at
the “frame sync” output, which was digitized together with the speech signal with an
M-Audio—MTRACK PLUS external sound card at 22 050 Hz (see Figure 2). The ultrasound
data and the audio signals were synchronized using a custom tool that is looking at the
rising edge of the peaks in the "frame sync" signal. More details about the recording set-up
can be found in [11,17]. The overall duration of the recordings was approximately 15 min,
which was partitioned into training, validation, and test sets in an 85:10:5 ratio.

a) speech signal

No
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am

pl
itu

de

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time (s)

b) ultrasound synchronization signal

Figure 2. Ultrasound synchronization signal: the rising edge of the pulses indicates the capture time
of ultrasound images.

2.2. Input 1: Ultrasound as Raw Scanlines (UTIraw)

In the first case, the raw scanline data (64 × 842 pixels, Figure 3/1) of the ultrasound
were used. To check the optimal image resolution, they were further resized to 64 × 421,
64 × 210, 64 × 105, 64 × 53, 64 × 26, and 64 × 13 pixels using bicubic interpolation (with
the skimage.transform function). The resized raw images served as the input of the deep
neural networks, which can be seen in Figure 3 and will be introduced in Section 2.6.
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Figure 3. ResNet-50 architecture for articulatory-to-acoustic mapping using ultrasound tongue
image (raw scanline vs. wedge) input and MGC-LSP target. ResNet image adopted from https:
//towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33, accessed
date: 11 May 2020.

2.3. Input 2: Ultrasound as Raw Scanlines, Reshaped to Square (UTIraw-Padding)

In the second case, the scanline data (64 × 842 pixels) of the ultrasound were used, after
being transposed to a 512 × 512 square for ResNet input (see Figure 3/2). To check the optimal
image resolution, they were further resized to 256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16,
and 8 × 8 pixels using bicubic interpolation (with the skimage.transform function).

2.4. Input 3: Ultrasound as a Wedge-Shape (UTIwedge)

In the third case, the raw scanline data (left-hand side of Figure 1) were interpolated
to achieve a wedge-shape. For this, we used the pcolormesh function of matplotlib to
smooth and interpolate the data for a continuous wedge-shape, including aliasing (right-
hand side of Figure 1). The necessary details for the interpolation (e.g., angle between scan-
lines, zero offset) were extracted from the AAA software (V219.08, Articulate Instruments
Ltd.) that was used for the recordings. The generated image sequences (840 × 510 pixels)
were saved to MP4 video using ffmpeg, keeping the original scaling of the pixel values.
After this, the middle of the images was cropped to a 512 × 512 square box (region of
interest), and this was used as the input of the ResNet (see Figure 3/3). The further image
resizing steps were the same as those for the raw scanline data in Section 2.3, i.e., resized to
256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16, and 8 × 8 pixels using bicubic interpolation
(with the skimage.transform function).

2.5. Target: Spectral Features of the Vocoder

To create the speech synthesis targets, the speech recordings were analyzed using
mel-generalized log spectral approximation (MGLSA) [47] at a frame shift of 22,050 Hz/81.67 fps
= 270 samples in order to be synchronous with the ultrasound data. As shown in Figure 2,
this was achieved using the hardware sync output of the “Micro” equipment. This resulted in
25-dimensional spectral features (mel-generalized cepstrum–line spectral pair representation
(MGC-LSP)) [48]. The vocoder spectral parameters served as the training targets of the DNNs,
similarly to our earlier experiments in articulatory-to-acoustic mapping [11,17].

2.6. Training of Deep Neural Networks

We applied the ResNet-50 network [49] for the deep learning experiments. In our
earlier studies, we either used fully connected deep neural networks [11,12], convolutional
networks [15,17,20], LSTMs [15], 3D-CNNs [21], or GANs [22], but here, we opted for a
more advanced network. The advantage of ResNet is that, by using skip connections,
deeper convolutional networks can be trained than with simple DNNs or CNNs. By
using ResNet-50, the network is spatially deep enough to capture most information from
the ultrasound-based articulatory data. As ResNet was originally developed for image

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
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classification, the original output layer is “softmax”, which was replaced here by a “linear”
activation for the current regression task.

For all cases, we trained a speaker-specific ResNet model using the training data
(180 sentences). Altogether, 21 networks were trained (3 data representations × 7 image
sizes × 1 speaker). The cost function applied for the MGC-LSP regression task was the
normalized mean-squared error (NMSE), and the optimizer was ADAM. We trained the
network using backpropagation, and applied early stopping to avoid over-fitting. The
network was trained at most for 100 epochs, but the training was stopped when the
validation loss did not decrease within 10 epochs.

3. Results

After training the above ResNet models, we evaluated them by comparing the input
image representations and the output spectral features.

3.1. Demonstration Samples

A sample Hungarian sentence (not being present in the training data) was chosen for
demonstrating how the systems deal with the prediction of MGC-LSP spectral parameters.
Figure 4 shows the output spectral features with the three input representations and seven
image sizes.

M
GC
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SP

original original original

64x842
predicted (UTIraw input)

64x421

64x210

M
GC

-L
SP 64x105

64x53

64x26

0 20 40 60 80 100 120 140 160
Time (frames)

64x13

512x512
predicted (UTIraw-padding input)

256x256

128x128
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Figure 4. Demonstration samples: predicted MGC-LSP spectral features as a function of input image
representation and size. Sentence: “Az Északi szél és a Nap”.

In the first column, we can compare the results when using ultrasound as a raw
scanlines input between 64 × 842–64 × 13 pixels. The predicted spectrograms follow the
original sentence for the most part, but we can observe some artifacts: in the case of
large input sizes (64 × 842, 64 × 421 and 64 × 210), the spectrogram is oversmoothed (i.e.,
formants are only weakly visible); and with a very small input size (64 × 13), unwanted
frequency components appear at the end of the sentence, after frame 130. The remaining
three figures in the middle (64 × 105, 64 × 53, and 64 × 26) seem to be the closest to the
original spectrogram.

The second column shows the results when using the ultrasound of raw scanlines
input, reshaped to a square, between 512 × 512–8 × 8 pixels. The tendencies are similar to
the first column: the largest (512 × 512) and smallest (8 × 8) images cause oversmoothing,
whereas those in between follow the spectral features or the original sentence with finer
details. Interestingly, the 128 × 128 image size resulted in some distortion at the end of the
sentence, between frames 140–160.
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In the third column of Figure 4, we can see the effect ofthe ultrasound as a wedge-
shape when used as an input of the ResNet, again between 512 × 512–8 × 8 pixels. The
middle images sizes (128 × 128, 64 × 64, and 32 × 32) resulted in a relatively well-predicted
spectrogram between frames 20–140; but after frame 140, distortion is visible in the case of
64 × 64. In the case of this demonstration sentence, the spectral prediction with 16 × 16
is extremely weak and almost constant, whereas in the case of the 8 × 8 image size, the
formant movements of the original spectrogram are at least roughly visible.

Overall, the best MGC-LSP spectrogram predictions could be achieved with input
image sizes of 64 × 53, 64 × 64, and 32 × 32 pixels on this single demonstration sentence.
To obtain more general evaluations, we measured errors on the whole validation set, which
will be introduced in the next section.

3.2. Comparison of Raw Scanline Data and Wedge Format

Figure 5 presents the validation loss results that we obtained after training the ResNet-
50 network separately for the three data representations as a function of the input image
size. When comparing (1) raw data (UTIraw), (2) raw data in square form (UTIraw-padding),
and (3) wedge-shaped ultrasound data (UTIwedge), we can see similar tendencies in the
validation error (which is NMSE measured on the validation data). All of the errors with
the raw scanlines and the wedge-formatted images are in the range of 0.44–0.55. The best
results (lowest errors) were achieved with the (1) raw scanline representation. This is
followed by the (2) raw data in square form, while the (3) wedge-shaped ultrasound data
have the weakest results—but the values do not seem to be significantly different.

Therefore, we can conclude that the wedge representation of ultrasound tongue images
(when extrapolated directly from the original raw scanlines) can result in roughly the same
errors during articulatory-to-acoustic mapping.
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Figure 5. Final validation loss after ResNet-50 training as a function of input image representation
and size. UTIraw: ultrasound as raw scanlines; UTIraw-padding: ultrasound as raw scanlines,
reshaped to square; UTIwedge: ultrasound as a wedge shape.
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3.3. Relation of Input Image Size and NMSE

We can investigate the three subfigures in Figure 5 as a function of image size. The
tendencies are the same for all three data representations: the original image sizes (either
64 × 842 or 512 × 512 pixels) achieved a validation NMSE of around 0.48–0.49. When the
image size is decreased (64 × 421 or 256 × 256 pixels), the validation error of the network
will be lower. The optimal image size is around 64 × 64, resulting in a validation NMSE of
around 0.44–0.45. Here, we can find some differences with the three data representations:
(1) in the case of the raw scanline input (top subfigure), the image size causing the lowest
error is 64 × 53 pixels; (2) if the scanlines are in square representation, then the lowest
error is achieved with 256 × 256 pixels, but 64 × 64 results in almost the same values; (3) in
the case of the wedge input, then, again, 64 × 64 pixels is the optimal size. If we further
decrease the image size (64 × 26/64 × 13/32 × 32/etc.), then the error gets higher, until we
reach the weakest results: NMSE is 0.45 with 64 × 13, and 0.52/0.56 with 8 × 8 pixels input
images.

Based on the above comparison, we can conclude that the optimal image sizes are
64 × 53 and 64 × 64 when taking into account the validation error.

3.4. Training Time

Figure 6 shows the (wall clock) DNN training times expressed in seconds. For all three
input representations, this was measured on an Intel i7-2600 3.4 GHz PC with 16 GB RAM
and an NVidia Titan X video card. Note that the largest images (512 × 512, 64 × 842, and
64 × 421) were trained with a batch size of 2 in order to fit into GPU memory; whereas, for
the other image sizes, a batch size of 64 was used. The other parameters of DNN training
were the same for all networks.
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Figure 6. ResNet-50 wall-clock training time (in seconds) as a function of image size.
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We can observe the tendency that networks with a middle-sized input image are
faster to train. In particular, the original images (512 × 512 and 64 × 842) are highly
disadvantageous when trained with ResNet-50 because of memory limitations (i.e., a
smaller batch size). Based on the training time, the optimal image size is around 64 × 64
and 64× 105 pixels (except for UTIwedge, where the training with the 128× 128 input image
size was the fastest). With UTIwedge representation, with all image sizes, the training time
was significantly larger than with UTIraw or UTIraw-padding.

4. Discussion

For articulatory-to-acoustic mapping, ultrasound tongue imaging is often applied as
an input, as shown in Section 1. Mostly, (micro)convex transducers are used, which provide
a wedge-shape visual image. However, this is optimized for the visual inspection of the
human eye (which is perfect for linguistic or medical studies), and the signal is often post-
processed by the equipment (which might be a problem for engineering studies). Examples
for such early systems are: Acoustic Imaging Performa 30 Hz ultrasound machine [4], Aloka
SSD-1000 machine [6], Terason T3000 ultrasound [5,7,9], and the CONTEC CMS600P2
system [18].

With newer ultrasound equipment, it is now possible to gain full access to the raw
scanline data (i.e., ultrasound echo return). A good example for this is the “Micro” system
(developed by Telemed Ltd., Vilnius, Lithuania, and distributed by Articulate Instruments
Ltd., Musselburgh, UK),which is available since 2016, and was also used for our recordings
in the MTA-ELTE Lendület Lingual Articulation Research Group [11,17,50]. In addition,
it was used for large-scale databases, such as UltraSuite [51] and UltraSuite-TaL [52]. The
advantage of the “Micro” ultrasound equipment in this context is that we can use the
data without any internal post-processing of the device, and the feature extraction can be
left up to the machine learning algorithms. For other scenarios, e.g., automatic tongue
contour tracking from ultrasound images, preprocessing the features has been shown to be
useful [53], but, for contour tracking in the above study, deep learning approaches have not
been used, which could help the feature learning.

The raw scanline data used in this study refer to the digitized, envelope-detected beam
vectors of the “Micro” ultrasound system. When the ultrasound is recorded internally in
the device, the envelopes of raw beamformed RF signals are generated from the delay and
sum of channel signals. After further demodulation, low-pass filtering, and amplitude
operation, the scanline data can be obtained, and the final B-mode images can also be
generated by image processing and coordinate transformation. Therefore, the significant
information differences should exist between the raw beamformed RF signals and raw
scanline data or final B-mode images, rather than raw scanline data and final B-mode
images. However, there is no control of beamforming in “Micro” and we cannot have
access to the above RF signal (p.c., Articulate Instruments Ltd.). With other ultrasound
equipment (e.g., “Art” system of Articulate Instruments Ltd.), one can record and process
the RF output, but, in this case, the hardware synchronization with the speech signal has to
be solved.

Although a large number of studies have already applied ultrasound tongue imaging
for articulatory-to-acoustic mapping, the optimal data representations and input image
sizes have not been deeply investigated before. In the current study, we compared the raw
scanline representation (digitized, envelope-detected beam vectors) with the wedge-shaped
processed UTI as the input for the residual network applied for AAM, and showed that
all input representations can result in a similar validation error while training DNNs. We
expect that, with a higher resolution ultrasound (e.g., higher fps, larger spatial resolution,
or 3D/4D ultrasound [54]), the synthesized speech would be more natural, i.e., result in a
lower MSE during DNN training.

However, a comparison across sessions and speakers (or designing speaker-independent
AAM systems) using the raw scanline data is a challenge. Because of the convex transducer,
the raw data do not correspond to the original mid-sagittal slice, and non-linear interpo-
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lation is necessary to transform into real-world orientation. Therefore, for comparisons
across sessions and speakers, the wedge-shape ultrasound images might be more useful
than the raw scanline data. By using tracing methods on wedge-shaped ultrasound images,
it is also possible to obtain a raw-like data representation [55], but this conversion cannot
revert the postprocessing methods of the equipment, and the back-and-forth conversion
obviously leads to some data loss.

In spite of the significant achievements of the last decade, potential SSI applications
seem to still be far away from a practically working scenario. Part of the reason is the lack
of fully developed cross-session and cross-speaker methodologies. With some articulatory
tracking devices, there have already been such experiments, e.g., signal normalization and
model adaptation for sEMG [56,57], domain-adversarial DNN training [32], inter-speaker
analysis for EOS [58], region of interest detection and cropping for lip video [43], and
articulation adaptation using Procrustes matching with EMA [27]. Ultrasound-based SSI
systems, however, might be less robust, as slight changes in probe positioning causes shifts
and rotations in the resulting image [59,60]. Therefore, the results of the current study can
help future cross-session and cross-speaker experiments.

5. Conclusions

In this study, we compared the raw scanline input with the wedge-shaped ultrasound
tongue image representation. In addition, we investigated the optimal input image size of
a residual network applied for articulatory-to-acoustic mapping. We found that there is no
significant difference between using the raw data (either in original form or transposed to a
square) and the wedge shape that is directly extrapolated from the raw data. We also found
that the optimal pixel size is 64 × 64 when taking into account the validation loss and
network training time. Therefore, it is not necessary to use the full original 64 × 842 pixels
raw scanline, but a smaller image is enough, which allows for the building of smaller
networks using less training data. In addition, the smaller image size enables the use
of multiple consecutive input images [11] or a recurrent neural network [15], as already
applied in our earlier work.

The advantage of fan/wedge-shaped data is that they correspond to the physi-
cal/spatial orientation of the speaking organs of the subject; therefore, comparisons across
sessions and speakers are relatively easy. In the future, we plan to apply the raw-to-wedge
conversion methods for experimenting with speaker-independent articulatory-to-acoustic
systems in order to develop practically working silent speech interface applications.

The Keras implementations are accessible at https://github.com/BME-SmartLab/
UTI-optimization, last accessed on 30 October 2022.
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