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Optimizing through Co-Evolutionary Avalanches

Stefan Boettcher,l* A1lon G. Percus,2* and Michelangelo Grignil* * *

1 Emory University, Atlanta, GA 30322
2 Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract. We explore a new general-purpose heuristic for finding high-
quality solutions to hard optimization problems. The method, called ez-
tremal optimization, is inspired by ‘self-organized critically,” a concept
introduced to describe emergent complexity in many physical systems.
In contrast to Genetic Algorithms which operate on an entire “gene-
pool” of possible solutions, extremal optimization successively replaces
extremely undesirable elements of a sub-optimal solution with new, ran-
dom ones. Large fluctuations, called ‘avalanches,” ensue that efficiently
explore many local optima. Drawing upon models used to simulate far-
fkom-equilibriumdynamics, eztremal optimization complements approxi-
mation methods inspired by equilibrium statistical physics, such as simu-
lated annealing. With only one adjustable parameter, its performance has
proved competitive with more elaborate methods, especially near phase
transitions. Those phase transitions are found in the parameter space of
most optimization problems, and have recently been conjectured to be
the origin of some of the hardest instances in computational complexi-
ty. We will demonstrate how extremal optimization can be implemented
for a variety of combinatorial optimization problems. We believe that
eztremal optimization will be a useful tool in the investigation of phase
transitions in combinatorial optimization problems, hence valuable in
elucidating the origin of computational complexity.

1 Natural Emergence of Optimized Configurations

Every day, enormous efforts are devoted to organizing the supply and demand
of limited resources, so as to optimize their utiMy. Examples include the supply
of foods and services to consumers, the scheduling of a transportation fleet, or
the flow of information in communication networks within society or withh a
parallel computer. By contrast, without any intelligent organizing facility, many
natural systems have evolved into amazingly complex structures that optimize
the utilization of resources in surprisingly sophisticated ways [2]. For instance,
biological evolution has developed efficient and strongly interdependent networks
in which resources rarely go to waste. Even the inanimate morphology of natural
landscapes efilbits patterns far from random that often seem to serve a purpose,
such as the efficient drainage of water [31].
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Natural systems that exhibit such self-organizing qufllties often possess com-
mon features: they generally consist of a large number of strongly coupled enti-
ties with very similar properties. Hence, they permit a statistical description at
some coarse level. An external resource (sunlight in the case of evolution) drives
the system which then takes its dkection purely by chance. Like flowing water
breakhg through the weakest of all barriers in its wake, species are coupled in
a global comparative process that persistently washes away the least fit. In this
process, unlikely but highly adapted structures surface inadvertently. Optimal
adaptation thus emerges naturally, without divine intervention, from the dy-
namics through a selection against the extremely “bad”. In fact, this process
prevents the inflexibility inevitable in a controlled breeding of the “good”.

Certain models relying on extremal processes have been proposed to explain
self-organizing systems in nature [28]. In particular, the Bak-Sneppen model of
biological evolution is based on this principle [3, 10]. It is happily devoid of any
specificity about the nature of interactions between species, yet produces salient
nontrivial features of paleontological data such as broadly distributed lifetimes
of species, large extinction events, and punctuated equilibrium.

In the Bak-Sneppen model, the high degree of adaptation of most species is
obtained by the elimination of badly adapted ones instead of a particular “en-
gineering” of better ones. Species in the Bak-Sneppen model are located on the
sites of a lattice, and each is represented by a value between O and 1, indicating
its “fitness”. At each update step, the smallest value (representing the worst
adapted species) is discarded and replaced with a new value drawn randomly
from a flat distribution on [0, 1]. But the change in fitness of one species im-
pacts the fitness of an interrelated species. Therefore, at each update step in
the Bak-Sneppen model, the fitness values on the sites neighboring the small-
est value are replaced with new random numbers as well. No explicit definition
is given of the mechanism by which these neighboring species are related. Yet,
after a certain number of updates, the system organizes itself into a highly cor-
related state known as self-organized criticality (SOC) [4]. In that state, almost
all species have reached a fitness above a certain threshold. These species pos-
sess punctuated equilibrium: one’s weakened neighbor can undermine one’s own
fitness. Co-evolutionary chain reactions called “avalanches” ensue; large fluctu-
ations that make any possible configuration accessible.

2 Extremal Optimization

Extremal Optimization (EO) is inspired by previous attempts of using physical
intuition to optimize. It opens the door to applying non-equilibrium processes,

such as SOC, in the same mamner simulated anneaihg (SA) [23] applies equilib-
rium statistical mechanics. The result is a general method that appears to be a
powerful addition to the canon of meta-heuristics [27]. Its large fluctuations pro-
vide significant Kill-climblng ability, which enables EO to perform well at phase
transitions, “where the really hard problems are” [11, 1].
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One popular hard optimization problem, to which we have applied EO suc-
cessfidly (see below and Refs. [8,7]), is the graph bi-partitioning problem (GBP)
[14, 23, 21]. In the GBP, we are given a set of n vertices, where n is even, and
“edges” connecting certain pairs of vertices. The problem is to partition the ver-
tices into two equal subsets, each of size n/2, with a minimal number of edges
cutting across the partition. The size of the configuration space $2 grows expo-. .
nentially with n, If2I = ( ~~z), since all unordered divisions of n vertices into

to equal-sized sets are fe~lbl~ configurations S. The cost function C(S) (called
“cutsize” ) counts the number of “bad” edges that cut across the partition. A typ-
ical neighborhood N(S) for a local search [27, 30], mapping S + S’ c IV(S) c L!,
is a ‘1-exchange” of one randomly chosen vertex from each subset.

EO performs in general a search on a single configuration S ~ L!. S usually
consists of a large number n of variables Zi. The cost C(S) is assumed to consist
of the individual cost contributions Ai for each variable ~i, whkh correspond
loosely to the “fitness” values in the Ba&Sneppen model above. Typically, the
fitness Ai of variable Z~ depends on its state in relation to other variables that
xi is connected to. Ideally, it is

i= 1

(1)

For example, in the GBP the variables ~i are the vertices, each being assigned
to a set “O” or “1.” Each vertex has edges connecting it to a certain number of
other vertices. Eq. (1) for the cutsize C’(S) is satisfied, if we attribute to each
vertex xi a 10cd cost Ai = hi/2, where bi is the number of ‘bad” edges, whose
cost is equally shared with the vertex on the other end of that edge.

For minimization problems in general, EO proceeds as follows:

1. InitiJlze a configuration S at will; set &&$t = S.
2. For the “current” configuration S,
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evaluate Ji for each variable ~i,
find j with + ~ Ai for all i, i. e. Zj has the “worst fitness:
choose at random a S’ c N(S) such that the “worst” xj must
change its state,
if C(S’) < C(&&) then set &~t = S’,

(e) accept S+& altizys, independent of b(S’) - C(S).
3. Repeat at step (2) as long as desired.
4. Return Sb& and C(&=t).

The algorithm operates on a single configuration S at each step. All vari-
ables xi in S have a fitness, of which the ‘worst” is identified. Thki ranking of
the variables according to individual costs – unique to EO – provides the only
measure of quality on S. It implies that all other variables are ‘better” in the
current S. There is no parameter to be adjusted for the selection of better solu-
tions aside from this ranking. In fact, it is only the memory encapsulated in this
ranking that dhects EO into the neighborhood of increasingly better solution-
s. Those “better” variables only possess punctuated equilibrium their memory
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Extremal Optimization Simulated Annealing

,m~o
(Num?er of Update$r

“+%
200

0 200

(%mber %Updatea’~n

Fig. 1. Evolution of the cutsize C(S) during a typical run of (a) EO and (b) SA for
the n = 500, c s 5, random graph G500introduced in Ref. [21]. The best cutsize ever
found for G500is 206 (see Fig. 2). In contrast to SA, which has large fluctuations in
early stages of the run and then converges much later, extremal optimization quickly
approaches a stage where broadly distributed fluctuations allow it to scale barriers and
probe many local optima.

gets erased when they happen to be connected to one of the variables forced
to change. On the other hand, in the choice of move to S’, no consideration to
the outcome of such a move is given, and not even the worst variable itself is
guaranteed to improve its fitness. Large fluctuations in the cost accumulate over
many updates [3], while merely the bks against “bad” fitnesses guides EO back
towards improved solutions, see Fig. 1.

Disadvantages of EO are that a definition of fitness for individual variables
may be ambQuous or even impossible. Also, variables maybe strongly connected
such that each update destroys more well-adapted variables than it could ever
hope to improve [8]. In highly connected systems, EO is slowed down consider-
ably by reevaluating fitnesses [step (2a)]. For many problems, these disadvan-
tages do not apply or are surmountable. In particular, problems in the important
optimization class MAX-SNP [29] fit naturally into the EO-framework. MAX-
SNP problems have boolean variables and a collection of bounded-arity boolean
terms and we seek an assignment satisfying as many (or as few) terms as possi-
ble. Such problems have a natural choice of fitness functions, and typically have
low variable connectivity. Indeed, some complete problems for the class have
bounded connectivity in the worst case. MAX-SNP complete problems include
MAX-K-SAT, K-COL, and MAXCUT (similar to GBP), discussed below.

3 Comparison with other Heuristics

The most apparent distinction between EO and other methods is the need to
define local cost contributions “for each variable, instead of merely a global cost.1

1 Apparently, local costs have previously been used in an otherwise unrelated ensemble
Monte Carlo approach [12].
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EO’S capability appears to derive from its ability to access this local information
directly. EO’S ranking of fitnesses superficially appears like the rankings of pos-
sible moves in some versions of SA [17,30] and in Tabu search [15,30]. But these
moves are evaluated by their anticipated outcome, while EO’S fitnesses reflect
the current configuration S without biasing the outcome.

Simulated Annealing (SA): SA [23]emulates the behavior of frustrated sys-
tems in thermal equilibrium: if one couples such a system to a heat bath of
adjustable temperature, by cooling the system slowly one may come close to at-
taining a state of minimal energy (i. e. cost). SA accepts or rejects local changes
to a configuration according to the Metropolis algorithm, requiring equilibrium
conditions (“detailed balance” ) along a well-tuned “temperature schedule.”

In contrast, EO drives the system far from equilibrium: aside from ranking,
it applies no decision criteria, and all new configurations are accepted indiscrim-
inately. Instead of tuning a whole schedule of parameters, EO often requires few
choices. It may appear that EO’S results should resemble an ineffective random
search, similar to SA at a i?xed but tilte temperature. But in fact, by persistent
selection against the worst fitnesses, one quickly approaches near-optimal solu-
tions. Significant fluctuations still remain at late run-times (unlike in SA, see
Fig. 1), crossing sizable barriers to access new regions in configuration space.

Genetic Algorithms (GA): While similarly motivated, GA [20, 16] and EO
algorithms have hardly anything in common. GAs, mimicking evolution on the
genotypical level, keep track of entire ‘gene pools” of configurations from which
to select and “breed” an improved generation of solutions. By comparison, EO,
based on evolutionary competition at the phenomenological level of “species,”
operates only on a single configuration, with improvements achieved merely by
elimination of bad variables. EO, SA, and most other meta-heuristics perform a
local search but in GA cross-over operators perform global exchanges.

4 Applications of 13xtremal Optimization

Ground States of Spin Glasses: A simple version of a spin glass [25] consists
of a d-dmensional hyper-cubic lattice with a spin variable a~ c {–1, 1} placed
oneachsitei, l~i~n= Ld. Every spin is connected to each-of its- nearest
neighbors j via a bond variable Ji,j drawn from some distribution P(J) of zero
mean and unit variance. Spins may be coupled to an arbitrary external field hi.
We try to find “ground states, “ i. e. lowest energy configurations S~i~ of

c(s)= H(cq,... ,an) = ‘~)-,~ ‘Lj”icj – ~ ‘ih~- (2)

z j i

Arranging the spins into optimal configurations is hard due to “frustration” [25].
To implement EO, we define as fitness the local energy for each spin

‘i=-ai(+-Ji’oj+hi)y(3)
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and Eq. (2) turns into Eq. (1). Our implementation suggests that EO may be
well suited for problems representable as a spin-Hamiltonian [25].

Satisfiability (MAX-K-SAT): Instances of the satisfiability problem MAX-
K-SAT consist of a formula composed of ill clauses. Each clause contains K
literals (i. e. ~i or ~~i), drawn randomly from a pool of n boolean variables xi.
A clause is verified, if at least one of its K literals is true (logical “or”), and the
entire formula is verified only if every clause is true (logical ‘bud”). Here, we try
to maximize the number of true clauses by some configuration of the variables.

MAX-K-SAT has an obvious EO-implementation: For each variable we set
Ai = l/K x {# of false clauses containing ~i}. Again, Eq. (1) holds. Typically,
K = 0(1) and Ikf = O(n) so that each variable appears only in a few (= M/n)
clauses, each connecting it to ~ K other variables. The phase transition in 2-
SAT and 3-SAT has been investigated in Refs. [26,1] on small instances using
exact methods. We expect that EO would perform very well on those instances.

Graph Coloring (K-COL): Given K different colors to label the vertices of a
graph, we need to find a coloring that minimizes the number of edges connecting
vertices of identical color. We implement EO for K-COL by defining for each
vertex the number of equally colored vertices connected to it as fitness. Similar
to a spin glass, thk problem is hard due to 10CU1frustration [25], in distinction
to the global constraints in the GBP. A simple neighborhood consists of the
re-coloring of a single vertex each update. Below, we present results of using EO
in analyzing the phase transition in 3-COL, first investigated in Refs. [11, 1].

5 Experimental Results

Simple EO Application to Graph Partitioning: Following Ref. [21] (Fig. 9
there), we tested early implementations of EO [8] on their n = 500 random graph
G500 of connectivity c s 5. In a 1000-run sample from different random initial
conditions, we determined the frequency of solution obtained, see Fig. 2. For
comparison, we have also implemented the SA algorithm as given in Ref. [21] on
the same data structure used by our EO program. We have allowed runtimes for
EO about three times longer than the time it took for SA to “freeze,” since EO
still obtained significant gains. We checked that neither the best-of-three runs
of SA, or a three times longer temperature schedule, improved the SA results
significantly. While the basic, parameter-free version of EO from Sec. 2 is already
competitive, the best results are obtained by r-EO.

~-EO Implementation: r-EO is a general modification of EO which improves
results and avoids “dead ends” that occur in some implementations at the ex-
pense of introducing a single parameter [8]. We rank all the variables ~i according
to fitness Ai, i. e. find a permutation H of the vertex labels i such that

hi’(l)2 hT(2) 2 .-.2 h’(n)- (4)

The worst variable Zj [see step (2b)] is of rank 1, j = 17(1), and the best variable
is of rank n. Consider a probability dktribution over the ranks k,
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Fig. 2. Comparison of 1000-runtrials using various optimization methods on a n = 500
random graph with c = 5. The histograms give the frequency with whkh a particuku .
cutsize has been obtained during the trial runs for (A) SA, (B) basic EO, and (C)
for ~-EO with r = 1.5. The best cutsize ever found for this graph is 206. This result
appeared only once over the 1000 SA runs, but occurred 80 times for ~-EO.

for a fixed value of the parameter r. On each update, for each independent
variable z to be moved, select distinct ranks kl, kz,... according to Pk. Then,
execute step (2c) such that all z~l, z~,,... with il = 17(kl), iz = H(kq),...
change. For instance, in the bi-partitioning problem, we choose Zaothvariables
in the l-exchange according to pk, instead of the worst and a random one.
Although the worst variable of rank i = 1 will be chosen most often, sometimes
(much) higher ranks will be updated instead. In fact, the choice of a power-law
distribution for pk ensures that no rank gets excluded from further evolution
while maintaining a bias against variables with bad fitness.

Clearly, for ~ = O, T-EO is exactly a random walk through L?. Conversely,
for T + m, the process approaches a deterministic local search, only swapping
the lowest-ranked variables, and is bound to reach a “dead end.” Indeed, tests of
both, ~ = O and r = co, yield terrible results! In the GBP, we obtained our best
solutions for T N 1.4 – 1.6. Under preliminary testing we find that there may be
a link between the optimal choice for the parameter T and a transition to “non-
ergodic” behavior in the sense that for larger values of ~ certain configurations
in O may become inaccessible during the time of a complete EO-run. In fact,
on the basis of that observation we have developed an argument to approximate
~ - l+ln(A.)/ in(n) [9] where t = An with 1<< A << n is the runtirne. (Typically,
we use As 102 for graphs of size n x 104, consistent with r = 1.5.) Tests with
longer runtimes indeed favor larger ~ values, while Imger graphs require smaller
values of r.

Results on Large Graphs: In Tab. 1 we summarize r-EO’s results on large-n
graphs, using T = 1.4 and best-of-10 runs. On each graph, we used as many
update steps t as appeared productive for EO to reliably obtain stable results.
This varied with the particularities of each graph, from t = 2n to 200n, and the
reported runtimes are of course influenced by this. It is worth noting, though,
that EO’S average performance has been varied. For instance, half of the Brack2
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2 instead of, say, an exponential dktribution with a cut-off scale excludhg high ranks.
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Table 1. Best cutsizes (and allowed runtime) for a testbed of large graphs. GA results
are the best reported [24] (with a 300MHz CPU). ~-EO results are horn our runs
(200MHz). Comparison data for three of the large graphs are due to results horn
heuristics in Ref. [19] (50MHz). METIS is a partitioning program based on hierarchical
reduction instead of local search [22], obttilng extremely fast deterministic results
(200MHz). Runtimes comparisons here are at best qualkative.

Large Graph r-EO [19] METIS
Hammond (n= 4720; c= 5.8) ‘9% (1s) 90 (42s) 97 (8s) 92 (0s)
Barth5 (n= 15606; c= 5.8) 139 (44s) 139 (64s) 146 (28s) 151 (0.5s)
Brack2 (n= 62632; c= 11.7) 731 (255s) 731 (12s) – 758 (4s)
Ocean (n= 14343? c = 5.7) 464 (1200s) 464 (200s) 499 (38s) 478 (6s)

runs returned cutsizes near 731, but the other half returned cutsizes of above
2000. This may be a product of an unusual structure in these particular graphs.

Phase Transitions in Combinatorial Optimization: In extensive numeri-
cal studies [7] we have shown that ~-EO outperforms SA near phase transi-
tions where graphs begin to “percolate” and cutsizes first become non-zero, see
Fig. 3. Studies on the average rate of convergence towards better-cost configura-
tions as a function of runtime t indicate power-law convergence [18], roughly like
C(Sb=t)t ~ C(Smin) +A t-~ With @ = 0.45. Of course, it is not easy to assert for
graphs of large n that those runs in fact converge close to the optimum C(S~i.),
but finh%size scahng analysis seems to justify that expectation [9].

In an even more impressive performance, we used EO to completely enu-
merate all optimal solutions S~in near the critical point for random graphs in
3-COL. Instances of random graphs typically have a high ground-state degener- ‘
acy, i. e. possess a large number of equally optimal solutions Smin. In Ref. [26] it
was shown that at the phase transition of 3-SAT the fraction of constrained vari-

— N.1OOO
— N=2wM
— N=40J0
— N43000
— N.16000

1.6 2 2.6 3 3.5
Connectivity

— N=SOO
— N.1000L —N=2000—N4000—N=?3000
— N.16CQ0

I
4 5 6 7 8 9

Fig. 3. Plot of the error in the best result of SA relative to EOS on identical instances
of (a) random graphs and (b) geometric graphs as function of the mean connectivity
c. The percolation points are at (a) c = 1 [13] and (b) c x 4.5 [5], the critical points
for the GBP (the first time a component of size > n/2 appears) are slightly above that
[e. g. at c = 2 in 2 = 1.386 for (a)]. SA’S error relative to EO near the critical point in
each case rises with n.



Connectivity Connectivity

Fig. 4. Plot of the average (a) cutsize and (b) backbone fraction as a function of the
connectivity c for random graph 3-COL. We have generated 2,300, 500, 280 and 125
instances for n = 32, 64, 128, and 256, respectively, at each value of c. The prediction
for the critical point of cCrit(3)z 4.73 is indicated by a vertical line. The backbone
fkaction seems to develop a finite jump at the critical point for n ~ m.

ablest i.e. those that are found in an identical state in all Smin, dkcontinuously
jumps to a non-zero value. It was conjectured that the first-order phase tran-
sition in this “backbone” would exist for any NP-hard problem. To test those
claims for 3-COL, we generated a large number of random graphs and explored
0 for as many ground states as ~-EO could find. We ilxed runtimes at x 100n2,
well above the times needed to saturate the set of all Smin in repeated trails
on some test instances. Such long runtirnes favored a large value of ~ = 2.7.
For each instance, we measured the cutsize, entropy, and the “backbone.” Due
to the symmetry under interchanging colors, the backbone here consists of the
fraction of constrained pairs of vertices, i. e. those whkh are in the same relative
state (same or opposite color) in all ground states. Averaged results are given
in Figs. 4a-b. As predicted in Ref. [26], asymptotically for large n the backbone
fraction seems to jump discontinuously at the critical connectivity, ~rit x 4.73.

This work was supported in part by the URC at Emory University, NSF grant
CCR-9820931, and an LDRD grant from Los Akunos National Laboratory.
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