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Abstract

The viewing graph represents a set of views that are re-

lated by pairwise relative geometries. In the context of

Structure-from-Motion (SfM), the viewing graph is the in-

put to the incremental or global estimation pipeline. Much

effort has been put towards developing robust algorithms

to overcome potentially inaccurate relative geometries in

the viewing graph during SfM. In this paper, we take a fun-

damentally different approach to SfM and instead focus on

improving the quality of the viewing graph before apply-

ing SfM. Our main contribution is a novel optimization that

improves the quality of the relative geometries in the view-

ing graph by enforcing loop consistency constraints with

the epipolar point transfer. We show that this optimization

greatly improves the accuracy of relative poses in the view-

ing graph and removes the need for filtering steps or robust

algorithms typically used in global SfM methods. In addi-

tion, the optimized viewing graph can be used to efficiently

calibrate cameras at scale. We combine our viewing graph

optimization and focal length calibration into a global SfM

pipeline that is more efficient than existing approaches. To

our knowledge, ours is the first global SfM pipeline capable

of handling uncalibrated image sets.

1. Introduction

The viewing graph is a fundamental tool in the con-

text of Structure-from-Motion (SfM) [20, 26, 29]. This

graph encapsulates the cameras that are to be estimated

as vertices and the relative geometries between cameras as

edges. SfM algorithms take the relative geometries from

the viewing graph as an input and output a reconstruction

consisting of camera poses and 3D points. The traditional

method for computing a SfM reconstruction is incremental

SfM [28, 32] which progressively grows a reconstruction by

adding one new view at a time. Incremental SfM requires

repeatedly performing nonlinear optimization (i.e., bundle

adjustment) as the reconstruction grows in size. As a re-

Figure 1. Reconstructions computed from global SfM methods on

the Pisa dataset [16]. Top: Standard global SfM pipelines [31]

struggle to handle image sets with poor calibration or inaccurate

relative geometries. Bottom: Our method optimizes the relative

geometries in the viewing graph to enforce global consistency, re-

sulting in an efficient SfM pipeline that handles calibrated or un-

calibrated images.

sult, incremental SfM is able to overcome noise in the view-

ing graph because errors and inaccuracies from the viewing

graph are consistently corrected through bundle adjustment.

Much recent work has focused on so-called “global

SfM” techniques that consider all relative poses (i.e., edges

in the viewing graph) to simultaneously estimate all camera

poses in a single step [3, 11, 12]. These methods operate on

calibrated image sets by first estimating the global orienta-

tion of all cameras simultaneously [6, 13, 14, 21], then solv-

ing for the camera positions simultaneously [3, 16, 22, 31].

Finally, structure is estimated and a global bundle adjust-

ment is applied. Since bundle adjustment is generally the

most expensive part of SfM, global SfM methods are gen-

erally more efficient and scalable than incremental methods

as they only require a single bundle adjustment.

Since global SfM relies on averaging relative rotations

and translations, the quality of the input relative poses di-
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rectly affects the final reconstruction quality. Various filter-

ing techniques exist [16, 31] to remove outlier edges from

the viewing graph; however, it is clear to see that the ef-

fectiveness of these methods will decrease when the accu-

racy of relative geometries in the viewing graph decreases,

since it will be more difficult to distinguish noise from out-

liers. Inaccurate relative geometries are common in the con-

text of SfM from internet photo collections [28] and may

arise from a variety of reasons including poor calibration,

repeated structures, image noise, and poor or sparse feature

matches. Indeed, much effort has been put towards design-

ing robust SfM algorithms that are capable of overcoming

potentially inaccurate relative geometries.

In this paper, we approach SfM from a fundamentally

different perspective: rather than treating potentially inac-

curate two-view geometry as static input to SfM, we in-

stead attempt to recover a consistent viewing graph from

a noisy one such that the performance of any SfM method

will be improved. In practice, it is unlikely that we are

able to recover a perfectly consistent viewing graph; how-

ever, we show that enforcing loop consistency in the view-

ing graph makes estimating structure and motion easier by

improving the convergence of current SfM algorithms. As

our main contribution, we propose a novel method to op-

timize the viewing graph and enforce global consistency

through loop constraints. We use the epipolar point trans-

fer across triplets in the viewing graph as a geometric er-

ror for loop consistency and directly optimize fundamental

matrices connecting views. An important contribution of

our viewing graph optimization is that it is able to oper-

ate on calibrated or uncalibrated datasets, and we present a

scalable calibration method for determining focal lengths of

uncalibrated cameras (see Section 5).

Our optimization is able to greatly improve the accu-

racy of relative poses in the viewing graph (see Section

6), and the resulting optimized viewing graph does not re-

quire any filtering steps during SfM to remove “bad” rela-

tive geometries. This is in contrast to alternative methods

[16, 22, 31] which require complex filtering steps through-

out camera pose estimation. As a result, we are able to de-

sign a simple global SfM pipeline (compared to alternative

approaches such as [16, 22, 31]) that is extremely efficient.

To our knowledge, this is the first global SfM method that is

able to handle uncalibrated image sets. We demonstrate on

several large scale datasets that our optimization and simpli-

fied SfM pipeline is able to greatly improve the efficiency

of large scale SfM while maintaining comparable accuracy.

1.1. Related Work

We will briefly present some of the related works here,

and will present other related works throughout the remain-

der of the paper.

Much previous work has analyzed the viewing graph.

Levi and Werman [20] presented a theoretical analysis of

viewing graphs, and provide linear methods for inferring

missing edges from a consistent viewing graph given up to

6 views. Rudi et al. [26] present a followup to this work by

analyzing the solvability of viewing graphs in the context

of creating reconstructions. Both of these works, however,

only analyze characteristics of consistent viewing graphs.

In contrast, Pillai and Govindu [25] assume they are

given a non-consistent viewing graph and present a method

that attempts to modify it to form a consistent viewing

graph. They iteratively re-estimate pixels locations of ob-

served feature points based on the epipolar point transfer,

then use these updated feature points to re-estimate funda-

mental matrices connecting views. This process is repeated

until convergence; however, convergence is not guaranteed

and even on the small datasets presented (fewer than 15 im-

ages) the method does not converge after 200 iterations.

2. The Viewing Graph

A scene consisting of n views may be represented by

a viewing graph G = {V , E} whose vertices V corre-

spond to views in the scene and whose edges E corre-

spond to feature matches and relative geometries between

two views, namely the fundamental matrix connecting two

views. Specifically, Fij is the fundamental matrix that

transfers points in image j to lines in image i. The view-

ing graph contains information about the relative geome-

try between views but does nothing to enforce geometric

constraints beyond 2-view geometry. For example, there

may be triplets (loops of size 3) whose relative geometry is

not geometrically feasible when considering all three edges

[26, 33]. Ideally, the edges in these loops would be consis-

tent with each other.

Condition 1. A triplet of fundamental matrices is consistent

when they satisfy [15]:

e⊤ikFijejk = e⊤ijFikekj = e⊤jiFjkeki = 0 , (1)

where eij is the epipole of Fij corresponding to the image

of camera center j in view i and eij 6= eik i.e., the non-

collinearity condition is satisfied.

Definition 1. A consistent viewing graph is a viewing graph

where all triplets satisfy Condition 1.

The geometric interpretation of Definition 1 is that the

projection of view k’s camera center in image i is consistent

with the projection of view k’s camera center in image j
transferred to image i by the fundamental matrix Fij .

Let us now consider the existence of a consistent viewing

graph:

Theorem 1. Given a reconstruction R = {P,X} consist-

ing of projection matrices P and 3D points X , a non-empty

set of consistent viewing graphs exists.
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Proof. A consistent viewing graph may be constructed di-

rectly from the reconstructionR by setting each edge eC ∈
E to the fundamental matrix composed from the two corre-

sponding projection matrices [15]. By construction, Condi-

tion 1 is satisfied.

Thus, for every reconstructionR there exists a consistent

viewing graph GC that will generateR. Further, it is known

that computing a reconstruction from a consistent viewing

graph may be done trivially by chaining projection matri-

ces computed directly from the fundamental matrices in the

viewing graph [26, 27]. Computing a reconstruction from a

non-consistent viewing graph, however, is much more diffi-

cult and is the crux of most SfM methods.

3. Creating a Consistent Viewing Graph

Rather than facing the difficult task of computing a re-

construction from a non-consistent viewing graph G, we

propose to instead recover a consistent viewing graph GC
from G so that computing a reconstruction is simplified

[15, 26]. Thus, the goal of this paper is to optimize a noisy,

non-consistent viewing graph G = {V, E} to recover a con-

sistent viewing graph GC that will improve SfM. This re-

quires adjusting the edges Fij ∈ E to enforce Condition 1.

We propose an optimization scheme that uses a geometric

error to enforce loop constraints that attempt to satisfy Con-

dition 1. If we are able to recover a consistent viewing graph

then computing a reconstruction is trivial; however, even

in the case that we cannot recover a fully consistent view-

ing graph the accuracy of the relative geometries improves

enough that computing structure and motion is greatly sim-

plified (c.f . Section 4).

In the remainder of this section we propose an optimiza-

tion that operates on the viewing graph, enforcing loop con-

sistency with the epipolar point transfer. Our optimization

recovers an approximately consistent viewing graph GOPT

that improves the performance of SfM by improving con-

vergence in the estimation process.

3.1. Enforcing Loop Consistency

We now propose a cost function for adjusting E to en-

force triplet consistency in G. While Condition 1 is a suffi-

cient condition for consistency [26], it is an algebraic metric

and is significantly under-constrained. Instead, we propose

to use the epipolar point transfer to enforce loop consis-

tency. The epipolar point transfer is defined as the inter-

section of two transfer lines of two views into a third view

(c.f . Figure 2).

x̂i
jk = Fijxj × Fikxk , (2)

where xi is the feature point in image i and x̂i
jk is the

estimated pixel location of xi based on the epipolar trans-

fers from views j and k. In the ideal case we will have

xj

xi

xk

xi
jkView j

View i

View k

Fij Fik

Figure 2. The epipolar point transfer is the intersection of the

points xj and xk transferred to image i. We enforce loop con-

sistency in the viewing graph by optimizing fundamental matrices

such that the distance between the observed point xi and the epipo-

lar point transfer xjk
i is minimized.

xi = x̂i
jk; however, this is almost never the case in real data

because of image noise and outliers in the feature matching

process. Instead, we define a cost function based on the

epipolar point transfer:

C(x)jki = ||xi − x̂i
jk||2 . (3)

This cost is a geometric error in terms of pixel distance and

has previously been shown to be effective [10, 25]; however,

care must be taken to avoid numerical instabilities (see Sec-

tion 3.4).

3.2. Updating Fundamental Matrices

We seek to adjust fundamental matrix edges Fij ∈ E
in G based on Eq. (3). Fundamental matrices are a special

class of rank-2 matrices [1]. Thus, updating a fundamental

matrix during the nonlinear optimization must be done care-

fully to ensure that the resulting 3×3 matrix remains a valid

fundamental matrix. We use the nonlinear fundamental ma-

trix representation of Bartoli and Sturm [4] to update the

fundamental matrices and briefly summarize their method

here.

Note that a fundamental matrix F may be decomposed

into matrices U , S, and V by singular value decomposition

F = USV ⊤, where U and V are orthonormal matrices and

S is a 3 × 3 diagonal matrix of the form diag(1, s, 0). To

update F , we apply a SO(3) rotation to the O(3) matrices

U and V , and a simple scalar addition to s.

U ← RuU (4)

V ← RvV (5)

s← s+ δs (6)

Since Ru and Rv are SO(3) rotations, they may be rep-

resented with the minimal 3 parameters (by Euler angle or

angle axis representation), thus requiring 7 parameters total

(3 for Ru, 3 for Rv and 1 for δs) to update F . Since F has 7

degrees of freedom, this is a minimal parameterization and

has been shown to maintain valid fundamental matrices [4].
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3.3. Nonlinear Optimization

We create a large nonlinear optimization using the cost

function of Eq. (3) and the presented method for updat-

ing fundamental matrices. We only optimize edges that are

present in triplets T in the viewing graph:

F∗ = argmin
F

∑

t∈T

∑

x∈t

C(x)jki + C(x)ikj + C(x)ijk , (7)

where x is a feature track present in the triplet t = {i, j, k}
and F is the set of fundamental matrices F ∈ E . That is,

for all triplets, we minimize the epipolar point transfer cost

of all feature tracks within the triplet. Although the epipo-

lar point transfer cost function does not require a triplet of

fundamental matrices, we found that using triplets greatly

improved the rate of convergence. Further, since each cam-

era interacts with other cameras that might not be linked

together in a triplet, larger loops are implicitly created.

Finally, it should be noted that the feature points x are

treated as constant in Eq. (7) and alternatively could be

treated as free parameters that are optimized with the funda-

mental matrices. We found that additionally optimizing fea-

ture points with fundamental matrices resulted in a dramatic

decrease in efficiency and did not provide significantly bet-

ter results.

3.4. Numeric Instabilities

The epipolar point transfer has known degeneracies and

numeric instabilities [15]. In particular, any configuration

in which the transfer point lies on the trifocal plane of the

images i, j, and k will be degenerate and points near this

degeneracy are increasingly ill-conditioned. To avoid ill-

conditioned points, we do not consider points where the two

transfer lines are nearly parallel or when the transfer lines

lay near the epipole. The latter scenario can be checked by

examining the norm of the transfer line. Since the epipole

is in the null space of Fij , the norm of the transfer line will

be very small when it is near the epipole.

It should be noted that if the three camera centers are

collinear then there is a one-parameter family of planes

containing the three cameras and thus the trifocal plane is

ambiguous. We explicitly avoid this scenario by removing

collinear triplets where the epipoles are equal. In practice,

we did not find this to be a limitation since nearly all cam-

eras in real datasets are constrained by at least one non-

collinear camera triplet.

4. Estimating Structure and Motion

Given a consistent viewing graph, estimating structure

and motion is extremely simple. To see why this is the case,

let us consider a consistent and calibrated viewing graph

GC . Since the graph is consistent, this means that the rela-

tive rotations in each triplet in GC are also consistent (i.e.,

Algorithm 1 Standard Global SfM Pipeline

1: procedure GLOBAL SFM(G = {V, E}, Focal lengths)

2: Filter G from loop constraints [8, 22, 33]

3: Robust orientation estimation [6]

4: Filter relative poses [16, 22, 31]

5: Robust Position Estimation [8, 16, 22, 31]

6: Triangulate 3D points

7: Bundle Adjustment

8: end procedure
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Figure 3. In order to reduce size of the viewing graph optimization,

we construct a subgraph from the maximum spanning tree (MST).

Edges in the MST (left) are shown with thick lines. Edges from the

original viewing graph (dashed lines) are then added to the MST

if they form a triplet to form G′ (right).

concatenating the relative rotations in a triplet will form a

loop: RijRjkRki = I). The global orientations of each

camera may be easily obtained from a random spanning

tree [6] or from a linear orientation method [21]. A con-

sistent viewing graph also means that the relative transla-

tion directions in GC are perfect i.e., αijtij = Ri(cj − ci).
Thus, estimating the camera positions (assuming orienta-

tion is known) is equivalent to recovering the baselines αij

between cameras. This pipeline is simpler than alternative

global SfM approaches that require many filtering steps and

more complex motion estimation algorithms [16, 22, 31]

(c.f . Algorithm 1).

While our viewing graph optimization is not guaranteed

to create a consistent viewing graph, the optimization en-

forces enough of a consistency constraint that the SfM pro-

cess can be simplified. In fact, we are able to remove all

filtering steps from our SfM pipeline, and are able to further

simplify the orientation and position estimation algorithms.

4.1. Viewing Graph Optimization

The viewing graph optimization described in Section 3

has O(|E|) free parameters, and thus the run time of the

nonlinear optimization scales directly with the number of

edges. Viewing graphs may contain highly redundant infor-

mation, and so we would like to reduce the number of edges

in the viewing graph so as to reduce the size of the nonlin-

ear optimization. This is similar to the skeletal set selection

of Snavely et al. [29], whose goal is to find a minimal set of

views in the viewing graph that represent the entire scene.

Our goal, in contrast, is to find a minimal set of edges that

provide sufficient coverage over all views in the viewing
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Algorithm 2 Our Global SfM Pipeline

1: procedure OUR GLOBAL SFM(G = {V, E})
2: Choose subgraph G′ (Section 4.1)

3: Optimize the G′ for consistency (Section 3)

4: [optional] Calibrate cameras (Section 5)

5: Estimate camera orientation from Eq. (8)

6: Estimate camera positions from Eq. (9)

7: Triangulate 3D points

8: Bundle Adjustment

9: end procedure

graph.

Given an input viewing graph G = {V, E}, we aim to

create a subgraph G′ that sufficiently covers the viewing

graph with a minimum number of edges. Similar to [9], we

first select the maximum spanning tree G′ = GMST where

edge weights are the number of inliers from fundamental

matrix estimation between two views then find all edges

ET ∈ E that, if added to G′ would create a triplet in the

graph (i.e., a loop of size 3) as show in Figure 3. Among

the edges in ET we select a set of “good” edges EG that

have a triplet projection error less than τ (see Appendix A)

and add these to the graph. The triplet projection error is an

approximate error measurement to determine how close a

triplet of fundamental matrices is to being consistent (Con-

dition 1). We repeat this procedure (i.e., G′ = G′∪EG) until

every view in the viewing graph participates in at least one

triplet, or there are no more “good” edges that can be added.

After we have obtained a representative viewing graph

G′, we must choose which feature tracks to use for the opti-

mization. Similar to Crandall et al. [7], we use a set cover

approach to select a subset of all feature tracks to accelerate

optimization. In each image, we create an N ×N grid and

choose the minimum number of feature tracks such that all

grid cells in all images contain at least one track in the opti-

mization. We have found that choosing spatially distributed

feature points helps the viewing graph optimization to con-

verge to a better minimum.

Finally, we use all selected edges and feature tracks to

optimize the viewing graph by minimizing Eq. (7) using the

Ceres Solver optimization library [2]. We use a Huber loss

function to remain robust to outliers from feature matching.

4.2. Estimating Motion

The resulting optimized viewing graph provides accurate

fundamental matrices that nearly form a consistent viewing

graph (c.f . Figure 5). As a result, there is no need for further

outlier filtering during the structure and motion estimation.

Further, there is no longer a need for robust methods such as

[6] or [31]. This simplifies the SfM pipeline from a math-

ematical standpoint and for implementation purposes. The

result is a more efficient pipeline with comparable accuracy

to current methods.

Assuming the cameras are calibrated (or calibration is

obtained with the method of Section 5), computing the ori-

entations is simple. We solve for orientations by enforcing

the relative rotation constraint Rij = RjR
⊤
i . Similar to the

method of [21], we minimize the cost function

∑

i,j

||RiRij −Rj ||2 (8)

to solve for camera orientations. Martinec and Pajdla [21]

use a linear least squares technique to solve for matrices that

minimize Eq. 8; however, this requires the solutions of the

linear system to be projected into SO(3) matrices in order to

obtain valid rotations. In contrast, we use the angle-axis pa-

rameterization (which ensures that all rotations Ri remain

on the rotation manifold throughout the optimization[6])

and minimize Eq. (8) with a nonlinear solver. The orien-

tations are initialized by chaining relative rotations from

a random spanning tree as is done in the initialization for

[6]. This simplified orientations solver is 2 − 4× more ef-

ficient than the method of [6] while producing orientations

that typically differ less than 1◦ for the datasets in Table 2.

To compute camera positions, we use the same nonlin-

ear position constraint as Wilson and Snavely [31], though

our pipeline does not require filtering steps before solving

for camera positions. Given a relative translation tij and

a known camera orientation Ri, we use the following con-

straint to estimate camera centers ci and cj :

tij = Ri

(cj − ci)

||cj − ci||
. (9)

This nonlinear constraint is known to be more stable than

other cross-product constraints [3, 11]. We use the Ceres

Solver library [2] to solve the nonlinear Eq. (8) and Eq. (9)

for recovering camera orientations and positions. After es-

timating camera poses, we triangulate 3D points and run a

single bundle adjustment. Our SfM pipeline is summarized

in Algorithm 2.

5. Focal Length Calibration

A current limitation of global SfM methods is that they

require relative poses in the form of relative rotations and

translations as input. For calibrated image sets, the relative

poses may be obtained by decomposing the essential matrix

[15]. For uncalibrated cameras, only the fundamental ma-

trix is available between two views. Focal lengths may be

obtained from the fundamental matrix in closed form [18]

and the resulting essential matrix may be decomposed into

relative rotations and translations. The relative rotations and

translations obtained through fundamental matrix decom-

position, however, are far less accurate compared to when

calibration is known (c.f . Figure 4) so obtaining accurate
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Figure 4. We measured the effect of calibration on relative pose

error. When using known calibration (red) the relative rotation and

translations are significantly more accurate then when calibration

is unknown (blue). For unknown calibrations, we compute relative

rotations and translations by decomposing the fundamental matrix.

calibration has a direct effect on the quality of SfM algo-

rithms.

Individually decomposing fundamental matrices from all

relative geometries containing a particular camera, how-

ever, is not guaranteed to yield a single consistent focal

length value. That is, each decomposition of a fundamental

matrix containing a particular camera may yield a different

focal length value for that camera. Further, the quality of

the focal lengths computed from a fundamental matrix is

solely dependent on the quality of the fundamental matrix

estimation. Focal lengths are not a lie group and so a simple

averaging of focal lengths does not give statistically mean-

ingful results [5] and a more meaningful metric is needed

to effectively “average” focal lengths. In this section we

propose a new calibration method for simultaneously deter-

mining the focal lengths of all cameras in a viewing graph

using only fundamental matrices as input.

5.1. Focal Length from a Fundamental Matrix

First, let us review a technique for determining focal

lengths from a single fundamental matrix. An essential ma-

trix E has the form t×R for a given relative translation t and

rotation R if and only if E is rank 2 with its two non-zero

singular values equal [15]. This property may be encapsu-

lated by the scalar invariants of E [17]:

C = ||EE⊤||2 −
1

2
||E||4 . (10)

For a valid essential matrix E, the cost function C will be

0. Kanatani and Matsunaga [18] show that Eq. (10) may be

used to recover the two focal lengths from a fundamental

matrix by noting that:

E = K ′⊤FK . (11)

When the focal lengths are unknown, C is a non-negative

cost function whose minimum is at 0. By inserting Eq. (11)

into Eq. (10), we may solve for the focal length values that

minimize C. This may be solved in closed form by noting

that the first order partial derivatives ∂C/∂f ′ and ∂C/∂f
must also be 0 [18].
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Figure 5. We plot the relative rotation and translation errors of the

initial viewing graph G, the subgraph G′ and the viewing graph af-

ter optimization GOPT when executed on the uncalibrated images

from the Colosseum dataset [32]. The subgraph G′ has lower rel-

ative pose errors than the initial viewing graph and the viewing

graph optimization greatly improves the quality of relative poses.

5.2. Focal Lengths from the Viewing Graph

Kanazawa et al. [19] extend Eq. (10) to a triplet of fun-

damental matrices with a simple cost function:

C = C(F12) + C(F13) + C(F23) . (12)

When image noise is present, this non-negative cost func-

tion is no longer guaranteed to have a minimum at C = 0;

however, minimizing this function is shown to produce

good estimations of focal lengths for the triplet [19]. We

extend this triplet formulation to operate on an entire view-

ing graph:

f∗ = argmin
∑

F∈G

C(F ) , (13)

where f∗ = {f0, . . . , fn} is the set of all focal lengths of

all views in the viewing graph G. The focal length values

are obtained by minimizing the cost function of Eq. (10)

over all fundamental matrices that correspond to edges in

the viewing graph. We use an L1 loss function to minimize

the terms of Eq. (13) to maintain robustness to outliers.

The minimization of Eq. (13) can easily be modified to

handle viewing graphs with partially known calibration by

keeping the known focal lengths constant during the mini-

mization. Similarly, Eq. (13) can be easily modified to han-

dle the case of all cameras sharing the same focal length.

6. Results

We evaluate our algorithm on a number of small to large-

scale benchmark datasets consisting of internet photo col-

lections of popular landmarks. All experiments were per-

formed on a 2008 Mac Pro with 2.26 GHz processor and 24

GB of RAM using a single core.

6.1. Viewing Graph Optimization

We demonstrate the effectiveness of our viewing graph

optimization by examining the relative rotation and trans-

lation errors of the viewing graph compared to a refer-
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Figure 6. We show the accuracy of calibration methods on the Pisa

dataset [16] and show the focal length error |f − fgt|/fgt com-

pared to ground truth focal lengths obtained from a reconstruction

from VisualSfM [32]. Our method is at least as accurate as using

EXIF, and is significantly more accurate than using the median

focal lengths obtained from fundamental matrix decomposition.

ence reconstruction computed by VisualSFM1. The rela-

tive translation error is the angular distance (in degrees) be-

tween Rij from the viewing graph and RjR
⊤
i composed

from the reference reconstruction. Similarly, the relative

translation error is the angular distance (in degrees) be-

tween the unit-norm vectors tij from the viewing graph

and tij = (cj − ci)/||cj − ci|| created from camera po-

sition cj and ci from the reference reconstruction. That is,

terr = acos(t⊤ijtij) is the translation error in degrees. We

compare the relative pose errors on three different viewing

graphs: the initial input viewing graph G, the unoptimized

subgraph G′ (see Section 4.1), and the viewing graph after

the viewing graph optimization GOPT .

The relative pose errors from the Colosseum dataset[32]

are shown in Figure 5. The subgraph G′ is effective in re-

moving some of the inaccurate edges in G; however, it is

clear to see that our viewing graph optimization signifi-

cantly improves the accuracy of relative poses. The mean

relative rotation error on the Colosseum dataset is reduced

from 8.3◦ in G to 7.5◦ in G′ to 2.49◦ in GOPT . The mean

relative translation error is reduced from 22.6◦ in G to 19.3◦

in G′ to 3.29◦ in GOPT . We include results for the Pisa and

Trevi datasets [16] in the supplemental material2.

6.2. Focal Length Calibration

To determine the accuracy of our calibration method, we

used images from the Pisa and Trevi datasets [16] that con-

tain EXIF focal lengths and compare our calibration to ref-

erence focal lengths that were obtained from a reference

reconstruction generated with VisualSfM [32] after bundle

adjustment of the internal and external camera parameters.

We compare our method to using EXIF data for calibration

as well as the median focal length. The median focal length

is obtained by decomposing all fundamental matrices con-

nected to a view and taking the median of the focal lengths

1The reconstructions obtained with VisualSFM [32] are not meant to

serve as ground truth but merely a reference for a good reconstruction.
2The supplemental material can be found on the author’s website

Table 3. Running time in seconds for the 1DSfM [31] experiment.

TBA and TΣ denote the final bundle adjustment time and the total

running times for each reconstruction method. TOPT is the time

our method takes for the viewing graph optimization. Our method

is 2 to 9 times faster than alternative global SfM methods.
1DSfM [31] LUD [24] Cui et al. [8] Our Pipeline

Name TBA TΣ TBA TΣ TBA TΣ TOPT TBA TΣ

Piccadilly 2425 3483 - - - - 310 702 1246

Union Square 340 452 - - - - 98 102 243

Roman Forum 1245 1457 - - - - 284 847 1232

Vienna Cathedral 2837 3139 208 1467 717 959 139 422 607

Piazza del Popolo 191 249 31 162 93 144 12 78 101

NYC Library 392 468 54 200 48 90 14 83 154

Alamo 752 910 133 750 362 621 18 129 198

Metropolis 201 244 - - - - 27 94 161

Yorkminster 777 899 148 297 63 108 13 71 102

Montreal N.D. 1135 1249 167 553 226 351 61 133 266

Tower of London 606 648 86 228 121 221 92 246 391

Ellis Island 139 171 - - 64 95 12 14 33

Notre Dame 1445 1599 126 1047 793 1159 59 161 247

obtained from the decompositions.

We plot the accuracy of the focal lengths obtained with

each method in Figure 6. For simplicity, we only plot the

results from the Pisa dataset; however, the results from the

Trevi dataset were similar. For both datasets our calibration

method converged in less than 10 seconds. Our method is

at least as accurate as using focal length values from EXIF

data. The accuracy stems from the use of many two-view

constraints to estimate the focal length. EXIF values can

be accurate but have the potential to be inaccurate if the

image has been resized or cropped. Using the median focal

length is very inaccurate and is not sufficient for use in a

SfM pipeline.

6.3. StructurefromMotion

We ran our pipeline on the small-scale dataset of [30] and

the large-scale datasets of [31] to measure the performance

and feasibility of our method on real data. We compare our

SfM pipeline to several alternative global SfM pipelines,

and the results are summarized in Tables 1, 2, and 3.

Table 2 shows that our method is approximately up 2

to 10 times more efficient than alternative methods, while

maintaining comparble accuracy to the state-of-the-art. The

increase in efficiency is a direct result of our simplified SfM

pipeline (see Section 4) that is able to efficiently utilize

the high quality relative poses obtained from the optimized

viewing graph. The statistical pose averaging (c.f . Eq. (8)

and Eq. (9)) converges to a high quality result very quickly

because our optimized viewing graph is extremely accurate

(c.f . Figure 5). Visualizations of the reconstructed datasets

are included in the supplemental material.

7. Conclusion

In this paper, we have presented a new approach to

large-scale SfM. Rather than focusing on creating poten-

tially complex algorithms to overcome noise and outliers in

the reconstruction process, we propose an optimization that
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Table 1. We evaluate several SfM pipelines on the Strecha MVS datasets [30]. Our method shows excellent accuracy while remaining

extremely efficient. Timing results of Cui et al. [8] were not available.
Accuracy (mm) Time (s)

Name VSFM [32] Olsson [23] Cui et al. [8] Moulon [22] Ours VSFM [32] Olsson [23] Moulon [22] Ours

FountainP11 7.6 2.2 2.5 2.5 2.4 3 133 5 4.5

EntryP10 63.0 6.9 - 5.9 5.7 3 88 5 3.8

HerzJesuP8 19.3 3.9 - 3.5 3.5 2 34 2 1.9

HerzJesuP25 22.4 5.7 5.0 5.3 5.3 12 221 10 9.3

CastleP19 258 76.2 - 25.6 38.2 9 99 6 5.7

CastleP30 522 66.8 21.2 21.9 32.4 18 317 14 11.6

Table 2. We compare results of several global SfM pipelines on the large-scale 1DSfM dataset [31]. We show the number of cameras

reconstructed NC and the median position error approximately in meters x̃. For our method, x̃ indicates position errors before bundle

adjustment, and x̃BA are the errors after bundle adjustment. Our method produces accurate camera poses before bundle adjustment and

has comparable accuracy to alternative methods after bundle adjustment.
1DSfM [31] LUD [24] Cui et al. [8] Our Pipeline

Name Nc Nc x̃ Nc x̃ Nc x̃ Nc x̃ x̃BA

Piccadilly 2152 1956 0.7 - - - - 1928 5.2 1.0

Union Square 789 710 3.4 - - - - 701 4.5 2.1

Roman Forum 1084 989 0.2 - - - - 966 6.8 0.7

Vienna Cathedral 836 770 0.4 750 5.4 578 3.5 771 6.7 0.6

Piazza del Popolo 328 308 2.2 305 1.5 298 2.6 302 2.9 1.8

NYC Library 332 295 0.4 320 2.0 288 1.4 294 2.8 0.4

Alamo 577 529 0.3 547 0.4 500 0.6 533 1.4 0.4

Metropolis 341 291 0.5 - - - - 272 8.7 0.4

Yorkminster 437 401 0.1 404 2.7 333 3.7 409 3.9 0.3

Montreal N.D. 450 427 0.4 433 0.5 426 0.8 416 2.0 0.3

Tower of London 572 414 1.0 425 4.7 393 4.4 409 9.3 0.9

Ellis Island 227 214 0.3 - - 211 3.1 203 3.7 0.5

Notre Dame 553 507 1.9 536 0.3 539 0.3 501 9.4 1.2

corrects the viewing graph and enforces global consistency

via loop constraints before applying SfM. We demonstrated

that this optimization improves the quality of relative ge-

ometries in the viewing graph and removes the need for

complex filtering steps as part of the SfM pipeline. Our

viewing graph optimization works on calibrated or uncali-

brated image sets and we provide a new method for calibrat-

ing cameras from a set of fundamental matrices. We incor-

porated the viewing graph optimization and focal length cal-

ibration into a global SfM pipeline that is intuitive to under-

stand and easy to implement, and showed that this pipeline

achieves greater efficiency and comparable accuracy to the

current state-of-the-art methods. For future work we plan to

examine the guarantees we can make (if any) on the “con-

sistency” of the viewing graph we obtain from the viewing

graph optimization. Additionally, it would be interesting to

see if our method may be applied for global SfM on projec-

tive reconstructions.
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A. Triplet Projection Error

We define here the triplet projection error used in Section

4.1. Given three views, i, j, and k, and the corresponding

fundamental matrices Fij , Fik, and Fjk, Sinha et al. [27]

compute a consistent triplet of fundamental matrices. We

use their technique to define a triplet projection error that

measures the consistency of a triplet of fundamental matri-

ces. We will briefly summarize the method here.

First, projection matrices for views i and j and k are

constructed from the fundamental matrices

Pi = [I|0] (14)

Pj = [[eji]×Fij |eji] (15)

Pk = [[eki]×Fik|0] + ekiv
⊤ (16)

where v is an unknown 4-vector. Recall from [15] that a

fundamental matrix may be constructed from the projection

matrices of the two views it connects:

F
⊤

jk = [ekj ]×PkP
+

j . (17)

F jk is linear in v and all possible solutions for F jk span the

subspace of possible fundamental matrices that will form

a consistent triplet as defined in Condition (1) [27]. We

solve for v that yields F jk closest to Fjk. We define the

triplet projection error as the difference of F jk and Fjk by

Frobenius norm:

Errijk = ||F jk − Fjk|| . (18)
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