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ABSTRACT Urban planners, authorities, and numerous additional players have to deal with challenges

related to the rapid urbanization process and its effect on human mobility and transport dynamics. Hence,

optimize transportation systems represents a unique occasion for municipalities. Indeed, the quality of

transport is linked to economic growth, and by decreasing traffic congestion, the life quality of the

inhabitants is drastically enhanced. Most state-of-the-art solutions optimize traffic in specific and small

zones of cities (e.g., single intersections) and cannot be used to gather insights for an entire city. Moreover,

evaluating such optimized policies in a realistic way that is convincing for policy-makers can be extremely

expensive. In our work, we propose a reinforcement learning frameworks to overtake these two limitations.

In particular, we use human mobility data to optimize the transport dynamics of three real-world cities (i.e.,

Berlin, Santiago de Chile, Dakar) and a synthesized one (i.e., SynthTown). To this end, we transform the

transportation dynamics’ simulator MATSim into a realistic reinforcement learning environment able to

optimize and evaluate transportation policies using agents that perform realistic daily activities and trips.

In this way, we can assess transportation policies in a manner that is convincing for policy-makers. Finally,

we develop a model-based reinforcement learning algorithm that approximates MATSim dynamics with

a Partially Observable Discrete Event Decision Process (PODEDP) and, with respect to other state-of-art

policy optimization techniques, can scale on big transportation data and find optimal policies also on a

city-scale.

INDEX TERMS Transportation dynamics, human mobility data, reinforcement learning, partially observ-

able discrete event decision process, MATSim.

I. INTRODUCTION

Organizing and managing cities that are fastly becoming

bigger will be one of the most critical challenges of the next

decade. The urbanization process is a global challenge that

involves all the continents, and it poses questions on how to

make the future of mega-cities more livable and sustainable

from many perspectives such as ecology, water, and energy

management [1]. Also, transportation systems play an essen-

tial role in attaining this purpose, and thus redesigning and

modernizing urban mobility remains a pivotal factor for our

metropolitan landscapes.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nikhil Padhi .

Moreover, several studies have provided evidence that

the quality of the transportation systems is related to the

economic well-being of both small [2] and large areas [3].

Factors such as traffic jams have a consequence on the qual-

ity of life, the vitality, and the health of citizens [4]–[6].

Hence, transportation engineers are doing their best to over-

take the before-mentioned concerns by using innovative solu-

tions identified as Intelligent Transportation Systems (ITS).

The primary purpose of ITS is to enhance decision-making

processes for transportation-related tasks, and data can pro-

vide a considerable supplement. Nowadays, data are more

accessible than ever before, thanks to the rise of ubiquitous

computing, including the usage of sensors by citizens and in

our cities. For instance, GPS devices installed on cars and
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mobile phones are extensively used to gain an up-to-date

overview of the mobility patterns in a city with a remarkably

high spatial granularity [7]–[9].

The availability of such precious knowledge provides

insights of paramount importance for the management of

transportation dynamics and the related decision-making pro-

cesses. For example, it is possible to determine the traffic

state in a city [10] while other techniques allow us to forecast

the volume of traffic within a specific period [11]. Another

example is represented by the possibility to forecast the

speed travel on a specific link [12], [13]. Notwithstanding the

goodness of many state-of-the-art approaches, ITS still poses

several challenges for researchers. For example, the most

recent algorithms and models are often focused on solving

transportation network dynamics only on specific parts of a

city (see Section II).

Significant progress in transportation research has been

due to simulators’ role, namely, environments in which engi-

neers can experiment with their models and gain enlight-

ening results. Two widely used examples of simulators are

(i) SUMO (Simulation of Urban MObility) [14] and (ii)

MATSim [15]. The former is an open-source traffic simulator

that provides APIs and a graphical interface to model road

networks. It was used, for example, for defining an environ-

ment in which a deep reinforcement-learning adaptive traffic

signal control agent can operate [16] and, in [17] in which

the traffic optimization is extended to a multi-agent problem

where each agent controls a traffic light. Instead, MATSim,

recently proposed by Horni et al. [15], is an open-source

framework for simulating transportation dynamics in a multi-

agent environment that offers a wide variety of modules for

demand-modeling, traffic flow simulation, and re-planning.

Interestingly, this simulation framework can be extended to

cover specific needs by integrating models and source codes.

In this work, we adopt the state-of-the-art high-fidelity

multi-agent transportation simulator MATSim. We transform

it into a reinforcement learning environment to have a sce-

nario in which agents act realistically. In this way, we define

a framework in which we can test optimized transportation

policies in convincing ways for policy-makers serving as

an alternative to real-world tests that are extremely expen-

sive and, in some cases, dangerous. Moreover, thanks to

agents’ realistic behaviors offered by MATSim, we can test

the performances of a recently proposed Partially Observable

Discrete Event Decision Process (PODEDP) algorithm [18],

a policy optimization technique that assumes the environment

is only partially observable, and of other state-of-the-art algo-

rithms in a context in which state-transitions are not given a

priori. Finally, we show that PODEDP can scale and optimize

policies for large areas such as an entire city.

The paper is organized as follows. Section II discusses

previous works on modeling transportation dynamics using

reinforcement and deep learning approaches, also highlight-

ing their limitations. In Section III, we provide an overview of

reinforcement learning concepts and the Discrete Event Deci-

sion Process (DEDP) [19] algorithm as the basis of PODEDP.

In Section IV, we first discuss how we turn MATSim into

a reinforcement learning-based environment and then we

explore in detail the PODEDP technique. Finally, we briefly

introduce the other policy optimization techniques that are

benchmarked with PODEDP. In Section V, we outline the

experimental setup as well as describe the synthetic and real-

world datasets used for the evaluation. The results of the

experiments are presented and discussed in Section VI and,

finally, in Section VII we propose some conclusions and we

suggest possible future directions.

II. LITERATURE REVIEW

Previous work on optimizing transportation dynamics

includes controlling the schedule of traffic lights to reduce

traffic jams through dynamic programming and reinforce-

ment learning at the scale of several road intersections

and identifying transportation-related policies to optimize

transportation network operations through simulation of a

city. To the best of our knowledge, the work on optimizing

city-scale transportation dynamics based on reinforcement

learning and human mobility data is rare, because both the

algorithms to cope with complex interaction dynamics and

the data are becoming available only in recent years.

In the domain of controlling traffic lights’ schedule, the

most traditional methods are based on dynamic program-

ming to solve an optimization problem according to precise

manually-described assumptions, with actuated and adap-

tive methods. The actuated methods take into account the

provided distribution of the traffic on the roads and set the

traffic lights to reduce traffic jams. A significant weakness of

models such as [20], [21] is that the optimal time threshold

rigidly depends on the volume of the traffic and this param-

eter has to be set manually. Thus, it is nearly impossible to

use such models in modern mega-cities where transportation

patterns constantly change, and traffic volume depends on

an astonishingly large amount of parameters [22]. The adap-

tive methods, such as Split Cycle Offset Optimisation Tech-

nique (SCOOT) and Sydney Coordinated Adaptive Traffic

System (SCATS) [23], [24] choose among a set of signal-

cycle plans to optimize the assumed traffic distributions.

These two models handle traffic congestion inefficiently due

to limited adaptability in handling non-recurrent traffic jams

in real-time scenarios. Other examples of adaptive methods

are Real-Time Hierarchical Optimized Distributed Effective

System (RHODES) [25], Optimized Policies for Adaptive

Control (OPAC) [26], and Adaptive Control Software Lite

(ACS-Lite) [27]. Such models are exponentially complex to

deploy them at scale.

Recurrent and non-recurrent big traffic jams reveal the lim-

its of adaptive traffic control methods. In recent years, several

works have used a Reinforcement Learning (RL) framework

to optimize the management of traffic signals and traffic

lights [28], [29] in a data-driven fashion. In RL approaches,

one or more agents control the status of the signals accord-

ing to certain conditions and a reward function. The agent’s

behavior is usually learned through a substantial number of
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simulations to maximize the future expected reward. The key

components of an RL algorithm are the state features, the

actions, and the reward function. The state features include

the length of the queue to represent the state of the traffic

congestion [30]–[32] and the position of the vehicles with

respect to the stop line and its relative speed [29], [33]. The

reward function for the agent to optimize could be formed

from the length of the queue [31], [34], the average delay [28],

[35], the cumulative delay [33], [36], and the vehicle staying

time [29], or a weighted sum of the length of the queue, the

vehicle delays, the average waiting time, the light switcher

state (0 if it does not change, 1 otherwise), the number of

vehicles and, finally, the total travel time of each car [34].

Using RL algorithms, researchers have recently obtained

significant results in adaptive control of traffic signals. Works

such as [29], [33], [34], [36] focused on the optimization

of single intersections and others took into account multiple

crossroads [16], [17], [35], [37]. In [30], a single intersection

scenario is used to train an agent and the obtained insights are

used to extend this scenario to the management of multiple

intersections. Only a couple of these works are extended

to a district level: [32] in downtown Toronto and [37] in

a restricted area of Barcelona. Regarding the adopted algo-

rithms, most of the mentioned works use either Q-Learning

[38], [39] and Deep Q-Learning [40] algorithms to learn to

assess the expected reward function of state features, or Pol-

icy Gradient [41], [42] algorithms to learn to take actions

directly according to the state features. A different method

proposed by El-Tantawy et al. [32] is based on a Multi-Agent

Reinforcement Learning (MARL) framework to coordinate

the potentially conflicting goals of the agents.

In the field of transportation policy research [15] and

urban planning [43], simulation is a widely-used approach to

evaluate transportation policies and identify optimal solutions

at the city scale. The utilities [44] to optimize generally

involve less traveling time, less uncertainty in arrival time,

and less impact of traffic fluctuation on planned activity

duration, and the control variables generally involve when

to end the current activity and what route to select in the

current trip [45], [46]. Experiments in the real world are

often costly, dangerous, and infeasible. Simulators provide

a solution for evaluating hypotheses and methodologies in

silico where certain aspects of the behavior faithfully mirror

the real world. Transportation simulators [14], [15], [47]

generally identify the optimal policy as open-loop control,

where the current state of a complex system does not affect

the control variables. An open-loop system is simple to imple-

ment. Yet it is inaccurate and unreliable when the system is

noisy.

Despite all the proposed solutions representing a valuable

improvement in traffic optimization, to the best of our knowl-

edge, there is not a solution focused on the optimization of

complex systems such as transportation dynamics at a city

scale based on high-fidelity simulation [15], big mobility data

[48], and reinforcement learning [49]. In this work, we fill

the gap by introducing a framework based on the state-of-art

transportation simulator MATSim and a reinforcement learn-

ing approach.

III. BACKGROUND

In this section, we provide the background knowledge for

MATSim, Reinforcement Learning, Discrete Event Decision

Processes (DEDPs), and Partially Observable Discrete Event

Decision Processes (PODEDPs).

A. SIMULATION AND MATSIM

Simulations are extensively used in transportation engineer-

ing and policy research as well as in other fields such as urban

planning [43], robotics [50], epidemiology [51], gaming [52],

and so on. Experiments in the real world are often costly,

dangerous, and infeasible. Thus, simulators provide a solu-

tion for evaluating hypotheses and methodologies in silico

where certain aspects of the behavior faithfully mirror the real

world.

MATSim [15] is a state-of-the-art large-scale multi-agent

transportation simulator: it reproduces a realistic behavior

of how people travel and perform activities such as spend-

ing time at work, attending schools, shopping, and visiting

friends, and how roads with different parameters respond

to travel demands. Specifically, the simulator’s workflow to

identify the typical travel behavior is organized as follows.

First of all, the road network is specified in the simulator to

match the real world, and initial travel plans (i.e., activities

and trips connecting the activities on an individual basis) are

created from where people live and work according to census

and surveys. Second, the plans for the individuals are exe-

cuted in the road network through high-fidelity simulations

and scored according to their economic values. Next, the

simulator re-plans, re-executes, and re-scores the plans for the

individuals using a co-evolutionary algorithm until nobody

can unilaterally improve their trips. At that point, the system

has an equilibrium, and we can inspect the typical behaviors

of the individuals.

B. REINFORCEMENT LEARNING

A reinforcement learning system is delineated by four essen-

tial parts: (i) a policy, (ii) a reward function, (iii) a value

function, and optionally (iv) a model of the environment [49].

A policy is a mapping between the state perceived by the

agent and the actions to take. The reward function deter-

mines the goal of the agent and thus the action to take in

the immediate. Similarly, the value function of a system

determines what is valuable in the long term. The presence

of a formal model of the environment discriminates among

model-based and model-free RL approaches [49]. More pre-

cisely, a model, given a specific state and action, might be

used to foretell the next state and the next reward. In other

terms, model-based RL approaches can investigate prospec-

tive scenarios and situations before they are encountered.

On the contrary, model-free methods learn directly from their

experiences [49].
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Usually, models are employed to mimic the conditions in

which the RL algorithm will act and provide the simulated

experience. The latter can then be utilized for planning the

subsequent actions. In particular, the two ways in which

planning can be developed are state-space planning and plan-

space planning. In the former, the purpose is to examine all

the possible states to determine an optimal policy. In con-

trast, in the latter, the exploration for an optimal pattern is

scrutinized over the space of plans. In some model-based RL

settings, an optimal policy is difficult to achieve due to the

barriers in modeling large-dimensional state-spaces. This is

the case, for example, of transportation systems. Additionally,

representing real-world problems as fully observed models is

prohibitive in the vast majority of the cases.

C. DISCRETE EVENT DECISION PROCESS AND PARTIALLY

OBSERVABLE DISCRETE EVENT DECISION PROCESS

A Discrete Event Decision Process (DEDP) [19] and

a Partially Observable Discrete Event Decision Process

(PODEDP) [18] have been proposed for optimal control in

transportation systems.

The most significant limitation of the Discrete Event

Decision Process (DEDP) [19] is that by considering the

full observability of the environment, the algorithm for

the policy optimization never performs an information

gain check. In particular, DEDP can be seen as a tuple

DEDP〈S,A,V,C,P,R, γ 〉 where S is the state space, A is

the action space, V the set of possible events, C is a mapping

between actions and event coefficients, P is the transition

kernel, R represents the reward function and, finally, γ ∈

[0, 1] is a discount factor. Mathematically, the transition ker-

nel is represented as the probability of an event to happen

given a state and an action P(st+1) = p(vt |st , at )δst+1=st+1v

and the immediate reward function R is a function of a

state at a given time t and corresponds to the sum of the

rewards of each component: R(st ) =
∑M

m̂=1 R
(m̂)t (s

m̂
t ). In this

sense, a policy π can be defined as a mapping between a

state st and a distribution of actions at parametrized with θ :

πp(at |st ; θ ). The goal of DEDP is to optimize the policy φ or,

in other terms, maximize the expected future reward as θ ←

argmaxθ Eξ (
∑

t γ
tRt ; θ ) where ξ is an observed trajectory of

the form ξ = (o1, a1, r1, o2, a2, r2 . . . , oT , aT , rT ). The algo-

rithm proposed in [19] (Algorithm 1) optimizes DEDP policy

through performing policy evaluation and policy improve-

ment steps repeatedly until convergence:

DEDP policy evaluation through dynamic programming

is intractable, due to the exponential size of the state space

in the number of state and control variables. In [19], the

Bethe entropy approximation [53] is applied to identify a

variational lower bound L(θ ) of the log expected future

reward. In particular, given a deterministic policy at =

µ(st ; θ ) and the generative model of the (intractable) DEDP

process P(ξT ;π ) = p(s0)
∏T

t=1

(

p(vt | st ; θ )δst+1=st+1vt

)

,

they introduced a tractable auxiliary process q(T ,m, ξT ) =

q(T ,m)q(s0)
∏T

t=1 q(st−1,t , vt−1|T )/
∏T−1

t=1 q(st |T ) to appro-

ximate the assignment of future expected reward among the

Algorithm 1 Optimal Policy of DEDP

Input: DEDP〈S,A,V,C,P,R, γ 〉

Output: The optimized parameter θ

Procedure: Repeat the following policy evaluation and

policy improvement steps until convergence.

1) Policy evaluation: Repeat Eq. 1 and 2 to esti-

mate state statistics α
(m̂)
t (s

(m̂)
t ) and reward statistics

β
(m̂)
t (s

(m̂)
t ) until convergence.

α
(m̂)
t (s

(m̂)
t ) ≈

∑

s
(m̂)
t−1,vt−1

α
(m̂)
t−1(s

(m̂)
t−1) · p(s

(m̂)
t , vt−1|s

(m̂)
t−1; θ ).

(1)

β
(m̂)
t (s

(m̂)
t ) =

∑

m

q(t,m)β
(m̂)
t|t,m(s

(m̂)
t )

+
∑

s
(m̂)
t+1,vt

p(s
(m̂)
t+1, vt |s

(m̂)
t ; θ)β

(m̂)
t+1(s

(m̂)
t+1).

(2)

2) Policy improvement: update θ with Eq. 3 to max-

imize the expected future reward function L(θ ) =
∑

T ,m,ξT
q(T ,m, ξT ; θ

old)log
(

γ TP(ξT ; θ )R
(m)
T

)

with gradient ascent.

∂L(θ )

∂θ
=

∑

t,st

∏

m̂

α
(m̂)
t (s

(m̂)
t ,vt=v)β

(m̂)
t (s

(m̂)
t ,vt=v)

cv

∂cv
∂θ

−
∑

t,st

∏

m̂

α
(m̂)
t (s

(m̂)
t ,vt=∅)β

(m̂)
t (s

(m̂)
t ,vt=∅)·

∏

m
gmv (s

(m)
t )

1−
V
∑

v=1
cv·

∏

m
gmv (s

(m)
t )

∂cv
∂θ

.

(3)

future states and actions, and solved the variational lower

bound with the method of Lagrange multipliers. The result is

a forward-backward algorithm to estimate the state statistics

α
(m̂)
t (s

(m̂)
t ) and reward statistics β

(m̂)
t (s

(m̂)
t ) repeatedly until

convergence in Algorithm 1. DEDP Policy improvement is to

maximize the log expected future reward lower bound L(θ ),

which is constructed from the forward statistics α
(m̂)
t (s

(m̂)
t ) and

backward statistics β
(m̂)
t (s

(m̂)
t ), and optimized through chain

rule.

PODEDP is an approach that aims to optimize a policy

starting from a partially observable environment. In gen-

eral, we can consider it as an extension of DEDP, where

the decision-making process is not fully observable. There-

fore, we do not need to assume perfect a priori knowledge.

Moreover, by removing such an assumption, the optimizer

is forced to perform an information gain step during the

policy optimization process. It leads to the ability to model

complex systems such as transportation in a more precise and

realistic way. In general, it is known that the majority of the

real-world systems are partially observable and, despite the

excellent results achieved in [19] using DEDP, we expect to

gain better and more realistic results using PODED. In this

paper, we integrate PODEDP in an RL environment as a
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policy optimizer andwe connect its dynamics to the simulator

MATSim described in Section IV-A to evaluate the perfor-

mances in a realistic city-scale scenario.

IV. METHODOLOGY

Here, we describe how we integrate a reinforcement learning

approach into the MATSim simulator (see Section IV-A).

Then, in Section IV-B, we present the Partially Observable

Discrete Event Decision Process (PODEDP) algorithm as

well as we discuss, in Section IV-C, some additional policy

optimization algorithms that can be adopted in the context of

transportation systems.

A. TRANSFORMING MATSIM INTO A REALISTIC

REINFORCEMENT LEARNING-BASED ENVIRONMENT

In this work, we transform MATSim, a high-fidelity

multi-agent transportation simulator, into a realistic rein-

forcement learning environment to optimize and evaluate

transportation policies. This reinforcement learning environ-

ment enables us to assess transportation policies and con-

vince policy-makers by simulating how agents make daily

activities and trips with high-fidelity. With the reinforcement

learning environment, we develop a model-based reinforce-

ment learning algorithm to approximate MATSim dynamics

with a Partially Observed Discrete Event Decision Process

and identify the optimal policy through variational infer-

ence. The model-based reinforcement learning algorithm is

benchmarked against three state-of-the-art algorithms, Policy

Gradient, Actor-Critic, and Guided Policy Search, in the pro-

posed reinforcement learning environment on four different

scenarios: a fully synthetic one provided byMATSim (Synth-

Town) and other three real-world datasets involving the cities

of Berlin, Santiago de Chile and Dakar. Of the four algo-

rithms, only the model-based reinforcement learning algo-

rithm can converge with a reasonable computational effort.

An implementation of the entire framework is available at

github.com/LuckysonKhaidem/matsim-code-examples.

One of the challenges we face while translating MATSim

into a reinforcement learning environment is keeping track

of immediate rewards. This is particularly difficult because

the MATSim scoring function generates scores of plans at

the end of every iteration. Instead, in our reinforcement

learning paradigm, we define immediate rewards as the dif-

ference between rewards accumulated between two consecu-

tive actions that an agent takes. To calculate this difference,

we need to keep track of rewards that an agent accumulates

throughout the course of simulation every minute of the

day.

In sum, turning MATSim into a reinforcement learn-

ing environment with realistic agents’ and roads’ behavior,

we offer a way to evaluate a transportation dynamic policy

in a realistic scenario. In the following, we describe in detail

the solution adopted (i.e., Partially Observable Discrete Event

Decision Process) to characterize the decision-making pro-

cess of a transportation system.

B. REINFORCEMENT LEARNING IN MATSIM WITH A

PODEDP

Modeling transportation dynamics on a city-scale represents

a formidable hurdle due to the massive dimensions of the

state-space and the complexity of the transitions. Further-

more, transportation systems are only partially perceptible

and, consequently, it is hard to derive a model that can

accurately trace the related dynamics. Another challenge

stems from the complex interactions in the system, with

the consequence that short-term choices may have massive

implications in long-term scenarios. To address those chal-

lenges, we built on the PODEDP optimal control algorithm

recently proposed by Yang et al. [18] and developed a model-

based reinforcement learning algorithm. The mathematical

notations used in this Section are described in Table 1

TABLE 1. Summary of the mathematical notation used in this Section
with the associated meaning.

As described by Yang et al. [18], a PODEDP is a tuple

PODEDP〈S,A, �,V,C,P,O,R, γ 〉 where S is the state

space, A the action space, � the observation space and O

is the related observation function. V is the events set, C

is a mapping between actions and event rate coefficients, P

corresponds to the transition kernel, R is the reward function

and, finally, γ is a discount factor that varies between 0 and 1.

Given this definition, the two model parameters are φc
governing state transition dynamics and φR governing the

immediate reward to be received. The probability for an

event vt = 1, . . . ,V to happen conditioned on state st
and action at is p(vt | st , at ;φc) = hv(st , cv(at ;φc)) =

cv(at ;φc)
∏M

m=1 g
(m)
v (s

(m)
t ). In other words, action at controls

discrete event decision process dynamics through changing

the event rate coefficients c = (c1, . . . , cV ) = C(at ;φc).

The probability of no event is thus p(vt = ∅ | st , at ;φp) =

1 −
∑V

v=1 hv(st , cv(at ;φp)). The immediate reward received

by a system at state st is R(st ;φR) =
∑M

m=1 R
(m)
t (s

(m)
t ;φ

(m)
R ).
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Similarly, the policy parameters are θ . Finally, given an

action at = (a
(1)
t , . . . , a

(D)
t ), a policy is defined determinis-

tically as at = µ(st ; θ ) or stochastically as π = p(at |st ; θ ).

The idea behind the integration of PODEDP in an RL

environment is to start from the model parameters (φc, φR)

and the policy parameters θ and iterates through the following

steps until convergence:

1) Execute policy µ(•; θ ) in the environment. Add the

observed trajectory ξ = (o1, a1, r1, o2, a2, r2 . . . ,

oT , aT , rT ) to the training data set D = D ∪ ξ .

2) Train model parameters φc and φR on dataset D via

Maximum Likelihood Estimation

φc, φR← argmaxφc,φR
ED log p(ξ ;φc, φR).

3) Optimize the policy parameter θ under PODEDP

model with parameters

φc and φR. θ ← argmaxθ Eθ,φc,φR

∑

t γtR(st ).

Regarding point (1), we optimize city-scale road traffic

streams through dispatching carriers to downstream road

links in the correct proportion and recommending people reg-

ulate the place and duration of their future actions, according

to our estimation of traffic jams from the isolated measure-

ments of vehicle trips.

Specifically, the action variables at are the chances of

choosing a downstream road link after completing the current

road link, and the event rate coefficient of leaving or entering

buildings. We implement the action variables within MAT-

Sim through selecting from the alternative plans identified by

theMATSim re-planningmodule with rejection sampling and

using the within-day re-planning interface.

We use PODEDP 〈S,A, �,V,C,P,O,R, γ 〉 to approxi-

mate the complex dynamics of MATSim (and the real world)

analytically through defining a set of microscopic events.

In the PODEDP model, the states st = (s
(1)
t , · · · , s

(M )
t , t)

are the number of vehicles at the M locations (road links

and buildings) and the current time t . The observations ot =

(o
(1)
t , · · · , o

(M )
t , t) are the number of probe vehicles at theM

locations and current time t , where the probe vehicles are

randomly selected and constitutes 10% of the total vehicle

population. The movement of vehicles from one location m1

to the next locationm2 is represented as an event p ·m1
cm1m2
→ p ·

m2, where the event rate coefficient cm1m2
is the probability

for the vehicle to make the movement. The action variables

at will change the event rate coefficients to make road usage

more efficient. We implement the state transition p(st+1, vt |

st , at ) following the traffic flow diagram to best match MAT-

Sim traffic dynamics, including traffic congestion. Then, the

reward function R(st ) is implemented to best approximate

the Charypa-Nagel scoring function. Finally, we implement a

policyµ(st ; θ ) as a neural network with weight θ . The reward

function R(st ) =
∑

m β
(m)
t,perfs

(m)
t + β

(m)
t,travs

(m)
t emulates the

Charypa-Nagel scoring function in transportation research

[15] to reward performing the correct activities at facilities

and penalize traveling on roads, where β
(m)
t,trav and β

(m)
t,perf are

the score coefficients. We implement the deterministic policy

as a function of states through a neural network at = µ(st ) =

NN (st ; θ ) parameterized by policy parameter θ .

Concerning point (2), we used a simplified version of the

concepts introduced in [54], [55] to train the two parame-

ters of the model (φc, φR) for each dataset D introduced in

Section V-A. In particular, they propose a way of capturing

interactions in social dynamics and of copying exponential

growth of state-space with respect to the number of elements

in the system. In this sense, it would be unlikely to assess the

scenarios utilizing exact inference solutions, and so Xu et al.

[54] have proposed an approximate inference method.We get

inspired by their solution as the complexity of transport

dynamics and transportation systems perfectly fit with the

obstacle Xu et al. [54] solved. Notably, as the state-space is

remarkably large and the environment is partially observable,

it is better to estimate the parameters of the model using a

technique that copes with approximate inference. To succeed,

Xu et al. [54] suggest to consider i(1) . . . i(M ) as a set of

individuals, v(1) . . . v(T ) as a set of events, y(1) . . . y(T ) as a

set of observations and, finally, x(1) . . . x(T ) as a sequence of

hidden states. In this sense, the likelihood of the sequence

is estimated as P(x(1), . . . , x(T )), y(1), . . . , y(T ), v(1) . . . v(T ) =
∏T

t=1 P(xt , vt |xt−1)P(yt |xt ). In particular, P(xt , vt |xt−1) cor-

responds to the transition kernel. In the policy evaluation step,

we use the method introduced by Xu et al. [54] to handle

the exponential growth of the state-space and to reduce it to

a tractable one with a mean-field approximation of the state

q(st |T ,m) =
∏M

m=1 q(s
(m)
t |T ,m). In this way, we can define a

projected marginal kernel that can be further developed into

a backward-forward algorithm. The forward and backward

steps are defined as:

α
(m)
t (x

(m)
t ) ←

1

Zt

∑

x
(m)
t−1,vt

α̂
(m)
t−1(x

(m)
t−1)

× P̂(x
(m)
t , vt |x

(m)
t−1)P(y

(m)
t |x

(m)
t ) (4)

β̂
(m)
t−1(x

(m)
t−1) ←

1

Zt

∑

x
(m)
t ,vt

β̂
(m)
t (x

(m)
t )

P̂(x
(m)
t , vt |x

(m)
t−1)P(y

(m)
t |x

(m)
t ) (5)

To learn the aforementioned parameters, we maximize the

expected log-likelihood

φc, φR← argmaxφc,φR
ED log p(ξ ;φc, φR)

In our experiments, we use a simplified version of the method

proposed to estimate the parameters φc and φR.

Finally, for point (3), we need to optimize the policy

parameter θ using the estimated values of φc and φR. In other

terms, θ ← argmaxθ Eθ,φc,φR

∑

t γtR(st ). To accomplish this

purpose, we execute the algorithm stated in [18]. The policy

improvement step performs θ ← θ + γ
∂logVπ (r)

∂θ
where

γ is the learning rate and the gradient is mathematically

described in Equation 3. Given the difficulty of solving a

PODEDP problem due to the critical dimension of belief

state-space, as recommended in the literature [56], we train
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the model in a fully observable environment that can be

constructed using DEDP. Adopting such an approach leads

to a computationally-simpler solution of the partially observ-

able environment. In different words, we are reducing the

optimization of a PODEDP problem to a policy optimization

in a Specially designed DEDP (SDEDP). Thanks to the full

observability assumed in a DEDP model, we are assured

that the optimized value function of a DEDP system is the

upper bound of the related PODEDP optimizer. Maximizing

the upper bound of the DEDP problem is not enough as we

cannot solve the PODEDP model because by computing this

bound we are not guaranteeing the performances of the target

function. This is where SDEDP plays a crucial role. SDEDP

is a tuple SDEDP〈S,A,V,C,P,R, γ 〉. Given a PODEDP

model, SDEDP is the corresponding fully observable model

if the two share the same S,A,V,C,P,R, γ and the initial

state distribution is the same.

Algorithm 2 summarizes how the local policy associated

with the corresponding SDEDP instance can be optimized.

Algorithm 2 Optimal Policy of the Corresponding SDEDP

Input: SDEDP〈S,A,V,C,P,R, γ 〉; θ

Output: Optimal θ w.r.t. the stochastic policy

Procedure:

1) Policy evaluation: Repeat Eq. 4 and 5 until conver-

gence

2) Policy improvement: update θ with Eq. 3

Once done, we are able to estimate the belief state bt (st ) =

p(st |o0:t ) by inferring the state distribution in the original

PODEDP environment from the past observations until the

current observation. To obtain an optimized policy in the

PODEDP environment, we first apply Algorithm 1 onµ∗(st ),

we estimate bt (st ) as showed in Equation 6 and we generate

the optimal policy as indicated in Equation 7.

bt (st ) =

M
∑

m̂=1

αm̂t (s
(m̂)
t ) =

∝

M
∑

m̂=1

∑

s
(m̂)
t−1,at−1,vt−1

α
(m̂)
t−1(s

(m̂)
t−1)

× p(s
(m̂)
t , o

(m̂)
t at−1, vt−1|s

(m̂)
t−1; θ ) (6)

π∗(at |bt ) =
∑

st

bt (st )δat=µ∗(st ) (7)

The steps to follow are further highlighted in Algorithm 3.

As mentioned, the chance of working in a model-based

reinforcement learning setting is a unique opportunity to

investigate scenarios and learn from simulated experience.

Simultaneously, shaping a complex real-world system is

challenging, and the risk of training agents on an inade-

quately designed model is significant. Moreover, model-free

RL brings substantial limitations. In such systems, agents

cannot carry an explicit plan of how environmental dynamics

affect the system, especially in response to an action ear-

lier practiced. Therefore, it would be complicated to collect

Algorithm 3 Optimization of a PODEDP

Input: PODEDP〈S,A, �,V,C,P,O,R, γ 〉

Output: The optimized policy: π∗(at | bt )

Procedure:

1) Run Algorithm 2 on µ∗(st )

2) Estimate bt (st ) with Equation 6

3) Generate the optimal policy as in Equation 7

insights that can be applied to real-world situations. The

solution specified in this Section is a model that embodies a

good compromise between the ascertainment that in a model-

based environment we can gather valuable insights and the

admission that a world may be partially observable. In this

sense, we affirm that by using such a model, we can capture

complex real-world dynamics more accurately and succinctly

with respect to other models.

Despite the good results obtained inmodel-based scenarios

that assume the full observability of the environment ( [19]),

by removing such strong assumptions ( [18]) we can over-

take the results of methods such as DEDP, Guided Policy

Search (GPS) [57], Policy Gradient (PG) [58] and Actor-

Critic (AC) [59]. The outcomes are discussed and investigated

in Section VI.

C. POLICY OPTIMIZATION TECHNIQUES

In this Section, we focus on three policy optimization algo-

rithms. In particular, we analyze two simulation-based algo-

rithms, namely Policy Gradient (PG) [58] and Actor-Critic

(AC) [59], and an analytical method, Guided Policy Search

(GPS) [57]. The main difference between simulation and

analytical methods is that the former category sample the

states and the actions to reproduce population flows while

the latter approximate transition dynamics using differential

equations and solve local policies. All the mentioned tech-

niques implement the policy as a neural network considering

the historical inputs as observations. The performances of

the aforementioned state-of-art algorithms are compared with

our proposed approach based on PODEDP [18] in Section VI.

Regarding PG [58], the authors have highlighted that in

many works, the loss function, that should be optimized to

solve a problem successfully, consists of computing an expec-

tation over a set of variables that may be part of a probabilistic

environment and thus gradient-based algorithms cannot be

used. To overtake this issue, Schulman et al. [58] show how

an unbiased estimator of the loss function’s gradient can

be derived starting from a stochastic computation graph: a

directed acyclic graph that encodes the dependency structure

of the computation to be performed. Four types of nodes

can be found in the graph: (i) input nodes containing the

parameters we want to compute, the derivative of (ii) deter-

ministic nodes that correspond to a deterministic function we

want to calculate with respect to the parents, (iii) stochastic

nodes that specify a random variable through a conditional

distribution on their parents, and finally (iv) constant nodes,

namely a subset of deterministic nodes corresponding to real
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numbers. Schulman et al. [58] derive a gradient estimator for

an expected sum of costs in a stochastic computation graph

and they show that this gradient estimator can be computed

efficiently. In their paper, the authors propose two ways to

calculate the gradient. One way is to use the backpropa-

gation algorithm with one of the surrogate loss functions.

As an alternative, the algorithm proposed in [58] can be used.

Another algorithm for policy optimization that we compare

with PODEDP is proposed by Lillicrap et al. [59]. In this

work, they introduce an Actor-Critic model-free algorithm

that also works in continuous action spaces. Q-learning can-

not be applied to continuous action space due to the computa-

tional complexity of finding a greedy optimized policy. Thus,

the authors have proposed an Actor-Critic algorithm based on

a deterministic policy gradient [60].

An additional solution to policy optimization is described

in [57]. There are many guided policies that can be used

to solve non-linear problems and Montogomery and Levine

[57] propose a new Guided Policy Search (GPS) algorithm

providing two main contributions. First of all, their algorithm

guarantees convergence in simplified convex and linear set-

tings. Moreover, they show that, in the more general non-

linear setting, the error in the projection step can be bounded.

V. EXPERIMENTAL SETUP AND DATA

In this Section, we present the structure of the experiments

we perform as well as the synthetic and real-world datasets

used for evaluating our approach. Overall, our purpose is to

compute an optimal policy to manage transportation dynam-

ics in order to (i) minimize the time cars spend on the roads,

(ii) arrive at a specific Point of Interest (POI) on time, and (iii)

staying at a given POI for a sufficient amount of time. Some of

the features needed to run the PODEDP optimizer are taken

from the datasets outlined in Section V-A, while others are

measured fromMATSim. As previously said, a PODEDP can

be seen as a tuple PODEDP〈S,A, �,V,C,P,O,R, γ 〉 and

the mapping done to run our experiments is as follows. First

of all, the set of states S is composed by elements such as

st = (s
(1)
t , . . . , s

(M )
t , t) representing the cardinality (number

of vehicles) atM locations at a given instant t . Moreover,O is

an observation function and, as far as most of the real-world

complex systems are partially observable, we may want to

observe only a subset of these vehicles. In our experiment,

we randomly select the 10% of the elements as probe vehicles

(3). In this sense, we can model O as a set of items ot =

(o
(1)
t , . . . , o

(M )
t , t) to delegate each λ ∈ 3 at the M location

at a specific time t . � is the related observation space and ot
is the observation received at time t .

Regarding the events, each event v has the form p·m1
cm1m2
→ p·

m2 and highlights how an element p moves from m1 to

m2 and each c = (c1, . . . .cV ) ∈ C is P(st+1, vt |st , at ).

In other terms, cm1,m2
is the probability of p of moving

from m1 to m2 at t . Similarly, each action at can be rep-

resented as the event rate coefficient of (i) choosing the

downstream link, (ii) leaving a POI, and (iii) entering a POI

and staying there for a sufficient time period. Concerning

the traffic dynamics, we decide to follow the traffic flow

diagram proposed by MATSim while the reward function

R(st ) = 6mβ
(m)
t,perfs

(m)
t + β

(m)
t,travs

(m)
t emulates the Charypa-

Nagel scoring function illustrated in [15]. Finally, we imple-

ment the policy as p(at |bt ; θ ) = 6stbt (st )δat=µ(st ;θ ) where

µ(st ; θ ) is a neural network with θ as weights.

A model-based reinforcement learning algorithm is data-

efficient. To demonstrate that, we compare our proposed

approach against other analytical and simulation methods.

For the simulation method, we focus on a Policy Gradient

(PG) [58] and an Actor-Critic (AC) [59] that sample the

actions and next states to reproduce the population flow. For

the analytical method, we focus on a Guided Policy Search

(GPS) [57] that approximates the transition dynamics with

differential equations and solves the local policies analyti-

cally. All these algorithms implement the policy as a neural

network with the historical inputs as observations. We run

each algorithm on each scenario for 10 times and draw the

average and standard deviation of the achieved utilities across

training epochs.

A. DATA

We evaluate the performance of our proposed framework on

four datasets of human mobility: (i) SynthTown, (ii) Berlin,

(iii) Santiago de Chile, and (iv) Dakar. A summary of the

relevant characteristic of each dataset are exposed in Table 2

The SynthTown dataset contains a synthesized network of

one home location, onework location, and 23 single-direction

road links. Hence, it represents the synthesized travel demand

of 50 agents going to work in themorning and returning home

in the afternoon [15]. We uniformly sample 10% of these

agents as probe ones who are observable on link 1 and link

20. The optimization problem has the goal of maximizing

the total utility over all agents through setting the rate for

an agent to start the home-to-work and the work-to-home

trips, and distributing agents to the available downstream

links according to the time of day and the numbers of probe

agents on link 1 and link 20. If each agent maximizes his/her

utility greedily, traffic congestion will happen and the overall

utility will be sub-optimal. The numbers of probe agents on

link 1 and link 20, on the other hand, provide information

for the controller to optimize agent behavior. This centralized

control is what happens when a transportation agency and a

web-mapping service-provider control traffic signals, provide

traffic information, and diversify the routes to optimize road

network operation.

The Berlin dataset is comprised of a network of approxi-

mately 2400 single-direction road links, derived from Open-

StreetMap, in the metropolitan area of Berlin bounded by

the Berlin beltway. Moreover, this dataset contains the trips

of 17 thousand synthesized vehicles representing the travel

behaviors of three million inhabitants [61]. The daily trips in

the Berlin dataset were synthesized from (i) the commuter

data provided by the German Federal Employment Agency

containing the home and workplace municipalities of the

working population, (ii) an activity-based demandmodel [64]
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TABLE 2. A synthesis of the datasets used in the experiment and their main characteristics.

to sample a sequence of activities (staying at home, working,

attending schools, shopping, going to the restaurant, etc.) and

the corresponding travels throughout a day, (iii) a physical

simulation [15] to repeatedly modify the sampled activity-

travel sequences to match the capability of the transportation

network, and finally (iv) a Bayesian sampling [65] to match

the daily activity-travel sequences from the previous step

with hourly traffic count values from over 300 count stations.

The synthesized daily trips have been validated based on

extensive, regularly-conducted travel surveys and constitute

a quality representation of road transport demand.

The third dataset, the Santiago de Chile dataset, com-

prises a network of 6000 single-direction links derived from

OpenStreetMap, and of the trips of 65 thousand synthe-

sized vehicles representing the travel behaviors of six million

inhabitants in cars, walking and public transportation modals

[62]. The daily trips in the Santiago de Chile dataset were ini-

tialized from cloning the sequences of activities (starting time

and duration of time spent at home, work, school, doing shop-

ping, doing leisure activities, doing visits, and at health facil-

ities) and travel mode of 60 thousand individuals (from 18

thousand households) from publicly-accessible travel diaries.

These sequences of activities are modified through physical

simulation and a co-evolutionary algorithm (using MATSim)

to maximize the overall utility of the system. The resulting

daily trips are compatible with travel modals’ distributions

and observed traffic counts at count stations.

Finally, the Dakar dataset contains a network of 8000

single-direction road links derived from OpenStreetMap

and 12 thousand real-world vehicle trips derived from the

‘‘Data for Development (D4D)’’ challenge datasets based on

the Call Detail Records (CDR) of over 9 million Sonatel

customers in Senegal through the year 2013 [63]. A Call

Detail Record is a data record that details a telecommuni-

cation transaction to generate phone bills and has been used

widely in academic research for modeling human mobility

patterns [48]. More precisely, the D4D-Senegal datasets con-

tain hourly site-to-site voice/SMS traffic among 1666 sites

(dataset 1), mobility of 300 thousand users randomly sampled

every 2 weeks at site level (dataset 2), and the mobility

of 150 thousand randomly-sampled users for one year at the

level of 123 arrondissements (dataset 3). From dataset 2,

we identify the home and work/school locations of each

user as randomly picked locations from the most appeared

sites in the periods 7am - 7pm and 7pm - 7am, respectively.

Then, we sample an activity-trip sequence for each user to

match her/his sequence of mobility records from a Markov

chain model describing how s/he performed various activities

(staying at home, staying at work, attending school, shopping,

etc).

In MATSim, immediate rewards and penalties are assigned

to an agent according to its current location. For example, per-

forming an activity results in decreasing immediate reward

over time (diminishing returns), while traveling results in

a constant immediate penalty over time depending on the

transportation mode and an upfront penalty at the beginning

of a trip. Early arrival and departure result in no reward

or penalty. Additionally, traffic dynamics in MATSim are

modeled mesoscopically as a queuing network. A road link

is characterized with maximum speed, maximum flow and

maximum capacity. When traffic flow (i.e., number of vehi-

cles moving out of the road link per unit time) is less than

the maximum traffic flow, vehicles move out of the link at

maximum speed. Otherwise, vehicles are queued up in the

road link until all cars in front of them move out the link at

maximum traffic flow. When the number of cars in the link

reaches maximum capacity, no other vehicles are allowed to

move into the link. Both the utility function and the dynamics

reflect the complex behavior in real world road traffic.

VI. RESULTS

In this Section, we compare the performance of Guided

Policy Search, Actor-Critic, Policy Gradient, and model-

based reinforcement learning with the Partially Observed

Discrete Event Decision Process algorithm on the four sce-

narios described in Section V-A. Since the performance loss

of a model-based reinforcement learning algorithm comes

from both the inaccuracy of the model representing the real

world and the approximation to the optimal solution within

the model, we also compare the PODEDP dynamics and the

MATSim dynamics it represents.

A. COMPARING GPS, AC, PG, AND PODEDP

MODEL-BASED REINFORCEMENT LEARNING

In a reinforcement learning environment, the final aim is to

optimize a policy by maximizing the rewards. In Figure 1,

we show the learning curves of PODEDP (in grey), GPS

(in red), AC (in green), and PG (in blue) when we optimize

transportation dynamics in the SynthTown, Berlin, Santiago,

and Dakar scenarios respectively. Moreover, in Figure 1 we

highlight the variance of the algorithms, which is represented

by the colored area around the curves.

From the panels, it emerges that the PODEDP-based rein-

forcement learning algorithm quickly achieves higher utilities

and with less variance. This is because the algorithm uses the

data gathered from executing the learned PODEDP policy to

refine the PODEDP model with supervised learning. Then,

it uses the refined PODEDPmodel to improve the policy with

variational inference, thus achieving data efficiency. At the

same time, we have not been able to bring GPS, AC and PG to
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FIGURE 1. The total rewards achieved by the algorithms over the training epochs. In the figures, we also highlight the models’ variances, represented by
the colored areas around the curves. PODEDP (in grey) performs better than the other models in all the scenarios while the analytical solution,
represented by GPS (in red), achieves more significant rewards in all the cases with respect to the simulation-based techniques (AC in green and PG in
blue).

convergence with a reasonable computational effort. The ana-

lytical solution (GPS algorithm) obtains better results with

respect to the simulation-based solution. Only in the Berlin

scenario, the performances of GPS are close to the one of AC.

In general, in a road traffic network, high rewards require the

individuals to perform the correct activities (staying at home,

working, and so on) at the right time, and to spend less time

on roads. Modeling the complex system transition dynamics

based on a Markov Decision Process analytically, using

Taylor approximation, introduces modeling errors, which is

the case of the GPS policy optimization techniques. The PG

algorithm uses a similar technique based on a Monte Carlo

integration. In this sense when this algorithm deal with high-

dimensional state spaces, its variance drastically increase

and a small perturbation of policy may result in significant

changes to the immediate reward and value in later steps,

which makes it difficult to estimate the correct value from

sampled trajectories, and as a result difficult to compute the

correct value gradient. The AC algorithm also faces the same

problem.

To illustrate how the learned behavior of individual agents

causes the overall performance differences, we present the

average number of vehicles of ten runs at each location

of SynthTown for each algorithm using the learned policy

(Figure 2). As shown in this Figure, the PODEDP leads to

the smallest amount of vehicles on roads, the largest amount

of vehicles at work during working hours (9am - 5pm), and

the largest amount of vehicles at home during rest hours

(other hours), which indicates that the learned policy of

PODEDP algorithm best satisfies the needs. By combining

the accurate modeling of PODEDP with a tractable solution

using variational inference, our method achieves the best

performance. For other analytical techniques, GPS introduces

modeling error when approximate the state transitions with

differential equations. PG and AC instead introduce a high

variance in sampling.

To further highlight the performances of the algorithms

under analysis, we identify some key performance metrics

(Table 3). In particular, we measure the average time vehi-

cles spend on the roads, the number of cars at workplace

locations in the working hours (9am - 5pm) and vehicles at

FIGURE 2. Average number of vehicles by hour of a day at home, work,
and road links with trained policies in the SynthTown scenario (network
on the top). PODEDP model-based reinforcement learning achieves least
travel time and best on-time arrival.

home locations during non-working hours. These values are

collected for each algorithm in ten runs and using the policy

that is learned at that point. Such metrics can be used as

indicators of how well a learned policy performs. Given the

higher rewards obtained by the PODEDP techniques, it is the

algorithm that better minimizes the average times of vehicles

on the roads and maximizes the number of vehicles both at

the workplaces in working hours and at home locations in the

other periods.

B. COMPARISON OF MATSim AND PODEDP DYNAMICS

To emphasize the PODEDP solution’s correctness, we com-

pare its traffic dynamics with the ones of MATSim. Specif-

ically, we run a 24-hour MATSim simulation of the Berlin

environment by executing a predefined set of plans. We col-

lect the location and reward received for each agent in the

simulation at every minute of the simulation time. We also

record the same metrics for the PODEDP solution that has

been run using the learned policy for the Berlin environment.
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TABLE 3. Performance comparison of algorithms in the following metrics: average time (minutes) on the road per vehicle (TOR), average number of cars
on the road per unit time (minutes) (VOR), and average number of vehicles at work during working hours (VAW).

FIGURE 3. A comparison of the average time in minutes spent on each
link on MATSim (x-axis) and PODEDP (y-axis). The average time is related
to activities (e.g., stay in a building for working purposes) highlighted in
blue and legs (time spent on streets) depicted with orange dots. The
linearity of the distribution highlight that PODEDP and MATSim have
similar temporal dynamics.

FIGURE 4. A comparison between the rewards of MATSim (x-axis) and
the ones of PODEDP (y-axis). Also in this case the linear relation spotlight
similar dynamics (both for the activities in blue and legs in orange)
between the simulator and the proposed policy optimization algorithm.

Using the data obtained from both the experimental runs,

we may draw various insights to shed light on how similar the

traffic and reward dynamics of the two simulations are. Since

MATSim provides a realistic simulation of the actual traffic

dynamics, we need to ensure that our solution is effective

in an environment whose dynamics are close to the ones of

MATSim’s.

Figure 3 compares the average time spent on each link

between the two simulations. For each link (i.e., road seg-

ment/building), we calculate the average time spent in min-

utes and then sample 10,000 links and plot their correspond-

ing average duration. Each data point represents a link where

its x-coordinate represents the average time spent inMATSim

and its y-coordinate represents the average time spent in the

PODEDP run. The strong diagonal implies strong similarities

in the temporal dynamics of the two simulations.

Similarly, Figure 4 compares the average reward received

on each link for both the simulations. The average reward

FIGURE 5. The distribution of minutes spent across each activity/leg
further confirm the similarities between MATSim (in blue) and PODEDP (in
orange). Moreover, the time spent on trips is lower in the PODEDP case.

FIGURE 6. Regarding the distribution of the average rewards across
activities/legs, we show that when dealing with legs (negative rewards)
PODEDP -in orange- performs much better than MATSim -in blue- while
we obtain similar results in the activity contexts.

values are calculated in the same manner as we have done

for the previous plots. Even in this case, we can observe a

substantial similarity in the reward dynamics, as implied by

the plot’s diagonality. We can also observe from the plot that

the corresponding rewards for PODEDP tend to be slightly

higher than the ones of MATSim’s on some links. Figure 5

compares the average time spent in minutes on different

modes of transport (leg) and activity. This plot digs deeper

into how average time spent is distributed across different

types of legs and activities. We can observe that for the

two simulations, the corresponding time spent is almost the

same. Note that for PODEDP, the overall time spent on trips

is slightly less than that one of its MATSim counterpart.

Similarly, Figure 6 compares the average reward received by

the agents of the simulations across various activities/legs.

As we can see for the legs, where MATSim awards negative

rewards, the PODEDP model performs significantly better

than the MATSimmodel. However, for the activities, rewards

171538 VOLUME 8, 2020
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FIGURE 7. A quantile-quantile plot to compare the average trip duration
for both working and non-working hours (in minutes). On the x-axis,
we have the minutes taken for a trip in MATSim and on the y-axis the
performance of time spent with PODEDP. In general, PODEDP performs
slightly better than MATSim, meaning that, after a PODEDP policy
optimization, travelers spend less time on the roads.

FIGURE 8. A quantile-quantile plot regarding the duration of activities
every hour (in minutes). In both MATSim (x-axis) and PODEDP (y-axis), all
the activities such as work (in blue), leisure (in orange), shopping (in
green) and other activities (in red) have similar performances. The only
exception is the ‘‘stay home’’ activity (in purple).

earned by the PODEDP based model do not surpass but are

very close to the MATSim based model. Based on rewards,

we can say that PODEDP model, if not better, is at par with

the MATSim based model.

Figure 7 shows the quantile-quantile plot of the average

trip duration, for every hour and for both models. As we can

see the average time taken by the PODEDP based model is

slightly less than the one taken by the MATSim model. This

reinforces what we have seen in Figure 3, where the average

time spent by the PODEDP model over activities is slightly

less than the one by the MATSim model.

Finally, Figure 8 shows the quantile-quantile plot of the

average activity duration, for each hour, and for both models.

Here we observe that for all the activities, with the exception

of staying at home, the two models spend almost the same

time. This again confirms our observations from Figure 3.

Both models spend the same average amount of time on

all activities except home, where the PODEDP based model

spends slightly less time. This again shows that our POD-

EDP based model is comparable to MATSim in terms of

performance.

VII. DISCUSSION AND CONCLUSION

Redesigning and modernizing urban mobility has a piv-

otal role in our metropolitan landscapes. Yet there is not

a city-scale solution to optimize transportation dynamics

based on big mobility data and reinforcement learning to

the best of our knowledge. In this work, we transformed

MATSim, a high-fidelity multi-agent transportation simula-

tor, into a realistic reinforcement learning environment for

optimizing and evaluating transportation policies. This rein-

forcement learning environment enables us to assess trans-

portation policies and convince policy-makers by simulating

how agents make daily activities and trips with high-fidelity.

With the reinforcement learning environment, we devel-

oped a model-based reinforcement learning algorithm to

approximate MATSim dynamics with a partially observed

discrete-event decision process, and to identify the optimal

policy through variational inference. The model-based rein-

forcement learning algorithm is benchmarked against three

state-of-the-art algorithms, Policy Gradient, Actor-Critic, and

Guided Policy Search in the proposed reinforcement learn-

ing environment on four different scenarios: a fully syn-

thetic one provided byMATSim (SynthTown) and other three

real-world datasets involving the cities of Berlin, Santiago

de Chile, and Dakar. Of the four algorithms, only the

model-based reinforcement learning algorithm can converge

with a reasonable computational effort. A detailed com-

parison between PODEDP dynamics and the corresponding

MATSim dynamics using the Berlin scenario demonstrates

that PODEDP indeed captures complex system dynamics

well. Thus model-based reinforcement learning is sample

efficient with the use of variational inference to search the

solution space efficiently.

While we have evaluated the proposed model-based rein-

forcement learning approach in a state-of-the-art multi-agent

transportation simulator that emulates real-world road net-

work dynamics highly realistically, we did not evaluate it in

the real world. This reflects a limitation of the evaluation.

But such restriction is typical in complex systems and policy

research because experiments in the real world are often

costly, dangerous, and infeasible. Transforming state-of-the-

art simulators into a realistic reinforcement learning environ-

ment for policy optimization and evaluation, and applying

modern reinforcement learning techniques to learn complex

systems control from big data represent a new direction in

introducing human mobility data and reinforcement learning

into policy research. Through the integration of state-of-the-

art simulation models and big data with machine learning,

we can effectively turn the real world into a living lab,

where theories are evaluated on the data commons, results

are quantifiable and approaches are repeatable. In the future,

we expect to see applications of semantically richer models

such as multi-agent reinforcement learning and mean-field

game, additional data sources of heterogeneous nature, and

eventually real-world evaluations.
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