
Optimal use of bio-logging in movement ecology 

1 
 

Optimising the use of bio-loggers for movement ecology research 1 

 2 

Hannah J. Williams1†, Lucy A. Taylor2,3†, Simon Benhamou4*, Allert I. Bijleveld5*, Thomas 3 

A. Clay6*, Sophie de Grissac1*, Urška Demšar7*, Holly M. English8,1*, Novella Franconi1*, 4 

Agustina Gómez-Laich9*, Rachael C. Griffiths1*, William P. Kay1*, Juan Manuel Morales10*, 5 

Jonathan R. Potts11*, Katharine F. Rogerson12*, Christian Rutz13*, Anouk Spelt14*, Alice M. 6 

Trevail6*, Rory P. Wilson1* & Luca Börger1 7 

 8 
1 Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK 9 
2 Save the Elephants, PO Box 54667, Nairobi 00200, Kenya 10 
3 Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK 11 
4 Centre d’Ecologie Fonctionnelle et Evolutive, CNRS Montpellier, France 12 
5 NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and 13 

Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands 14 
6 School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK 15 
7 School of Geography & Sustainable Development, University of St Andrews, St Andrews 16 

KY16 9AJ, UK 17 
8 Department of Pathobiology and Population Sciences, The Royal Veterinary College, 18 

Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK 19 
9 Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Boulevard Brown 20 

2915, U9120ACD, Puerto Madryn, Chubut, Argentina 21 
10 Grupo de Ecología Cuantitativa, INIBIOMA‐Universidad Nacional del Comahue, 22 

CONICET, Bariloche, Argentina 23 
11 School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield 24 

Road, Sheffield, UK, S3 7RH 25 
12 School of Environmental Sciences, University of East Anglia, Norwich Research Park, 26 

Norfolk, NR4 7TJ 27 
13 Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews 28 

KY16 9TH, UK 29 
14 Department of Aerospace Engineering, University of Bristol, Queens Building, University 30 

Walk, Bristol BS8 1TR, UK 31 

 32 

*Authors listed alphabetically 33 



Optimal use of bio-logging in movement ecology 

2 
 

† These authors contributed equally to this work 34 

 Corresponding authors: h.williams@swansea.ac.uk; lucy.taylor@zoo.ox.ac.uk  35 

 36 

Abstract  37 

1. The paradigm-changing opportunities of bio-logging sensors for ecological research, 38 

especially movement ecology, are increasingly highlighted, but the crucial questions of 39 

how best to match the most appropriate sensors and sensor combinations to specific 40 

biological questions , and how to analyse complex bio-logging data, are mostly ignored. 41 

2. Here, we fill this gap by reviewing how to optimise the use of bio-logging techniques 42 

to answer questions in movement ecology and synthesise this into an Integrated Bio-43 

logging Framework (IBF). 44 

3. We highlight that multi-sensor approaches are a new frontier in bio-logging, whilst 45 

identifying current limitations and avenues for future development in sensor 46 

technology. 47 

4. We highlight the importance of efficient data exploration, and more advanced multi-48 

dimensional visualisation methods, combined with appropriate archiving and sharing 49 

approaches, to tackle the big data issues presented by bio-logging. We also discuss the 50 

challenges and opportunities in matching the peculiarities of specific sensor data to the 51 

statistical models used, highlighting at the same time the large advances which will be 52 

required in the latter to properly analyse bio-logging data.  53 

5. Taking advantage of the bio-logging revolution will require a large improvement in the 54 

theoretical and mathematical foundations of movement ecology, to include the rich set 55 

of high-frequency multivariate data, which greatly expand the fundamentally limited 56 

and coarse data that could be collected using location-only technology such as GPS. 57 

Equally important will be the establishment of multi-disciplinary collaborations to 58 

catalyse the opportunities offered by current and future bio-logging technology. If this 59 

is achieved, clear potential exists for developing a vastly improved mechanistic 60 

understanding of animal movements and their roles in ecological processes, and for 61 

building realistic predictive models. 62 

 63 

Key words: Bio-logging, multi-disciplinary collaboration, movement ecology, multi-sensor 64 

approach, big data, data visualisation, Integrated Bio-logging Framework, accelerometer, GPS. 65 
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Introduction 67 

 68 

Movement is a fundamental aspect of life, intrinsically linked to almost every ecological and 69 

evolutionary process, from the acquisition of food, through reproduction and survival, to 70 

species distributions and community structure. Decades of technological developments have 71 

created vast possibilities in terms of data collection to study the movement of organisms, from 72 

VHF (Kenward, 2001), ARGOS and GPS technology (Kays, Crofoot, Jetz, & Wikelski, 2015; 73 

Tomkiewicz, Fuller, Kie, & Bates, 2010; Weimerskirch, 2009), to reverse GPS technology 74 

(Weiser et al., 2016) and dedicated satellite systems for tracking animals around the globe 75 

(ICARUS, see Wikelski et al., 2007), to sensor and acoustic receiver networks for animal 76 

tracking (Duda et al., 2018; Hoenner et al., 2018). In tandem, ecologists have driven a 77 

revolution in bio-logging sensor technology, motivated by the need to gather behavioural and 78 

ecological data that cannot be obtained through direct observation. This revolution has resulted 79 

in the development and use of a variety of sensors to observe the unobservable, including inter 80 

alia: accelerometers, magnetic field sensors, gyrometers, temperature and salinity sensors, 81 

further complemented by video cameras and proximity-loggers (Rutz & Hays, 2009) - see SI 82 

Table 1. The combined use of multiple sensors can provide indices of internal ‘state’ and 83 

behaviour, reveal intraspecific interactions, reconstruct fine-scale movements and even 84 

measure local environmental conditions (Rutz & Hays, 2009; Wilson et al., 2014). However, 85 

with increasing sensor possibilities comes a new challenge: pinpointing the appropriate 86 

information to collect, and finding efficient ways to do so. 87 

 88 

It is hardly surprising, therefore, that there is an increasing number of high-profile reviews that 89 

showcase the paradigm-changing opportunities offered by animal-attached technology for 90 

ecological research (Hussey et al., 2015; Kays et al., 2015; Wilmers et al., 2015). Within these 91 

reviews, however, there exists scant treatment of how best to match the most appropriate 92 

sensors and sensor combinations to specific biological questions. As a result, ecologists have 93 

tended to use statistical methods post hoc to overcome the limitations of specific sensor data, 94 

including smoothing methods such as Kalman filtering and state-space models or machine-95 

learning approaches applied to positional and accelerometer data. Similarly, although new 96 

analytical methods show great promise, such as the use of machine-learning to identify 97 

behaviours from tri-axial acceleration data (Nathan et al., 2012) or Hidden Markov Models 98 

(HMMs) to infer hidden behavioural states (Leos‐Barajas et al., 2017), no clear guide exists to 99 

promote best practices. Such a guide would allow ecologists and statisticians to strike a balance 100 
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between overly simplistic and complex models to deal with the vagaries of specific sensor data, 101 

for example the limitations of accelerometer data (see also Patterson et al., 2017). We aim to 102 

fill this gap by considering how to optimise the use of bio-logging techniques to answer key 103 

questions in movement ecology. In doing so, we identify four critical areas – questions, sensors, 104 

data, and analysis – and related opportunities for multi-disciplinary collaborations, and 105 

synthesize these into an Integrated Bio-logging Framework (IBF) to aid the decision-making 106 

process for ecologists. We then review the technologies and methodologies available to 107 

ecologists to make the links between nodes of the framework. We first consider how best to 108 

address biological questions using the most appropriate sensors while identifying current 109 

technological limitations. Second, we review the challenges and opportunities of linking new 110 

data types obtained from bio-logging sensors to the most adequate analytical techniques. We 111 

discuss issues relating to dealing with large, complex datasets, the fundamental properties of 112 

the new data types that can be collected, and the challenges of archiving and sharing bio-113 

logging data. Finally, we discuss the value of multi-disciplinary collaborative links to optimise 114 

the opportunities offered by current and future bio-logging technology.  115 

 116 

The Integrated Bio-logging Framework 117 

Four areas are critical for optimal bio-logging study design: questions, sensors, data, and 118 

analysis. We connect these via  three-nodes in a cycle of feedback loops, linked by multi-119 

disciplinary collaboration (Figure 1). Ecologists can work their way through the IBF to develop 120 

their study design – typically, this will start with the biological question, but the pathways will 121 

differ if, for example, using a question/hypothesis driven (blue) or data-driven (orange) 122 

approach. Figures 2 and 3 provide two such pathway examples. 123 

 124 

Furthermore, bio-logging has become so multifaceted and complex that no-one can be a 125 

‘master of all trades’, hence, establishing multi-disciplinary collaborations is key (as for other 126 

disciplines, Peters et al., 2018), and this idea is at the basis of the IBF. For example, at the study 127 

inception phase, dependent on the biological problem addressed, physicists and engineers can 128 

advise on sensor types, their limitations and power requirements, while mathematical 129 

ecologists and statisticians can aid in framing the study design and modelling requirements for 130 

specific questions (see Figure 2). Development of bio-logging tags is the result of 131 

collaborations between engineers, physicists and biologists, while visualisation and analytical 132 

methods for dealing with data are aided by interactions with computer scientists, geographers, 133 

statisticians and mathematicians (see Figure 3). On the other hand, ecologists can guide 134 
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researchers from the other disciplines towards the key methodological hurdles and 135 

technological limitations which are hindering progress and need to be addressed.   136 

 137 

We now review the literature regarding questions, sensors, data and analyses, and exemplify 138 

the links between the nodes of the IBF. We conclude by highlighting areas for future 139 

development. 140 

 141 

1. From questions to sensors  142 

Researchers can choose between an ever-increasing number of different bio-logging sensors 143 

(Table 1, SI Table 1). Following the adage that experimental design should be guided by the 144 

questions asked (e.g. Fieberg & Börger, 2012; Hebblewhite & Haydon, 2010), sensor choice 145 

is clearly critical. Here, we consider sensor selection within the general scheme of key 146 

movement ecology questions posed by Nathan et al. (2008) and provide an example for the use 147 

of the IBF in a question-driven approach to study design. 148 

 149 

1.1 Why is the animal moving?  150 

Animals make behavioural decisions based on their internal ‘state’ (physiological and 151 

psychological condition), and external biotic and abiotic factors (Nathan et al., 2008). 152 

Identifying and quantifying how internal state may drive behaviour is non-trivial, and can often 153 

only be indirectly inferred (Getz & Saltz, 2008). Some aspects of animals’ internal state have 154 

been investigated using accelerometers which are sensitive to micro-movements and postures 155 

indicative of chemical, disease, and affective states (Downey et al., 2017; Wilson et al., 2014), 156 

including  vigilance behaviour, a stress-related response (Kröschel, Reineking, Werwie, Wildi, 157 

& Storch, 2017). Alongside accelerometers, other key sensors that can provide insights into 158 

internal state include heart rate, internal temperature, and neurological sensors (Rattenborg et 159 

al., 2016). For example, heart rate loggers to investigate the interplay between ecological 160 

pressures and energetic strategies were used by Bishop et al. (2015) in bar-headed geese (Anser 161 

indicus) and O’Mara et al. (2017) in fruit-eating bats (Uroderma bilobatum). As another 162 

example, Ditmer et al. (2018) used heart rate loggers to investigate how American black bears 163 

(Ursus americanus) perceive the risks of crossing roads. Research on humans has demonstrated 164 

that bio-loggers can measure a suite of physiological variables relating to internal state (Nikita, 165 

2014; Yang, 2014) and the development of similar systems for wild animals is increasing; 166 

examples include animal-borne blood sample collection devices for stress hormones in seals 167 
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(Takei et al., 2016), other hormonal sensors (Landry et al., 2014), and internal chemical 168 

detection nanosensors for freely moving animals (Lee et al., 2018) . 169 

 170 

The greatest insight into state-driven movement is likely to be gained from multi-sensor 171 

approaches (e.g. Wilson, Littman, Halpin, & Read, 2017), especially combining both 172 

physiological and/or neurological sensors with position-determining systems (Figure 2). For 173 

example, Vyssotski et al. (2006) simultaneously measured pigeon (Columba livia) movement 174 

and electrical brain activity using a miniaturised GPS combined with an 175 

electroencephalography logger, while Dunn et al. (2016) obtained a brain-wide mapping of 176 

neural activity of zebrafish (Danio rerio) during movement. The use of neurological sensors to 177 

monitor brain activity in freely moving animals is a relatively new advancement (e.g. 178 

Rattenborg et al., 2016; Skocek et al., 2018). Such multi-sensor developments are helping to 179 

meet the challenge of linking internal state, as a proximate cause of movement, to ultimate 180 

evolutionary causes (Nathan et al., 2008). However, there are important ethical considerations 181 

to be raised, especially for surgically implanted sensors (e.g. see the example of frigatebirds 182 

below, Rattenborg et al., 2016). 183 

 184 

Alongside the internal state, what is happening in the environment is the other prime driver of 185 

animal movement. Global environmental data can be recorded through satellite remote sensing, 186 

and  bio-loggers now routinely collect local environmental data both biotic and abiotic (Table 187 

1; SI Table 1), thus a major aspiration is to link such data to movement. Though whilst 188 

ecologists can access an increasing amount of remote-sensed environmental data, linking them 189 

to location data is usually difficult, as environmental data are obtained at different, generally 190 

coarser, spatiotemporal scales than movement data (Dodge et al., 2013). Remelgado et al. 191 

(2019) recently developed a new pixel-based approach, combined with data mining and 192 

visualization, to help ecologists efficiently deal with differences in the spatial, temporal and 193 

thematic resolutions between environmental data from remote sensing and GPS location data; 194 

yet the problem persists with high frequency bio-logging data.   195 

 196 

Depending on the question asked, it may be necessary to use modelling to derive high-accuracy 197 

dynamic maps of environmental conditions (e.g. vertical wind; see Scacco, Flack, Duriez, 198 

Wikelski, & Safi, 2019), or to use drones or LiDAR, to build ultra-high resolution, 2- and 3-199 

dimensional maps of the study area (e.g. to investigate movement costs due to elevation or to 200 

quantify vegetation quality for optimal foraging questions). Importantly, bio-loggers allow the 201 
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collection of high-frequency environmental data at the local scale experienced by the animals, 202 

such as temperature, light intensity, and wind or current velocity (Block, 2005; Dodge et al., 203 

2013; Piersma & Lindström, 2004). This may be complemented by implanted sensors such as 204 

core body temperature sensors (e.g. when studying heat stress questions), combined with 205 

sophisticated use of meteorological data to estimate the so-called wet bulb globe temperature 206 

index (WBGT), a key measure of heat stress (Dimiceli, Piltz, & Amburn, 2011).  207 

 208 

In terms of the biotic environment’, an animal’s movement decisions are likely to be influenced 209 

by interactions with conspecifics and heterospecifics and again, there are certain combinations 210 

of sensors that can record and help identify these interactions. There are two main approaches 211 

to remotely record the social contact between free-ranging animals: indirect and direct 212 

encounter mapping (see Bettaney, James, St Clair, & Rutz, 2015; Krause et al., 2013). Indirect 213 

encounter mapping can be achieved either with high-resolution tracking of subjects, or with 214 

the use of tags that transmit to, or that are detected by, fixed receiver stations at specific 215 

locations (e.g., coded VHF radio-tags or PIT/RFID tags). In both cases, the co-occurrence of 216 

animals is inferred at the data analysis stage. Direct encounter mapping, on the other hand, 217 

requires the use of proximity loggers (transceiver tags that both transmit and receive radio 218 

signals between animals) or camera tags (Hooker, Barychka, Jessopp, & Staniland, 2015), to 219 

create reciprocal records of social encounters (Bettaney et al., 2015; Krause et al., 2013). 220 

Proximity-loggers can be used for addressing a variety of biological questions, and have the 221 

advantage over cameras (e.g. Takahashi et al., 2004) that they survey in all directions (even 222 

though  precise directional and distance information is often not collected), but their key 223 

strength lies in charting social associations of a large number of subjects of known identity, to 224 

reconstruct group, community, or even population-level social networks. Proximity sensors 225 

can also be used to record interspecific encounters, for example between predators and their 226 

prey, between different disease hosts, or in mixed groups of foraging or migrating animals. 227 

Some systems are set up as wireless sensor networks where animal-mounted sensors not only 228 

communicate with other sensors, but also with (a large number of) stationary receiver (base) 229 

stations (Rutz et al., 2012). This enables near real-time data transmission, which is key to 230 

evaluating system performance and to planning and monitoring experimental manipulations 231 

(St Clair et al., 2015). 232 

 233 

A particular type of interspecific interaction occurs when animals interact with human 234 

activities, which can strongly affect animal movements (e.g. Tucker et al., 2018). An 235 



Optimal use of bio-logging in movement ecology 

8 
 

interesting development is animal-borne radar detectors, which detect signals from emitting 236 

radars in the surroundings and can be used in combination with a tracking device to log the 237 

occurrence of structures along an animal’s movement path (Table 1; SI Table 1). This has 238 

facilitated the study of seabird-fishing vessel interactions, quantifying attraction, attendance 239 

and foraging behaviour (Weimerskirch, Filippi, Collet, Waugh, & Patrick, 2018).  240 

 241 

1.2 Where is the animal going? 242 

ARGOS, GPS and related satellite and global navigation systems, as well as acoustic tracking 243 

arrays and geolocators, have revolutionised information on animal locations and movements 244 

(Kays et al., 2015). Bio-logging sensors, particularly in combination with such locational 245 

tracking-devices, can further help detect where animals move. For example, Hedenstrom et al. 246 

(2016) combined geolocator and accelerometer tags to record flight behaviour of migrating 247 

swifts, and Shipley, Kapoor, Dreelin, & Winkler (2018) used micro barometric pressure 248 

(altitude) sensors (<0.5 g) to uncover the aerial movements of migrating birds. A key limitation 249 

of telemetry devices is that transmission technology can fail, such as when canopy cover 250 

impedes GPS satellite fixes (Rempel, Rodgers, & Abraham, 1995). However, with the 251 

combined use of tri-axial orientation, posture/activity and elevation/depth recording sensors it 252 

is possible to reconstruct animal movements in 2D and 3D using a dead-reckoning procedure, 253 

irrespective of transmission conditions (Bidder et al., 2015; Bramanti & Dall’Antonia, 1988). 254 

This uses the speed (including speed-dependent dynamic body acceleration (DBA) for 255 

terrestrial animals; Bidder, Qasem, & Wilson, 2012), combined with animal heading (from 256 

magnetometer data) and change in altitude/depth (pressure data) to calculate the successive 257 

movement vectors (oriented steps) from a known starting position. The process gives 258 

extraordinarily finely resolved relative movement (it can, for example, determine how many 259 

times a dog has walked around a lamppost) but it can accumulate errors over time, especially 260 

in fluid media with current flow. Therefore, data used in dead-reckoning need correcting with 261 

frequent ground-truthing, such as by a GPS unit (Bidder et al., 2015). GPS-enabled dead-262 

reckoning is an incredibly powerful combination of sensor systems which may become 263 

paradigm-shifting within animal movement studies. With this, researchers will have access to 264 

multiple scales of movement and seamless animal movement descriptors and will be able to 265 

identify true turn-points  (Potts et al., 2018; see Figure 2 and analyses below). In turn, the 266 

improved track trajectory should allow us to connect behaviour to landscape ecology and 267 

population dynamics with increased confidence (Morales et al., 2010).  268 

 269 
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1.3 How is the animal moving? 270 

At the smallest scale (locomotion), animals move according to their anatomy and the 271 

biomechanics that this engenders, with obvious differences between animals operating in fluid 272 

media (air or water) or on the ground (Biewener & Patek, 2018). In essence, locomotion is 273 

manifested by particular patterns of movement by the various body parts (most notably limbs) 274 

so that motion-sensitive transducers can provide critical information with respect to the pattern 275 

and intensity of movements and thereby derive critical whole-animal movement parameters 276 

such as speed and direction. The primary sensors used for this include accelerometers, 277 

magnetometers and gyrometers (often collectively grouped within inertial measurement units 278 

[IMUs]; e.g. Noda, Kawabata, Arai, Mitamura, & Watanabe, 2014), Accelerometers and 279 

magnetometers can be used to infer the 3D posture and orientation (i.e. azimuth, elevation 280 

angle and bank angles; see SI Table 1 for a glossary of terms) during locomotion, whereas 281 

gyrometers provide direct measures of yaw, pitch and roll (see Benhamou, 2018 for the 282 

mathematical relationships between these parameters). In addition, various iterations of speed-283 

detecting systems, such as anteriorly mounted propellers (Ropert-Coudert et al., 2000; 284 

Watanabe et al., 2008), flexible paddles (Shepard, Wilson, Liebsch, et al., 2008), and Pitot 285 

tubes are also used (Taylor, Reynolds, & Thomas, 2016). Importantly, the speed at which an 286 

animal is moving provides information on the urgency with which the movement is being 287 

undertaken. When moving animals deviate from minimum cost of transport (cf. Schmidt-288 

Nielsen, 1972), it indicates time-based selection pressures that incite animals to move non-289 

optimally in energetic terms; the reasons for which may be critical for lifetime fitness and only 290 

become apparent post hoc (e.g. Shepard, Wilson, Quintana, Laich, & Forman, 2009). Sensors 291 

allow to quantify the energetics of animal locomotion for such issues, as well as record 292 

information for understanding the costs and benefits of behaviours. Several sensors provide 293 

proxies for oxygen consumption (𝑉𝑉𝑂𝑂2), including heart rate loggers (Green, 2011) and tri-axial 294 

accelerometers through the computation of dynamic body acceleration (DBA; reviewed in 295 

Wilson et al., accepted). Indeed, the continued refinement of these proxies of power use, one 296 

of the most fundamental currencies in the animal kingdom, will be pivotal in providing critical, 297 

missing information within previously established movement frameworks such as optimal 298 

foraging (McNamara & Houston, 1986; Pyke, 1984).  299 

 300 

Sensors that detect body movements may also provide key information relating to 301 

biomechanical questions, such as how stroke frequency relates to stroke amplitude. For 302 

example, magnets used with Hall sensors (sensors detecting magnet-transducer paired 303 
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magnetic field properties; Hall, 1879 - see S1 Table 1) can quantify the amplitude, angular 304 

velocity and frequency of limb movements of marine mammals (Wilson & Liebsch, 2003), 305 

providing insights into energy-saving mechanisms (Nassar, Jackson, & Carrier, 2001). Animal-306 

borne video or audio may provide similar information, for example, being able to relate flipper 307 

beat frequencies in green turtles (Chelonia mydas; Hays, Marshall, & Seminoff, 2007) and 308 

emperor penguins (Aptenodytes forsteri; van Dam, Ponganis, Ponganis, Levenson, & Marshall, 309 

2002), to dive strategies. Hall sensors can also measure respiration rates and extent of 310 

inhalation, heart rates, and even patterns of defaecation, providing information on the optimal 311 

breathing strategies and rates of digestion (Wilson et al., 2003, 2004), cases where mounted-312 

accelerometers would be limited due to movement being mainly translocational. In addition, 313 

these behaviours can also be detected from on-board videos. Yet few studies use these 314 

techniques, perhaps because researchers find the magnetic field intensity drop off with distance 315 

intractable and because, at the time the studies were published, it was not possible to study 316 

angular changes between magnet and sensor, if distances were held constant. Inertial 317 

measurement units (IMUs) have changed this, so we think that the future of miniature IMUs 318 

holds promise for researchers to document minute changes in body movement and for 319 

quantifying motion capacity from limb movements. 320 

 321 

1.4 What is the animal doing? 322 

Allocating behaviours to space is key to understanding animal niche requirements and the link 323 

between behaviour and fitness consequences. Since the work by Yoda et al. (1999) using 324 

accelerometers to determine animal behaviour, there is a rich and varied literature that 325 

documents increasingly successful methodologies for determining animal behaviour from 326 

various sensor data, especially accelerometers (Nathan et al., 2012; Shepard, Wilson, Quintana, 327 

et al., 2008) and magnetometers (Williams et al., 2017). Thus, it is now possible to extract a  328 

remarkable amount of information regarding behaviour beyond that of limb and body part 329 

movement as detected from tri-axial sensors as described above. 330 

 331 

In particular, quantifying the type and amount of food ingested by animals is essential to 332 

answering some of the “big questions” in movement ecology such as how animals manage 333 

their energy budgets in the wild (cf. Krebs & Davies, 1978). For example, combining GPS and 334 

DBA measures derived from tri-axial accelerometers, allows us to better understand the 335 

energetics underlying prey capture behaviour of large terrestrial predators (Wilmers, Isbell, 336 

Suraci, & Williams, 2017), while the drift and buoyancy inferred from time-depth recorders 337 
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can provide information on the foraging success of marine predators (Abrahms et al., 2018). A 338 

further refinement is provided by indirect parameters such as those obtained by means of 339 

sensors that detect stomach, oesophageal or visceral temperature, which can provide invaluable 340 

insights into actual prey captures (Weimerskirch, Gault, & Cherel, 2005; Weimerskirch, 341 

Pinaud, Pawlowski, & Bost, 2007; Wilson, Cooper, & Plötz, 1992). An intriguing alternative 342 

is based on attaching a Hall sensor to one mandible opposite a magnet attached on the other 343 

mandible (but the ethical implications and feasibility must be well considered). The inter-344 

mandibular angle can be determined by measuring changes in magnetic field strength (Wilson, 345 

Steinfurth, Ropert-Coudert, Kato, & Murita, 2002). This approach, which has been employed 346 

in several marine and terrestrial species, can provide information about both the number of 347 

food items and the type of food ingested (Ropert-Coudert et al., 2004). Indeed, such is the detail 348 

provided by these sensors that studies are now able to examine food acquisition within a 349 

probabilistic framework and thereby make predictions about how food abundance may affect 350 

populations (Wilson, Neate, et al., 2018). 351 

 352 

Obtaining direct observations may sometimes be essential, either because robust calibration of 353 

bio-logging sensors is difficult, or because the study’s aim is to document particular behaviours 354 

in great detail (such as prey captures and social interactions; McInnes, McGeorge, Ginsberg, 355 

Pichegru, & Pistorius, 2017; Pagano et al., 2018; Watanabe & Takahashi, 2013) or to prospect 356 

for undiscovered behaviours (such as unusual foraging techniques; Rutz, Bluff, Weir, & 357 

Kacelnik, 2007). Under these circumstances, video loggers are the method of choice, or still-358 

image loggers, if longer recording times are required and a lower frame rate is acceptable. 359 

Cameras may also offer the opportunity to assess what a wild animal sees in the field (Moll, 360 

Millspaugh, Beringer, Sartwell, & He, 2007) so that environmental information can be factored 361 

into foraging efficiency (Sutton, Hoskins, & Arnould, 2015) and movement patterns studied 362 

with respect to visual stimuli (Tremblay, Thibault, Mullers, & Pistorius, 2014). Video loggers 363 

can also be combined effectively with other sensors such as accelerometers (Watanabe & 364 

Takahashi, 2013), and are small enough to be fitted to a wide range of species (see below).  365 

 366 

2. From sensors to data 367 

Data collection and analysis issues must be addressed alongside sensor selection when 368 

approaching a specific ecological question. The first challenge concerns finding the most 369 

appropriate experimental/sampling design to answer a given ecological question. More broadly 370 

(see the internal data node of the IBF), this concerns the closely related issues of tag design, 371 
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data management (which includes planning for data archiving and sharing) – all of which must 372 

be defined prior to field work. The experimental design will strongly benefit from 373 

interdisciplinary collaborations to find the best solution, ensuring that the data-gathering is both 374 

feasible and will lead to sufficient data to answer the questions using available analytic 375 

techniques. 376 

 377 

2.1 Experimental design 378 

Consideration of an appropriate sampling regime prior to tag deployment, so as not to over-, 379 

or under-sample and maximise battery duration (and minimize tag weight), is a crucial aspect 380 

(note that battery power is required both to interrogate the sensors and write the data to 381 

memory, and possibly send the data). To do so, researchers should apply the Nyquist or 382 

sampling theorem, which states that the sampling frequency should be at least twice the fastest 383 

frequency of interest; e.g. consider wingbeat frequency vs. amplitude as focus of interest. This 384 

also holds true in temporal and spatial domains (see discussion in Ropert-Coudert & Wilson, 385 

2004). An obvious consequence of this trade-off is the use of smart sampling, whereby the 386 

sensors record at a frequency able to elucidate the relevant aspect properly, but no more. We 387 

do note, however, that highly prescribed, low frequency sampling may miss serendipitous 388 

observations of importance and may preclude the detection of new, never observed behaviours. 389 

Furthermore, derivation of body motion or measures of energy expenditure (DBA) requires 390 

smoothing of accelerometer data at an appropriate frequency (Shepard, Wilson, Halsey, et al., 391 

2008), albeit the latter could indeed be processed on-board without storing the high frequency 392 

data (e.g. Cox et al., 2018). For example, a high frequency recording of raw data (> 20 Hz) 393 

may be necessary to compute animal posture and DBA (see also Brownscombe, Lennox, 394 

Danylchuk, & Cooke, 2018), however, higher frequencies draw more current, thus a balance 395 

between behaviour resolution, information gain, and current draw is a key stage of 396 

experimental design. An area of current research (e.g. see Cox et al., 2018) is focussing on 397 

finding clever ways to store on-board only sub-sampled or summary data, rather than the raw 398 

high-frequency data, thereby reducing data storage requirements and, ideally, allow remote 399 

transmission of the data (often the latter is precluded for field studies due to the high power 400 

requirement). Closely related is the choice of sensor resolution (bit resolution, see discussion 401 

and examples in Ropert-Coudert & Wilson, 2004). The number of bits with which the data are 402 

stored directly determines the quality of the data obtained. For example, past loggers used an 403 

8-bit resolution, meaning the sensor can obtain an absolute resolution given by the maximum 404 

resolution range divided by 256. In the case of a depth pressure transducer with a maximum 405 
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range of 50 Bar this means a maximum resolution of circa 0.2 Bar, equal to resolving dive 406 

differences of 2 m (a 16-bit resolution allows instead to resolve steps of 0.008 m, see Ropert-407 

Coudert & Wilson, 2004). Low resolution may preclude recording key information such as 408 

prey capture events. Equally important is the measurement range of the sensor. For example, 409 

an accelerometer which records up to 8 g will miss any data of animals moving more 410 

dynamically (e.g. head impacts) and unless the animals are known to be only relatively slow 411 

moving and good preliminary data exist, researchers should set the range to at least 16 g for 412 

initial studies (for terrestrial systems; a lower range may be sufficient for aquatic systems as, 413 

due to friction, movement speed may change less fast), and record this information in the 414 

metadata. Equally important are trade-offs between the quantity of data collected and the time 415 

a tag collects data on an individual, as well as trade-offs between the amount of data collected 416 

on single individuals against the number of different animals monitored across time and space 417 

(see also Hebblewhite & Haydon, 2010). Collaborations across disciplines are crucial to make 418 

such decisions. 419 

 420 

2.2 Tag design 421 

Reducing battery consumption not only extends the life of a bio-logging device, but has 422 

implications for tag size and attachment that should also be considered for both optimal study 423 

design and animal welfare. Reduction of tag size is paramount, yet even with recent advances 424 

in the reduction of sensor size, it is still battery size that limits that of the device. For cameras 425 

for example, current available loggers are small enough, at approximately 10 g, to be fitted to 426 

a wide range of species (Rutz et al., 2007). However, even state-of-the-art camera loggers 427 

remain severely battery limited, hence duty cycling is advisable for most applications, as this 428 

allows targeted data collection during periods of peak activity and/or repeated short-term 429 

recording over the course of several days (Rutz & Troscianko, 2013). An exciting recent 430 

development is the use of event-triggering technology that allows cameras to be switched on 431 

whenever particular behavioural states or environmental conditions are detected (see analysis 432 

section below).2.3 Data management 433 

A further consideration for optimal experimental design is that of data management and 434 

processing. The data provided by sensors often do not correspond directly to the information 435 

we look for, but to a proxy, which needs to be converted. For instance, a depth recorder is 436 

designed to provide a measure of pressure rather than a measure of depth, but underwater depth 437 

being linearly related to pressure, the conversion is straightforward. For other sensors, this is 438 

not so obvious, and raw data therefore require being pre-processed. For example, acceleration 439 
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data do not provide a direct estimate of energy expenditure or oxygen consumed while moving. 440 

First, the dynamic component has to be extracted from the raw acceleration values, then 441 

converted to DBA, which finally has to be correlated with energy or oxygen through controlled 442 

lab experiments (reviewed in Wilson et al., accepted). Pre-processing is also required for 443 

integrating data provided by different sensors, possibly at different rates, and often based on 444 

separate clocks (exposing systems to clock drift); although inertial measurement units (IMUs) 445 

effectively deal with temporal synchronisation within any one logger. Notably, data recorded 446 

at high frequency are both noisy and highly serially auto-correlated. Noise can be reduced by 447 

filtering, e.g. by taking a running mean, or may involve more complex approaches such as 448 

Fourier transformations or Kalman filtering (e.g. Alam & Rohac, 2015). A simple and efficient 449 

solution consists of sub-sampling the processed data to a level (or deriving averages, see below) 450 

to accord with the Nyquist frequency. Pre-processing should be performed before subsampling, 451 

although there is an element of feedback depending on the desired end-point, which may also 452 

need to be considered when selecting the sampling frequencies for the different sensors and 453 

their data types, and also has important implications for data archiving (see next section).  454 

 455 

2.4. Data archiving and sharing 456 

 457 

Bio-logging data also present considerable challenges for data sharing and replicability. One 458 

challenge lies in the lack of standardised protocols for the data collected by animal-borne 459 

sensors (Campbell, Urbano, Davidson, Dettki, & Cagnacci, 2016). Logging data require very 460 

detailed metadata on the attachment type and position on the animal of the loggers, as 461 

otherwise, establishing a close relationship between the output from sensor data (such as tri-462 

axial accelerometer) and the orientation and posture of the animal, will be near impossible. 463 

Furthermore, whether or not to keep both the pre- and post-processed versions of the data 464 

(particularly before or after filtering and subsampling) is something to consider in terms of not 465 

only the current question and analyses, but also in terms of the long-term goals of archiving 466 

data in the best format available to allow long-term use of those data. Thus, there is an urgent 467 

need to improve data protocols and database standards for bio-logging data. Indeed, the 468 

International Bio-Logging Society is actively working towards that goal. Efficient data sharing 469 

and archiving across many studies and authors will be key to answer the big questions in 470 

movement ecology, e.g. global responses to environmental change (Figure 3), and reduce the 471 

need to collect new data (see also section 4). 472 

 473 
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 474 

3. From data to analysis 475 

Data analysis issues must be addressed upfront alongside sensor selection and experimental 476 

design, to ensure the resulting data are sufficient for the proposed mathematical models and 477 

statistical tests used to infer biological information from the data. This requires strong inter-478 

disciplinary collaborations between empiricists and theoreticians from the outset of the project. 479 

The first major challenge for the link between data collection and analyses in the IBF is the 480 

‘big data’ problem. Rapid advances in bio-logging technology now provide information-rich, 481 

big data sets, even from single individuals, thus the challenges in data analyses are similar to 482 

those of ‘big data’ and ‘data science’ problems in ecology and science (Hampton et al., 2013; 483 

Lewis, Vander Wal, & Fifield, 2018; Thums et al., 2018). There is an urgent need for the use 484 

and development of more sophisticated and computationally efficient data visualisation and 485 

exploration methods, as well as mathematical models that incorporate multidimensional bio-486 

logging data. 487 

 488 

3.1 Data Visualisation 489 

A key part of exploratory data analysis consists in devising efficient ways to visualise and 490 

display quantitative information (Tukey, 1977). Data visualisation converts complex patterns 491 

in data into a visual display, capitalising on the extraordinary capacity of the human visual 492 

system to pick out patterns in complex landscapes, and thereby provide insights into data 493 

relations (Ware, 2012). While ecologists often develop their own visualisation tools, many 494 

methods come from other disciplines such as geographic information science (Demšar et al., 495 

2015; Li, Wu, Song, & Zhou, 2016), medicine and neuroscience (with complex fMRI data e.g. 496 

de Ridder, Klein, & Kim, 2017). 497 

 498 

Conventionally, acceleration data tend to be visualised as time series plots (Figure 4A), with 499 

analyses based on summary statistics (derived from ethograms; Figure 4B) and the application 500 

of data transformations. While such approaches are useful for classification of time series data 501 

(Walker et al., 2015), integration of multi-sensor data are poorly covered by this approach (Lee 502 

& Jeong, 2017; Li et al., 2016; Walker, Borgo, & Jones, 2016), primarily due to time taking up 503 

one axis and constraining all other data to lie within its scaling and bounds. Other visualisations 504 

may bypass the time scaling factor by having spherical plots that present 3-dimensional 505 

scatterplots, histograms, clustering data by behavioural state (Grundy, Jones, Laramee, Wilson, 506 

& Shepard, 2009; Williams et al., 2017; Wilson et al., 2016; Figures 4C-E). The value in these 507 
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spherical plots is that they are also multi-layer and present environmental data such as pressure 508 

and temperature as well as metrics of energetic expenditure (Roberts, Laramee, & Jones, 2015). 509 

In addition, time can also be represented, if necessary, by glyph or line colour (Figure 4E). 510 

Thus, such visual analytics systems can be linked interactively to allow different aspects of the 511 

same data to be explored, with and without temporal and spatial scales. In terms of sensor data 512 

this includes plots in tri-axial space with further dimensions related to movement and 513 

performance metrics (e.g. Roberts et al., 2015) and those that combine multi-dimensional 514 

trajectory visualisations on a map with environmental data (e.g. Buchin et al., 2015; Shamoun-515 

Baranes et al., 2016; Figure 4F) and temporal visualisations (Demšar et al., 2015) such as 516 

DynamoVis (Dodge, Xavier, & Wong, 2018; Xavier & Dodge, 2014) or flow visual analytics 517 

systems (Andrienko, Andrienko, Chen, Maciejewski, & Zhao, 2017; Graser, Schmidt, Roth, & 518 

Brändle, 2017; Figure 4G). Time is also commonly visualised through animation and there are 519 

two R packages that support this (albeit for traditional location-only data, not logger data): 520 

moveVis (Schwalb-Willmann, 2018) and anipaths (Scharf, 2018). See supplementary 521 

information for a detailed list of current visualisations (SI Table 3). Current developments 522 

indicate that it may be possible to bring these multi-dimensional plots into an interactive 3-523 

dimensional lab space beyond a digital screen, which would dramatically help exploration of 524 

data and even advance behavioural studies through the manipulation of the virtual world (see 525 

Stowers et al., 2017). Equally important will be the development of improved ways to display 526 

results from machine-learning methods (see below); again, an area for which multi-disciplinary 527 

collaborations will be crucial. 528 

 529 

3.2 Behavioural Classification 530 

Behavioural classification involves identifying particular behaviour-linked signals within 531 

complex datasets, such as accelerometer and magnetometer data. This may involve searching 532 

for behaviour-linked thresholds, such as an increase in pressure to indicate diving (Kooyman, 533 

1964) but more commonly will involve consideration of multiple data streams (Viviant, Trites, 534 

Rosen, Monestiez, & Guinet, 2010; Yoda et al., 2001), which makes the process more complex. 535 

For this reason, much emphasis has recently been placed on machine learning algorithms 536 

(including K-Nearest Neighbour [KNN], Support Vector Machines [SVMs], Classification and 537 

Regression Trees [CART], and Artificial Neural Networks [ANNs]) to classify behaviours 538 

automatically (Nathan et al., 2012). Supervised machine-learning models are trained with 539 

segments of data that have been manually labelled according to behaviour (Carroll, Slip, 540 

Jonsen, & Harcourt, 2014; Watanabe & Takahashi, 2013). The convenience of machine-541 
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learning systems is that they require little specialist knowledge about the data streams from the 542 

researcher. Against this, there is a tendency to put all primary data streams as well as derived 543 

elements (such as DBA metrics) into the process. Because the machine does not know which 544 

data streams are most relevant at the outset, processing times can be prohibitively long. An 545 

approach that attempts to deal with this uses a Boolean framework and requires that the 546 

researchers have enough specialist knowledge to be able to pick out a sequence of features in 547 

behaviours (systematic variation and direction in data streams over defined time periods) to be 548 

able to define the behaviour in a series of key elements. These are then defined in an algorithm 549 

and the computer made to search for exactly those conditions to define the behaviour (Wilson, 550 

Holton, et al., 2018). The obvious downside to this approach is the level of expertise of the user 551 

and familiarity with the meaning of the data streams, which highlights the crucial role 552 

ecologists and biologists have to play in making sure analysis results remain biologically sound 553 

and relevant. On the other hand, bio-logging sensor data allow the discovery of behaviours 554 

never seen before in animals (Wilson et al., 2014), thus both exploratory and confirmatory 555 

analyses, as well as supervised and non-supervised data analysis methods will be equally 556 

important for ecologists (see also Leos‐Barajas et al., 2017). Behaviour classification using 557 

logger data can also inform the usage of more traditional and limited GPS data to identify 558 

different behaviours in the latter (e.g. Browning et al., 2018). 559 

 560 

3.3 Movement analyses in the bio-logging era 561 

There is a long history of theoretical investigation into the reasons and rules underpinning 562 

animal movement (Nathan et al., 2008) including optimal foraging theory (Houston, Clark, 563 

McNamara, & Mangel, 1988; Pyke, 1984). However, historically, there have been inadequate 564 

data on the energetics and the details of movements to embrace optimality properly. 565 

Consequently, theoretical movement ecology has tended to focus on statistical descriptions of 566 

movement that are agnostic to the underlying life-history needs that govern movement 567 

decisions. Step-selection analysis, for example, examines environmental features that are 568 

correlated to movements from one location to the next (Avgar, Potts, Lewis, & Boyce, 2016; 569 

Fortin et al., 2005; Thurfjell, Ciuti, & Boyce, 2014). As another example, there are a variety of 570 

techniques that use movement to infer changes in behaviour, by observing how features such 571 

as speed, or tortuosity change over time (Hooten, Johnson, McClintock, & Morales, 2017). 572 

These are categorised under various names such as state-space models (Jonsen et al., 2013; 573 

Morales, Haydon, Frair, Holsinger, & Fryxell, 2004; Patterson, Thomas, Wilcox, Ovaskainen, 574 

& Matthiopoulos, 2008), hidden Markov models (Langrock et al., 2012; McClintock & 575 
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Michelot, 2018), continuous time models (reviewed in Patterson et al., 2017), and behavioural 576 

change-point analyses (Edelhoff, Signer, & Balkenhol, 2016; Gurarie, Andrews, & Laidre, 577 

2009). Similarly, there has been significant interest in inferring broad-scale movement patterns, 578 

such as home range, migratory or dispersal patterns, from squared displacement statistics 579 

(Börger & Fryxell, 2012). There is also a long history of mathematical models for inferring 580 

space-use patterns from general features of movement, such as advective and diffusive 581 

components (Moorcroft & Lewis, 2006; Moorcroft, Lewis, & Crabtree, 1999; Potts & Lewis, 582 

2014). All of these examples model movement in a descriptive fashion, where the biases and 583 

correlations (Benhamou, 2014; Codling, Plank, & Benhamou, 2008) represent hypothesised 584 

behavioural features of the movement path and the aspects of the movement that we either do 585 

not have direct knowledge of or are unable to test, as ‘random walks’, or ‘hidden states’. 586 

Incorporating high-resolution information from bio-logging studies can change this, as well as 587 

enable us to answer questions that link movement decisions to the life-history needs of animals.  588 

 589 

Step selection analysis (SSA) is one of the most widely-used techniques for inferring the 590 

environmental drivers behind observed movement patterns. New bio-logging technologies 591 

enable us to build upon SSA in two important ways. First, the ultra-high frequency locations 592 

given by dead-reckoned IMU data enable us for the first time to find the precise points at which 593 

an animal changes direction (Potts et al., 2018), rather than assuming (implicitly) that changes 594 

in direction occur at the points where locations are acquired (which is typical in SSA studies 595 

based on GPS data, although there are exceptions; e.g. Merkle, Fortin, & Morales, 2014). 596 

Second, this approach can be extended to examine broader changes in the state of the animal, 597 

rather than simply its location, and without having to recur to statistical models trying to infer 598 

a ‘hidden state’. As such, we might parametrise a model containing not only the locations of 599 

the animal, but also any of the other aforementioned features that we can measure (or infer 600 

from metrics of movement) from bio-logging technology, such as head-position, heart-rate, 601 

movement “mode” (running/eating) or even interaction variables related to the movement of 602 

others in the environment (SI Box 1).   603 

 604 

For example, by modifying step selection analysis and similar techniques to incorporate the 605 

energetic costs and benefits derived from detailed bio-logging data (acceleration and heart rate 606 

loggers), we may be able to uncover the bio-energetic reasons behind animal movement 607 

choices, rather than simply describing landscape aspects that co-vary with animal movement. 608 

This would help us re-visit old questions about the optimality of foraging decisions, and give 609 
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important behavioural insights into animal decision-making at fine scales as they move through 610 

their energy landscape (Shepard et al., 2013). Quantifying the effects of the environment on 611 

movement costs in this way could help also derive a proxy of energy cost based on 612 

environmental conditions, to use with movement data without bio-logging information (e.g. 613 

Figure 3).  614 

 615 

An interesting development in that direction is by Hooten, Scharf, & Morales (2018), who 616 

present a new approach to analyse movement data including explicit mechanistic links to 617 

physiological dynamics, to better model decision making and movement in heterogeneous 618 

environments. Notably, this approach can be extended to accommodate additional data such as 619 

those provided by bio-loggers. Similarly, state-space models and behavioural change-point 620 

analysis would be enhanced greatly by careful incorporation of data on acceleration or energy 621 

expenditure. Indeed, the behavioural states in these models are often “hidden” (as in “hidden 622 

Markov model”) but the sort of bio-logging data described in this review may be able to shed 623 

light on these states more directly. This will be a major change in the field and allow markedly 624 

improved and biologically relevant understanding to be obtained; compared to any of the even 625 

most sophisticated modelling approaches currently used. 626 

 627 

 628 

4. Future developments for optimising the use of bio-logging 629 

So far, we have reviewed the current technologies and techniques available in the bio-logging 630 

toolbox, and how we may optimise their use to answer the big questions in ecology through 631 

collaborations within the IBF. Here we highlight potential key future developments, across all 632 

nodes of the IBF, which would markedly advance the fields of bio-logging and movement 633 

ecology. 634 

 635 

New sensors: from speed measurement to skin-patches 636 

As speed is a key parameter of movement, there is an urgent need for reliable speed sensors 637 

without the disadvantages (such as fouling) or limits of propellers, flexible paddles, and Pitot 638 

tubes (cf. Shepard, Wilson, Liebsch, et al., 2008). Speed of movement exposes animals 639 

differentially to conditions and equates to (the square root of) power. New sensors need not be 640 

limited to external sampling systems either. Animal skin-associated ‘patches’ are being 641 

increasingly used in lab scenarios to look at physiological variables such as stress hormones 642 

and other chemicals (Lee, Bakh, Bisker, Brown, & Strano, 2016), something that would find 643 
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great resonance in wild animal studies. We see huge scope for cross-fostering between these 644 

fields, but there are substantial challenges as many of these applications, such as those 645 

developed for human studies (Nikita, 2014; Yang, 2014), require powerful readers that operate 646 

at close range, and tend to be severely battery limited. Finally, tags need to be able to drop off 647 

more routinely and be recovered reliably over large spatial scales, to obtain the large amount 648 

of recorded data. This may also save the animal the stress of being recaptured and having to 649 

carry the tags for longer than necessary, with all the tag detriment issues that this engenders. 650 

 651 

Improved ethical and animal welfare methodologies 652 

Although sensor technology is advancing rapidly, the ethics of bio-logging is still a major 653 

concern both in terms of fitting the device, which often requires capture, and the effects of 654 

carrying a bio-logger for the study subject. Advancing methodology in capture and 655 

consideration of stress by the animal is something that ecologists can work on. Be it reducing 656 

handling times, protecting a nest from predators or competitors while the animal is unable to, 657 

or even advancing remote tagging methods where the animal does not need to be handled. An 658 

additional limitation, is that most devices store data on-board, necessitating recapture of 659 

animals and the recovery of the units. Improving the ability of these devices to remotely 660 

transmit data would improve their applicability and reduce invasiveness, though may require 661 

additional weight in terms of electronics and battery. Of greater concern are tags which require 662 

surgical implantation. Recent advances have led to the development of surgically implanted 663 

sensors even measuring neurological activity, which may further our understanding of the 664 

mechanisms behind behaviour, but at what cost for the animal?   665 

 666 

A related key limitation to current bio-logging devices is expressed by the ‘measurement 667 

effects performance’ paradigm (Wilson, Grant, & Duffy, 1986) via, for example, increased 668 

movement costs for the animal through additional mass loading or the ‘drag’ of the device 669 

(Barron, Brawn, & Weatherhead, 2010; Vandenabeele et al., 2015) producing non-670 

representative data. There are also other important moral and ethical considerations to animal 671 

detriment (Cooke et al., 2017; Wilson et al., 2019), such as cumulative effects (as a result of 672 

re-tagging) and long-term effects (decreased survival and/or lifetime reproductive success, 673 

which may not be easily evident from short term changes in movement and activity patterns). 674 

Thus the current ‘rule of thumb’ based on 3-5% body weight (for aerial and terrestrial animals 675 

respectively) is naïve (Bodey et al., 2018), and will need to be improved using more 676 

comprehensive information on tag effects based on physical principles (e.g. via computational 677 
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fluid dynamics to account for drag; Kay et al., accepted), considering also the often neglected 678 

effects of tag attachment itself (Vandenabeele et al., 2014). In the meantime, certainly 679 

researchers will have to better exploit the ongoing miniaturization to reduce the relative mass 680 

of the devices attached to animals (Portugal & White, 2018). Equally important, researchers 681 

should consider if a new tagging study is necessary, or if the question can be answered using 682 

existing published data or through data sharing, which will require the development of 683 

markedly improved data standards for bio-logging data (see previous section; Figure 3). 684 

 685 

Lifetime tracking, real-time processing and remote data transmission 686 

As bio-logging technology continues to advance, the ability to study an individual or 687 

population throughout their entire life from conception to death becomes a more realistic 688 

possibility. Such large-scale tagging has major ethical implications, as not only a small subset 689 

is affected but an entire group, community or population. Especially for similar large-scale 690 

questions, researchers would benefit from enhanced bandwidth for transmitting data (cf. 691 

O’Donoghue & Rutz, 2016), an element that is already being trialled within the ICARUS 692 

system (Wikelski et al., 2007). In tandem with this comes smart on-board data-processing (e.g. 693 

Cox et al., 2018) which has the potential to markedly increase the temporal and taxonomic 694 

range of data which can be collected. The combination therein of real-time processing and 695 

transmission of data will not only enable scientists to dynamically adapt experiments, but has 696 

applications in conservation and management.  697 

 698 

Improving the theoretical and mathematical foundations of movement ecology 699 

Perhaps the most exciting aspect of bio-logging is that the data-rich approach driven by animals 700 

will not only help us to understand why animals do what they do, pinpointing drivers that range 701 

from internal state responses to pan-ocean basin atmospheric conditions, but thanks to an 702 

improved mechanistic understanding, we might actually be able to predict animal responses to 703 

future conditions. To do so will require a large improvement in the theoretical and 704 

mathematical foundations of movement ecology, to include the rich set of high-frequency 705 

multivariate data, which greatly expand the fundamentally limited and coarse data that could 706 

be collected using location-only technology such as GPS. In particular, there is a clear synergy 707 

between local (small-scale) information provided by sensors and large-scale information 708 

provided by, for example, remote sensing data. How to link and predict processes occurring 709 

across different scales is a central question in ecology (Levin, 1992) yet difficult to address, 710 

with the key issues being to identify the correct mesoscopic scale connecting microscopic 711 
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processes to macroscopic patterns. This is the case even for ‘simple’ physical systems 712 

constituted of identical particles, whereas biological systems are instead fundamentally 713 

characterised by additional intra- and inter-specific heterogeneity. Movement ecologists 714 

therefore have to deal with processes which span multiple scales of spatio-temporal and 715 

biological complexity (Torney, Hopcraft, Morrison, Couzin, & Levin, 2018). Hence, 716 

demanding yet exciting challenges lie ahead for integrating novel bio-logging data with 717 

ecological questions. We may now have access to vastly improved information for wild animal 718 

biologists to predict processes.  719 

 720 

Improved multi-disciplinary collaborations 721 

Collaboration is key to the framework’s success as a tool for optimisation of bio-logging 722 

studies. At the same time, ecologists can feed new developments back to other disciplines, e.g. 723 

as inspiration for new theorems (Cohen, 2004; Sturmfels, 2005), or for biologically inspired 724 

engineering (Bionics), such as new models of navigation inspired by ants (Esterley, McCreery, 725 

& Nagpal, 2017) or improved collective decision making in robot swarms (Ebert, Gauci, & 726 

Nagpal, 2018). Indeed, actions to bring together multi-disciplinary groups of experts are 727 

gathering momentum in movement ecology; these include the EU COST actions from MOVE 728 

to develop improved methods for knowledge discovery from moving objects and big data 729 

(www.cost.eu/COST_Actions/ict/IC0903) with similar initiatives in the European Network for 730 

Radar Surveillance of Animal Movement (http://www.enram.eu/), the Special Interest Group 731 

in Movement Ecology of the British Ecological Society 732 

(www.britishecologicalsociety.org/membership-community/special-interest-733 

groups/movement-ecology/) and the International Bio-Logging Society (www.bio-734 

logging.net/). 735 

 736 

 737 

Conclusion 738 

We have i) reviewed how to optimise the use of bio-logging techniques for ecologists to be 739 

able to take full advantage of the paradigm-changing opportunities of bio-logging sensors for 740 

ecological research and ii) synthesised this into an Integrated Bio-logging Framework (IBF) 741 

for movement ecology research. We highlighted the many new and often unexplored 742 

opportunities to address biological questions using the most appropriate sensors and sensor-743 

combinations, especially using multi-sensor approaches, a new frontier in bio-logging research. 744 

Given the technological complexities and rapid pace of advancement of the field, however, 745 

http://www.cost.eu/COST_Actions/ict/IC0903
http://www.britishecologicalsociety.org/membership-community/special-interest-groups/movement-ecology/
http://www.britishecologicalsociety.org/membership-community/special-interest-groups/movement-ecology/
http://www.bio-logging.net/
http://www.bio-logging.net/
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establishing multi-disciplinary collaborations will be paramount for ecologists – and at the 746 

same time the latter can thereby more efficiently guide future technological and methodological 747 

advancements to address biological questions. Closely linked to the issue of matching 748 

ecological questions with sensors, is devising a good experimental design up front. This 749 

involves multiple closely connected challenges, from tag design and sampling regime, to the 750 

important related ethical and animal welfare considerations, and the challenges of data sharing. 751 

Linking new bio-logging data types to the most adequate analytical techniques presents many 752 

new and often unsolved issues in particular, and will require multi-disciplinary collaborations 753 

to tackle the ‘big data’ problem, and improve the theoretical and mathematical foundations of 754 

movement ecology. The tasks ahead are challenging, but a clear potential exists for a vastly 755 

improved mechanistic understanding of animal movements and their role in ecological 756 

processes, from which we can build unprecedented and realistic predictive models. 757 

 758 
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Tables and Figures 780 

 781 

Table 1: Summary table of the current bio-logging sensors available, beyond classic location 782 

sensors. The detailed application and description of sensors is provided in SI Table 1.  783 

 784 

Sensor type examples description Relevant 

questions 

optimisation 

Location Animal‐borne 

radar, pressure, 

passive acoustic 
telemetry, 

proximity sensors 

Location based on 

receiver location 

Space use; 

interactions; 

 

Use in combination with the 

behavioural sensors below; 

Create visualisations to 
facilitate interpretation of 3D 

space use and interactions 

Intrinsic Accelerometer, 

magnetometer, 

gyroscope, 

(gyrometer)  

Patterns in body 

posture, dynamic 

movement, body 

rotation and 

orientation.   

 

Behavioural 

identification; 

internal state; 

3D movement 

reconstruction 

(dead‐reckoning); 

energy 

expenditure; 

biomechanics; 

feeding activity; 

space use 

 

Use in combination with other 

intrinsic sensors to build up 

detail of behaviour and/or 3D 

path reconstruction; 

Increased sensitivity to detect 
micro‐movements or stress‐

related activity; high 

resolution (temporal and 

spatial) environmental data 

may improve accuracy of path 

reconstruction (e.g. in relation 

to environmental flow, wind or 

current data) 

Heart rate loggers,  

stomach 

temperature 

loggers, 

neurological 

sensors, flexible 

speed paddle, pitot 
tube, speed 

paddles 

Measures of 

activity. 

 

Microphone, hall 

sensors, 

Specific limb 

movement and 

vocal behaviour. 

Environment Temperature Ambient Space use, energy 

expenditure;  

external factors; 

interactions 

In situ remote sensing; arrays 

to localize animals; 

visualisations to provide 

context and understanding of 

interactions 

Microphone, 

proximity sensors, 

video loggers 

Record external 

environment e.g. 

soundscape 

 785 

  786 
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 787 

 788 

Figure 1: The Integrated Bio-logging Framework (IBF) for optimal use of bio-logging in 789 

movement ecology. Researchers may take a question-driven approach, beginning with a 790 

hypothesis, then selecting the appropriate sensor and analysis techniques. Alternatively, a 791 

data-driven approach can be taken, by allowing existing data to inform further hypotheses and 792 

data collection. The framework operates via collaboration between disciplines in a system of 793 

feedback loops, numbered as 1-5, though these collaborative links are not exclusive to any 794 

particular node. Figures 2 and 3 provide illustrated examples for the use of the IBF. 795 
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 796 

 797 

Figure 2: A question-driven approach to the IBF for optimal study design using bio-logging. 798 

In this example, ecologists begin with their question of focus (top of Figure 1), in this case an 799 

investigation into the effect of internal state on movement decisions, and select the appropriate 800 

external and internal sensors for data collection. Here, sensors should be sensitive to different 801 

aspects of an animal’s movement that relate to their internal state, perceived information and 802 

the movement that may result from a particular decision. Selection of the sensors requires 803 

strong collaboration between ecologists and engineers (right-hand symbols). Simultaneously 804 

(bottom of Figure 1), ecologists should work with those analysing the data (e.g. physicists, 805 

mathematicians, statisticians, computer scientists) in the process of designing the data 806 

collection, to ensure the correct data are gathered that can answer the question using the 807 

analytic tools available.  808 
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 809 

 810 

Figure 3: A data-driven approach to the IBF for optimal study design using archived bio-811 

logging data. In this example, ecologists begin by selecting appropriate data types for the study 812 

of movement patterns in relation to environmental measures at local and global scales. 813 

Understanding and predicting how animals respond to global change, including climate and 814 

land-use change, requires multiple data collected over a range of temporal and spatial scales. 815 

In this case, ecologists start at the central nodes of the IBF (Figure 1) to collate archived data 816 

and collaborate with mathematicians, statisticians and geographers (right-hand symbols) to 817 

implement the appropriate processing and analytical techniques to interrogate the data and 818 

identify patterns by which several questions may be approached. Following this, ecologists 819 

may work with other disciplines to deploy additional bio-logging sensors to collect data that 820 

complement the shared data.  821 
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822 

Figure 4: Visualisation of sensor and location data. A number of schematic plots of varying 823 

axes and information types to visualise data of a seabird in flight that plunge-dives in pursuit 824 

of prey. A) Logged sensor outputs (acceleration (g), magnetometry (µT), altitude above sea 825 

level (m) derived from pressure data (kPa) and the inter-mandibular angle sensor IMASEN 826 

output (µT)) in a time series plot. Peaks in dynamic acceleration are associated with wing 827 

beats during take-off (red) and in flight (yellow), as well on impact with the sea surface in 828 

plunge-dives (aqua blue). During the dive, as indicated by the negative altitude above sea level 829 

(ASL; purple) the bird may pursue prey (dark purple), as indicated by increased variation in 830 
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acceleration and heading, from the magnetometer output. A successful prey capture attempt is 831 

evident in the peaks in the IMASEN signal output, as the bird opens its bill to capture the prey 832 

(yellow asterisk). B) The behaviours are classified and presented in an ethogram to show 833 

temporal variation in behaviour (this serves as a key for the schematic). Further to these time 834 

series plots, different sensor outputs can be combined, along with derived metrics, in various 835 

multi-axes visualisations to reveal patterns in behaviour. We present three examples (C-E) for 836 

data visualisation in multi-dimensional space and two for geographic space (F-G): C) a 837 

circular plot of heading on an m-sphere (magnetometry; Williams et al., 2017), where height 838 

of the bar is the magnitude of the extent of movement (DBA), the most active behaviours for 839 

this bird are foraging and diving, which occur at opposite headings; D) a g-sphere (static 840 

acceleration data) or Dubai plot, where a frequency histogram of static acceleration is 841 

resolved in tri-axial space (Wilson et al., 2016) and peaks show the most common postures for 842 

each behaviour; E) a g-sphere where distance from the surface of the sphere is relative to the 843 

depth below sea level, where colour indicates different behaviours in the dive, so that through 844 

the dive there is a shift in posture, and a greater variation in posture and depth during the prey 845 

pursuit (coloured by time in greyscale, bottom right); F) 3D movement path during for the 846 

foraging trip; G) 2D flow visualisation of foraging path, where thicker paths are more 847 

commonly used for the different behaviours (Verbeek, Buchin, & Speckmann, 2011). 848 
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