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Abstract— Sensor nodes have limited sensing range and are
not very reliable. To obtain accurate sensing data, many sensor
nodes should be deployed and then the collaboration among
them becomes an important issue. In [1], a tree-based approach
has been proposed to facilitate sensor nodes collaborating in
detecting and tracking a mobile target. As the target moves,
many nodes in the tree may become faraway from the root of
the tree, and hence a large amount of energy may be wasted
for them to send their sensing data to the root. In this paper,
we address the tree reconfiguration problem. We formalize it
as finding a min-cost convoy tree sequence, and solve it by
proposing an optimized complete reconfiguration scheme and
an optimized interception-based reconfiguration scheme. Analysis
and simulation are conducted to compare the proposed schemes
with each other and with other reconfiguration schemes. The
results show that the proposed schemes are more energy efficient
than others.
Index Terms: Reconfiguration, simulations, convoy tree, target
tracking, sensor networks.

I. INTRODUCTION

Advances in micro-electro-mechanics and wireless commu-
nication have enabled the deployment of large scale sensor
networks [2], where thousands of tiny and inexpensive sensor
nodes are distributed over a vast field to obtain sensing data.
These sensor nodes are equipped with sensing, communicating,
and data processing units, which allow sensor nodes to collect,
exchange, and process information about the environments.
The processing units used in recently designed sensor nodes,
e.g., the Medusa MK-2 nodes [3], are already powerful enough
to process the sensing data, and will be more powerful in the
future. Due to these attractive characteristics, sensor networks
become adopted to many military and civil applications such
as target tracking, surveillance, environmental control, and
security management.

Some limitations of the sensor nodes make sensor network
design complicated and intriguing. For example, sensor nodes
are not very reliable. They may malfunction or even die out
due to energy depletion, and their readings may drift and
lose calibration due to environmental interference. Therefore,
we cannot rely on a single node to get reliable and accurate
results. Because some level of redundancy can be used to deal
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with failures, multiple nodes can be deployed and collaborate
to obtain fine-grain and high-precision sensing data. If the
detected target or the monitoring area is large, many sensor
nodes may be needed due to limited sensing range. If the
detected target is mobile or the monitoring area is dynamic,
nodes involved in the collaboration may change over time.
The involvement of a large static or dynamic set of senor
nodes poses new challenges to design energy efficient sensor
networks.

This paper addresses the sensor collaboration issue in target
tracking. As shown in Figure 1, the sensor nodes surrounding
an adversary tank detect and track the tank, and monitor its
surrounding area to count or locate the soldiers in that area.
These nodes collaborate among themselves to aggregate data
about the tank as well as the surrounding area, and one of them
(i.e., the root) generates a fine-grain, high-precision data report.
The data report can be saved locally waiting for queries from
other nodes [4], or can be forwarded to multiple data centers
(the sinks) [5]. Each sink can be a static command center or a
moving soldier. As design goals, the sensor nodes surrounding
the moving target should promptly detect the target as the
target approaches and aggregate their sensing data to generate
robust and reliable sensing reports in an energy-efficient way.
Also, the network should forward the reports to the sinks in a
fast and energy-efficient way.

Most existing researches in sensor networks, e.g., directed
diffusion [6], [7], LEACH [8] and TTDD [5], concentrate on
finding efficient ways to forward the data report to the data
center, and not much work has been done on node collabo-
ration in target tracking. Zhao et al. [9], [10], [11] studied
the problem of tracking a mobile target using an information-
driven approach. In their approach, a single node is used to
detect the status of the target. They consider the detection node
handoff problem when the target moves, but node collaboration
is limited since only a single node is used to track the target
at any time. Cerpa et al. [12] suggested that multiple nodes
surrounding the target should collaborate to make the collected
information more complete, reliable and accurate. However,
they did not propose any concrete schemes. Brooks el al. [13]
suggested, but without specifically describing, a cluster-based
highly distributed data collection approach, where all nodes
(clusters) need to exchange their sensing data to each other.
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This method provides fault tolerance, but it is not energy-
efficient due to the redundancy in information exchanges.

In our previous work [1], we proposed a Dynamic Convoy
Tree-based Collaboration (DCTC) framework for target track-
ing. DCTC relies on a tree structure called convoy tree, which
includes sensor nodes around the moving target, and the tree
dynamically evolves by adding some nodes and pruning some
nodes as the target moves. DCTC can significantly reduce the
network traffic and the energy consumption by aggregating the
sensing data at a node close to the target. A node in the convoy
tree only sends data to its parent, which can further reduce the
redundancy in data transmission. Certainly, some parent nodes
may fail. This can be addressed by allowing a node to select
another parent node when its current one fails. If the root fails,
a new root will be reselected.

As the target moves, many nodes in the convey tree may
become far away from the root, and hence a large amount
of energy may be wasted for them to send their sensing
data to the root. In this case, a new root should be selected
to replace the old root, and the tree should be reconfigured
accordingly. In this paper, we address the tree reconfiguration
problem. We formalize it as finding a min-cost convoy tree
sequence, and solve it by proposing an optimized complete
reconfiguration (OCR) scheme and an optimized interception-
based reconfiguration (OIR) scheme. Simulation results show
that the optimized schemes have better performance than
schemes without optimization. The OIR scheme outperforms
the OCR scheme when the sensing data size is small or the
monitoring region is small, and the trend is reversed in other
cases.

The rest of the paper is organized as follows. Section II
gives an overview of the DCTC framework and defines the
tree reconfiguration problem. In Section III, we present the
OCR scheme and the OIR scheme. Section IV evaluates the
performance of the proposed schemes, and section V concludes
the paper.

II. PRELIMINARIES

A. Assumptions

We consider a sensor network, where sensor nodes are
stationary and have a fixed communication range (denoted as
dc). Each node is aware of its own location by GPS [14]
or other techniques such as triangulation [15]. Each node
also keeps information about its neighbors such as ids and
locations. To save power, the sensor nodes stay in sleep most
of the time based on the GAF protocol [16]. In this protocol,
the sensor network is divided into grids, where each pair of
nodes in neighboring grids can communicate directly with each
other. When there is no target close to a grid, only the grid head
is awake, and other nodes only need to wake up periodically.

Let ts (te) denote the time when the target enters (leaves) the
detection region of the network. At any time t (ts ≤ t ≤ te), a
set of sensor nodes (denoted as St) are required to participate
in detecting the target. In this paper, we let St include all
the nodes whose distance to the target (located at Lt) is less

than a certain monitoring radius ds
1 The circle with a radius

of ds and centered at Lt (see Figure 1) is referred to as the
monitoring region.

B. Overview of DCTC

In this section, we give an overview of the DCTC framework
[1].

1) Constructing the Initial Convoy Tree: When a target first
enters the detection region of the sensor network, as shown
in Figure 1 (a), nodes that are awake and close to the target
can detect it. These nodes construct an initial convoy tree by
first selecting a node to be the root of the tree based on a root
election algorithm [1]. Then, the other nodes in the monitoring
region are added to the convoy tree by selecting the neighbor
that has the smallest distance to the root as its parent.

2) Collecting Sensing Data via the Tree: Every certain time
interval (1 in this paper), each node in the tree generates
a sensing report. Each leaf node sends its data report to its
parent. Each intermediate node combines its own data and the
sensing data received from its children to form a new report,
and sends the report to its parent. Eventually the root receives
all the reports and processes them using certain algorithms
[13], [17] to generate a final sensing report that will be saved
locally, waiting for query or sent to the sinks.

3) Tree Expansion and Pruning: As the target moves, some
nodes in the tree become faraway from the target and are
pruned. Since most sensor nodes stay sleep to save power
before the target arrives, the root should predict the target
moving direction and activate the right group of sensor nodes,
which can detect the target and monitor its surrounding area as
soon as the target approaches. The process of tree expansion
and pruning is illustrated in Figure 1 (b). A prediction-based
scheme has been proposed in [1] to expand and prune the
convoy tree.

As the target moves, many nodes in the tree may become
far away from the root, and hence a large amount of energy
may be wasted for them to send their sensing data to the
root. To reduce the overhead, as shown in Figure 1 (c), the
root should be replaced by a node closer to the center of
the monitoring region (i.e., the moving target), and the tree
should be reconfigured. In this paper, we address the tree
reconfiguration problem.

C. The Problem of Optimizing Tree Reconfiguration

Based on the DCTC framework, we now derive the overall
energy consumption for target tracking, and show that the
problem of optimizing tree reconfiguration is equivalent to
finding a min-cost convoy tree sequence.

We denote the convoy tree at time t (ts ≤ t ≤ te) as Tt(R),
where R is the root of the tree. Vt denotes the set of nodes in
the tree. Ideally, St should be a subset of Vt and all nodes in the
monitoring region are in the tree. Let l(i) (i ∈ Vt) be the level
of node i, e represent the energy consumed by transmitting a

1When the node density is very large or the requirement for sensing quality
is not very high, St can be relaxed to include only a subset of the nodes
within the monitoring region.
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Fig. 1. Using convoy tree to track a target and monitor its surrounding area

unit of data for one hop, and sd denote the size of sensing
data (in units) generated by each node. The energy consumed
by the data collection process started at time t is defined as:
Ed(Tt) = e ∗ ∑

i∈Vt
sd ∗ l(i). By this definition, the energy

consumption is proportional to the sum of l(i), because the
sensing data generated by each node i should be sent to the
root for processing, and the transmission involves l(i) hops.

As trees are reconfigured, a sequence of trees exist at
different data collection time between ts and te. These trees
form a convoy tree sequence, which is denoted as

Γ(ts, te, Tts
(Rts

)) = 〈Tts
(Rts

), Tts+1(Rts+1), · · · , Tte
(Rte

)〉
Based on the definition of energy consumption for a single

convoy tree, we can define the total energy consumption of
Γ(ts, te, Tts

) as follows:

E(Γ(ts, te, Tts
)) = Ed(Tts

)+
t=te∑

t=ts+1

[Et(Tt−1, Tt) + Ed(Tt)]

where Et(Tt−1, Tt) is the energy consumed by the evolution
from Tt−1 to Tt.

A convoy tree sequence Γ(ts, te, Tts
) is a

min-cost convoy tree sequence if and only if
(∀Γ′(ts, te, Tts

))(E(Γ(ts, te, Tts
)) ≤ E(Γ′(ts, te, Tts

))).
Since a min-cost convoy tree sequence has the lowest energy
consumption among all possible convoy tree sequences, the
problem of optimizing tree reconfiguration is equivalent to
finding a min-cost convoy tree sequence.

III. OPTIMIZING TREE RECONFIGURATION SCHEMES

A convoy tree is reconfigured in two steps: 1) the current
root is replaced by a new one; 2) the remaining part of the tree
is reconfigured to reduce the communication overhead. In this
section, we first present a basic rule for root replacement, and
then propose and analyze two tree reconfiguration schemes.

A. Root Replacement

As illustrated in Figure 2, the root replacement rule is as
follows: The current root (R) predicts Lt+1, which is the
location of the target at the next data collection time, by
using certain movement prediction techniques such as [18],
[19]. When the distance between R and Lt+1 is larger than
a threshold dr (dr > dc), R is replaced by a node closest
to Lt+1. Once the decision for root replacement is made, R
sends a message to the head of the grid that covers Lt+1. The

Root replacement

(New root)

r>
t+1R,L dd

Monitoring region

t+1L

(Current root)
R

Target moving tragectory

R’

Fig. 2. The root replacement rule

grid head selects the node closest to Lt+1 among nodes in the
grid as the new root. The root replacement rule is based on
the following intuitive reasons:

• If the root is close to the target, i.e., the geographic center
of the nodes in the tree, the tree should have a short height
and small energy consumption during data collection.

• The sensing report may need to be sent to multiple
moving sinks [5] distributed in the network, or the data
may be stored at the root waiting for queries [4] from
multiple sinks located at different locations. In these
cases, selecting a root that is faraway from the sensing
nodes may not be a good solution, since it may consume
lots of network bandwidth and power to send the sensing
data to the root.

A Generic Method for Optimizing dr: The overall energy
consumption includes the energy consumed by the data col-
lection part and the tree reconfiguration part. Selecting an
appropriate value for dr is very important. Large dr may result
in high overhead for data collection, and small dr may result in
high overhead for tree reconfiguration. We describe a generic
method to compute the optimal dr to minimize the overall
energy consumption. This solution is based on an ideal sensor
network model that has following assumptions:

(A1) Nodes are densely and uniformly deployed, and we
can always find a node close to a certain location. The
node distribution density is denoted as ρ.
(A2) The number of hops between two nodes is propor-
tional to the geographic distance between them. Specif-
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ically, the relationship is denoted as hop(A,B) = dA,B

dc
,

where dA,B is the distance between node A and node B.
(A3) The target keeps its velocity for a relatively long
time before any change.

We consider a time period during which the target moves
at velocity v. According to the root replacement rule, root
replacement is performed every k(v) = dr/v time units. Since
the sensing data are collected every time unit, the energy
consumed for data collection between two successive root
replacements is:

∑�k(v)�−1
i=0 Ed(i ∗ v), where Ed(x) represents

the data collection overhead when the distance between the
root and the target is x. The distance between the old root and
the new root is k(v)∗v when root replacement is performed, so
the energy consumption for tree reconfiguration (initiated by
root replacement) is: Et(k(v)∗v), where Et(x) represents the
tree reconfiguration overhead when the distance between the
old root and the new root is x. Therefore, the average energy
consumption during this period is:

E(k(v), v) =
∑�k(v)�−1

i=0 Ed(i ∗ v) + Et(k(v) ∗ v)
k(v)

(1)

To minimize E(k(v), v),

k(v) = argi∈(0, ds
v )min{E(i, v)} (2)

In the following sections, we present several tree reconfig-
uration algorithms, and describe how to compute Ed(x) and
Et(x). With Ed(x) and Et(x), k(v) can be computed based
on Equation (2). Nodes do not have to compute k(v) on-line.
The function can be calculated off-line, and distributed to the
related sensor nodes when sensing requests are issued.

B. Optimized Complete Reconfiguration (OCR)

1) Complete Reconfiguration: The basic idea of a complete
reconfiguration scheme is as follows: The current root decides
and initiates root replacement based on the rules presented
in Section III-A. After a root replacement, the new root (R′)
first broadcasts a message reconf(R,R′) to its neighbors.
On receiving the message, a node checks if it has received
the same message. If so, it ignores the message. Otherwise,
it leaves the old tree by detaching from its current parent,
and adds to the new tree by attaching to its neighbor that
has the smallest distance to the new root. The attach/detach
operations help a parent node maintain its children list, and let
a child node be synchronized to its parent. The synchronization
facilitates data collection, especially for data aggregation at
intermediate nodes. If the node is a grid head, it also needs
to rebroadcast the message so that nodes out of the commu-
nication range of the new root can receive it. This process
continues until all nodes within the monitoring region have
received the message. Figure 3 illustrates the tree before and
after a complete reconfiguration.

2) Overhead Analysis: Based on the ideal sensor network
model described in section III-A, we now analyze the energy
consumed for data collection and tree reconfiguration in the
complete reconfiguration scheme. As shown in Figure 4, the

coordinates of Lt and R are (0, 0) and (−u, 0) respectively.
For an arbitrary node P (whose coordinate is (x, y)) within the
monitoring region, the energy consumed to send its report to
R is:

e ∗ sd ∗
√

(x + u)2 + y2

dc
.

As the node density is ρ, the energy consumed by data
collection is:

Ed(u) =
2 ∗ ρ ∗ e ∗ sd

dc
∗
∫ ds

−ds

∫ √
d2

s−x2

0

√
(x + u)2 + y2dydx (3)

X

Y

R

P(x,y)

Lt

u

Fig. 4. Analyzing Ed(u) for the complete reconfiguration

Next, we analyze Et(u) of the complete reconfiguration
scheme. For simplicity, we assume that the reconfiguration
occurs exactly when dR,Lt+1 = dr. In the reconfiguration,
each node within the monitoring region sends a message to its
old parent to detach from the old tree and sends a message to
its new parent to join the new tree. Thus, the energy consumed
by tree reconfiguration is estimated by:

Et(k(v)) = 2 ∗ ρ ∗ sc ∗ πd2
s, (4)

where sc is the size of a control message. In this estimation,
we ignore the overhead of broadcasting the reconf messages,
because the number of broadcasting messages is much less
than that of detach/add messages.

3) The OCR Scheme: Figure 5 formally describes the opti-
mal complete reconfiguration (OCR) scheme. In this scheme, a
node needs to compute the optimal root replacement threshold
(k(v)) after it becomes the root. The root uses k(v) ∗ v as
the threshold to decide whether to perform root replacement.
Sometimes, computing k(v) may be too expensive for a sensor
node. In this case, the function can be handed over from the
old root. The first root of the tree can obtain the function from
the base station from which it receives the sensing task.

Figure 6 gives some examples of k(v) when ds and the ratio
of the data report size to the control message size (sd/sc) vary.
As can be seen, k(v) is large when v is small, and it decreases
as v increases. This can be explained as follows. When the
target moves slowly, the set of nodes in the tree changes
slowly. In this case, it is not necessary to frequently reconfigure
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Fig. 3. Illustration of a complete reconfiguration scheme
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Fig. 6. The optimal k(v) for the complete reconfiguration scheme

the tree due to the reconfiguration overhead. When the target
velocity increases, the tree changes quickly. The frequency of
tree reconfiguration should be increased to optimize the tree
promptly. When v is fixed, k(v) decreases as sd/sc increases,
because the energy consumption of data collection becomes
much higher than tree reconfiguration as sd/sc increases. Thus,
it is beneficial to increase the tree reconfiguration frequency
to reduce the energy consumption of data collection and the
overall energy consumption. Comparing Figure 6 (a) with
Figure 6 (b), k(v) increases when ds increases. Because the
overhead of tree reconfiguration increases as ds increases, the
threshold for tree reconfiguration is also increased accordingly.

C. Optimized Interception-Based Reconfiguration (OIR)

1) Interception-Based Scheme: Since all nodes in the tree
are involved in reconfiguration, the complete reconfiguration
scheme may have very high overhead when the tree contains
a large number of nodes. To reduce the overhead, we propose
an interception-based reconfiguration, which only reconfigures
a small part of the tree. Specifically, as shown in Figure 7

(a), only the nodes within the monitoring region and between
lines l0 and l1 need to change their parents. To simplify the
presentation, let the coordinates of the old root (R) and the
new root (R′) be (x0, 0) and (x1, 0) respectively. Lines l0 and
l1 are defined as follows.

l0 : x = x1 + dc (5)

l1 : x = x0 − dc (6)

A node P (whose coordinate is (x, y)) is involved in the
reconfiguration if and only if it satisfies:




dP,Lt
≤ ds,

x0 − dc ≤ x ≤ x1 + dc

(7)

The interception-based reconfiguration scheme works as
follows: After a root replacement, R′ first broadcasts a message
reconf(R,R′) to its neighbors. On receiving the message, the
node that satisfies Inequality (7) checks if it has received the
message before. If so, the message is ignored. Otherwise, it
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Fig. 7. Illustration of the interception-based reconfiguration scheme

Notations:
• R, R′: R is the root of the tree before migration, and

R′ is the root after migration.
• Pi, Ci: Pi is the parent of node i and Ci is the set of

children of i.
• Ni: the set of neighbors of node i.
• reconf(R,R′): message to initiate tree reconfiguration.
• detach(Pi, i): message to detach i from Pi.
• attach(j, i): message to attach i to j.

The algorithm executed by root R′:
(A) On being selected as the root:

Compute k(v) from Equations (2), or receive from R;
Broadcast reconf(R,R′);

(B) At data collection time t:
Monitor the current velocity of the target (v);
Predict the location of the target at t + 1 (Lt+1);
if dR′,Lt+1 > k(v) ∗ v then do root replacement;

The algorithm executed by node i in the tree:
(A) On receiving reconf(R,R′):

if received tree reconf(R,R′) before then ignore it;
j = argmink∈Ni

{dk,R′};
if Pi �= j then

Send detach(Pi, i) to Pi;
Send attach req(j, i) to j; Pi = j;

if i is a grid head then
Rebroadcast reconf(R,R′).

(B) On receiving attach(i, j) from j:
Ci = Ci + {j}.

(C) On receiving detach(i, j) from j:
Ci = Ci − {j}.

Fig. 5. The OCR Scheme

leaves the old tree by detaching from its original parent, and
adds to the new tree by attaching to its neighbor that has the
shortest distance to the new root. If the node is a grid head,
it also rebroadcasts the message. The process continues until
all nodes satisfying Inequality (7) have received the message.
Figure 7 (a) illustrates the reconfiguration process and Figure
7 (b) shows the tree after reconfiguration.

01
Y

X

dc dr u

P0

PP

Q

Q

R R’ Lt

dc

1

1

2 2

l l

Fig. 8. Analyzing Ed(u) of the interception-based reconfiguration scheme

2) Overhead Analysis: First, we estimate Ed(u) of the
interception-based reconfiguration. Figure 8 shows the posi-
tions of the previous root (R), the current root (R′), and the
target (Lt) during a data collection process. Let dR,R′ = dr

and dR′,Lt
= u. The coordinates of R, R′ and Lt are

(−u − dr − dc), (−u, 0) and (0, 0) respectively. We divide
all nodes in the tree into three parts, and estimate the energy
consumed by each part.
For nodes between lines l0 and l1:
In Figure 8, an arbitrary node (P0) locates between l0 and
l1. With Assumption (A2), hop(P0, R) = dP0,R

dc
. Thus, the

energy consumed to collect data from nodes between l0 and
l1 is: ρ ∗ e ∗ sd ∗ A0, where,

A0 =
∫ −u+dc

−u−dr−dc

∫ √
d2

s−x2

−
√

d2
s−x2

dP0,R

dc
dy dx (8)
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For nodes on the left side of line l1:
In Figure 8, P1 is an arbitrary node on the left side of l1. Since
P1 is out of the region reconfigured by the interception-based
scheme, the path between P1 and R may not be optimized.
hop(P1, R) can be represented as c1 ∗ dP1,R

dc
, where c1 > 1

is a parameter to be estimated later. The energy consumed to
collect data from the nodes on the left side of l1 is: ρ∗e∗sd∗A1,
where

A1 =
∫ −u−dr−dc

−ds

∫ √
d2

s−x2

−
√

d2
s−x2

c1 ∗ dP1,R

dc
dy dx (9)

r

n * d

k* dc

r

Q Q
Q

1

Rn
R R12

12

d

P

R

n

x dc

Fig. 9. The principle of estimating parameter c1

Figure 9 shows how to estimate c1. Suppose P1 was
originally on the shortest path to Rn when Rn was the root.
After Rn is replaced by Rn−1, the path between P1 and
Rn−1 became 〈P1, Qn −Rn−1〉. This process continued until
R became the root. Thus, the path between P1 and R is
〈P1, Qn, Qn−1, · · · , Q2, Q1, R〉. With assumption (A2)

hop(P1, R) =
dP1,Qn

+
∑i=n

i=2 dQi,Qi−1 + dQ1,R

dc

c1 can be computed by the following equation:

c1 =
hop(P1, R)
dP1,R/dc

Figure 10 shows the estimated values of c1. From this figure,
we can see that c1 is small when n is small. With n ∗ dr ≤ ds

and dr ≥ dc, n ≤ ds/dc. Since ds ≤ 6dc is used in the analysis
and simulations, we have n ≤ 6. Figure 10 shows that c1 is
smaller than 1.1 when n ≤ 6, so we set c1 to 1.1 in this paper.
For nodes on the right side of line l0:
In Figure 8, P2 is an arbitrary node on the right side of line
l0. Similar to the previous cases, the path between P2 and R
may not be optimized, and hop(P2, R) can be represented as
c2 ∗ dP2,R

dc
, where c2 > 1 is a parameter. The energy consumed

to collect data from nodes on the right side of l0 is: ρ∗e∗sd∗A2,
where

A2 =
∫ ds

−u+dc

∫ √
d2

s−x2

−
√

d2
s−x2

c2 ∗ dP2,R

dc
dy dx (10)

With a method similar to the previous case, we can estimate
c2. We show the estimation results (Due to space limit, we do

not show the estimation detail) in Figure 11, where n∗dc is the
distance between R and P2. Due to the same reason explained
in the previous case, we also set c2 to 1.1.
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Fig. 11. Estimated values of c2

Based on the results of the above three cases, the energy
consumed for data collection is:

Ed(u) = ρ ∗ e ∗ sd ∗ (A0 + A1 + A2) (11)

where A0, A1 and A2 are defined in Equations (8), (9) and
(10).

Next, we estimate the energy consumed for the tree recon-
figuration. We assume that the reconfiguration occurs exactly
when dR,Lt+1 = dr. In the reconfiguration, each node within
the monitoring region and between line l0 and line l1 sends
a message to its old parent to detach from the old tree and
sends a message to its new parent to add into the new tree.
The energy consumed for the reconfiguration process is:

Et(dr) = 2 ∗ ρ ∗ sc

∫ dc

−u−dr−dc

√
d2

s − x2 dx (12)

3) The OIR Scheme: The formal description of OIR is the
same as Figure 5 except the following modifications:

• In the algorithm executed by root R′, Equations (2) is still
used to compute k(v). Although not shown in the formal
description, to use Equations (2), Ed(x) and Et(x) are
calculated by Equations (11) and (12) respectively.

• In Step (A) of the algorithm executed by node i
in the tree, add another case to ignore the received
tree reconf(R,R′): if it does not satisfy Inequality (7)
then ignores the message.

Figure 12 shows the optimal value of k(v) when ds and
sd/sc change. Due to the same reason explained in Section
III-B.3, k(v) decreases as v increases. Compared to Figure 6,
the k(v) of OIR is generally smaller than that of OCR. This is
because the overhead of the interception-based reconfiguration
is much smaller than that of the complete reconfiguration and
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Fig. 12. The optimal k(v) for the interception-based reconfiguration scheme

it is beneficial for OIR to reconfigure the tree more frequently
than OCR.

D. Analytical Comparisons between OCR and OIR

OCR and OIR take different approaches to optimize the
overall energy consumption: OCR gives higher priority to data
collection while OIR gives higher priority to tree reconfigura-
tion. It is important to compare these schemes to find the best
scenarios for each of them. We compute the overall energy
consumption of OCR from Equations (1), (3) and (4), and
that of OIR from Equations (1), (11) and (12). The results
are shown in Figure 13. Note that the “Energy Consumption”
shown in the figure is the ratio of the estimated amount of
energy consumption to a common reference value.

Figure 13 shows that the energy consumption increases
as the velocity of the target increases. This is because the
reconfiguration frequency increases as the velocity increases

(shown in Figure 6 and 12), and then the energy consumption
for reconfiguration also increases. Since OIR has smaller
reconfiguration overhead than OCR, the energy consumption
of OIR is shown to increase more slowly. As a result, OIR
outperforms OCR when the velocity is high.

Figure 13 also shows the impact of sd/sc. Compared to
OCR, OIR reduces the reconfiguration overhead at the cost of
increasing the data collection overhead. If the data size is small
(e.g., sd/sc = 1), the increase of the data collection overhead
in OIR is also small. Therefore, OIR outperforms OCR. As
the data size increases (e.g., sd/sc = 6), the data collection
overhead in OIR also increases, and it may exceed the saving in
reconfiguration overhead when the reconfiguration frequency
is low (i.e., the velocity is small).

Comparing Figure 13 (a) and (b), we can see the impact
of ds/dc on the performance. Since OIR reconfigures only a
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Fig. 13. Analytical comparisons between OCR and OIR

small part of the tree, the increased overhead in data collection
increases as the size of the monitor region (i.e., ds/dc)
increases. As a result, the overall benefit of OIR becomes
smaller as ds/dc increases.

In summary, OIR outperforms OCR when the velocity is
large, sd/sc is small, or ds/dc is small. The trend is reversed
in other cases.

IV. PERFORMANCE EVALUATIONS

A. Simulation Model

We developed a simulator based on ns2 (version 2.1b8a)
[20], to evaluate the performance of the proposed schemes,
and compare them to other non-optimization reconfiguration
schemes listed in Table I. In this simulator, the MAC protocol
is based on IEEE 802.11, and the two-ray ground propagation
model is adopted. The transmission range of each node is fixed
at 20m. Sensor nodes are distributed over a 400× 400m2 flat
field, which is divided into 9×9m2 grids. In each experiment,
6000 nodes are deployed and the deployment guarantees that
there are at least three nodes in each grid.

TABLE I

NON-OPTIMIZED RECONFIGURATION SCHEMES

Name Characteristics
Aggressive Complete Recon-
figuration (ACR)

A complete reconfiguration is initiated
when dR,Lt+1 ≥ dc

Conservative Complete Re-
configuration (CCR)

A complete reconfiguration is initiated
when dR,Lt+1 ≥ ds

Aggressive Interception-based
Reconfiguration (AIR)

An interception-based reconfiguration
is initiated when dR,Lt+1 ≥ dc

Conservative Interception-
based Reconfiguration (CIR)

An interception-based reconfiguration
is initiated when dR,Lt+1 ≥ ds

We use a mobility model similar to [18] to simulate the
movement of the target. At the beginning of the simulation,
the target shows up at a random location on the border of
the field with an initial moving direction and velocity. Its

moving direction can be one of the following: north (N),
northeast (NE), east (E), southeast (SE), south (S), southwest
(SW), west (W) and northwest (NW). Its velocity is uniformly
distributed between 0 and vm. Every 10s, the target may
change its moving direction and/or velocity. Specifically, with
a probability of pk, the direction and velocity of the target keep
unchanged. With a probability of p′k(p′k = 0.25(1 − pk)), the
moving direction will change 45o or 90o, and the velocity will
be reselected from [0, vm]. The monitoring range surrounding
a target is a circle with the radius of 30.0m or 60.0m. Table
II lists most of the simulation parameters.

TABLE II

SIMULATION PARAMETERS

Parameter Values
field size (m2) 400.0 ∗ 400.0
number of nodes 6000
communication range (m): dc 20.0
monitoring radius (m): ds 30.0, 60.0
size of data report (byte): sd 10,50
size of control message (byte): dc 10
maximum velocity of a mobile target (m/s): vm [1.0, 20.0]
probability that the mobile target keeps the same
velocity: pk

[0.6, 0.9]

data collection interval (s) 1.0

B. Simulation Results

1) Energy Consumption: Figure 14 shows the energy con-
sumption as a function of the maximum velocity of the
moving target. When the velocity increases, the tree reconfig-
uration frequency increases and the energy consumption also
increases.

We first study the impact of root replacement threshold
on energy consumption. Figure 14 (a) shows that OCR has
the best performance among the complete reconfiguration
schemes, followed by ACR and CCR. In the interception-
based schemes, OIR outperforms AIR which outperforms
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Fig. 14. Comparing the energy consumption of different reconfiguration schemes (pk = 0.8)

CIR. This is due to the following reasons. As the target
moves, promptly reconfiguring the tree can reduce the energy
consumption for data collection. Thus, ACR outperforms CCR
and AIR outperforms CIR. However, frequent reconfigurations
may introduce high overhead. OCR and OIR reduce unneces-
sary reconfigurations by using the optimal root replacement
threshold, and hence outperform ACR and AIR respectively.
Figure 14 (b), (c) and (d) show similar results, except that the
difference between AIR (ACR) and CIR (CCR) is larger when
sd or ds increases. This is because the energy consumption
of data collection becomes much higher than that of tree
reconfiguration, and then the aggressive schemes outperform
the conservative schemes.

We now compare the performance of the reconfiguration
schemes that use the same root replacement threshold. Figure
14 (a) shows that CCR outperforms CIR due to the following
reasons. Since the tree reconfiguration is not very frequent in
these schemes, the energy consumption of data collection dom-
inates the overall energy consumption. CIR optimizes only part

of the tree, and hence using CIR has larger energy consumption
for data collection compared to using CCR. When the velocity
increases, the frequency for tree reconfiguration also increases.
This will reduce the performance difference between CIR and
CCR, since CIR has smaller energy consumption for tree
reconfiguration. Comparing 14 (a) with (b), (c) and (d), we
can find that the difference between CIR and CCR increases
as sd (or ds) increases, because the energy consumed for data
collection increases.

Figure 14 (a) also shows that AIR outperforms ACR. In
both schemes, the trees are reconfigured very frequently, so
there is no significant difference in the energy consumed by
data collection. However, AIR consumes less energy for tree
reconfiguration than ACR. The same trend is shown in Figure
14 (b), (c), (d), and the difference between AIR and ACR
increases as sd (or ds) increases, since the energy consumption
of tree reconfiguration also increases.

By comparing OIR and OCR in different scenarios, we have
the following observations: OIR outperforms OCR when sd/sc
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and ds/dc are small. The difference between OIR and OCR
becomes smaller as sd/sc or ds/dc increases. With a large
sd/sc and ds/dc, OCR outperforms OIR. These results are
consistent with the analytical results.

2) Data Collection Delay: Figure 15 shows the average
data collection delay as a function of velocity. Since tree
reconfiguration is only done at certain interval, the tree may
not be reconfigured promptly if the moving velocity is high.
Thus, the data collection delay is shown to be slightly higher
when the velocity increases. The root replacement method has
significant effects on the data collection delay. Since frequent
reconfiguration can promptly reduce the height of a tree, ACR
(AIR) has smaller delay than CCR (CIR). When the same
root replacement scheme is used, the data collection delay is
also affected by the tree reconfiguration method. Compared
to complete reconfiguration, interception-based reconfiguration
changes only a small part of the tree, and the resulted tree has
a larger height. Thus, AIR (CIR) has longer delay than ACR
(CCR). Due to the same reason, OIR also has longer delay than
OCR. Among all these schemes, the data collection delay of
OIR and OCR are not optimal, but the difference to the optimal
value is reasonable.

3) Impact of Movement Predication Accuracy: Figure 16
shows the impact of pk on the energy consumption of OIR
and OCR. As shown in the figure, the energy consumption
increases as pk drops. As pk drops, the chance of wrong
prediction increases, and then the computed root replacement
threshold may not be optimal. A wrong prediction may cause
the root to migrate to a wrong direction, and another root re-
placement has to be performed, increasing the reconfiguration
overhead. However, the energy consumption does not increase
too much if pk is not very low.

V. CONCLUSIONS

This paper studied the problem of optimizing tree recon-
figuration when the target moves. We formalized it as finding

a min-cost convoy tree sequence, and solved it by proposing
an optimized complete reconfiguration (OCR) scheme and an
optimized interception-based reconfiguration (OIR) scheme.
These two schemes are based on two classes of reconfigu-
ration schemes: the complete reconfiguration which aims to
minimize the energy consumption for data collection, and the
interception-based reconfiguration which aims to reduce the
reconfiguration overhead. OCR and OIR optimize these two
classes of schemes by selecting appropriate root replacement
threshold to minimize the overall energy consumption. Ex-
tensive analysis and simulations are conducted to compare
the performance of the optimized schemes and some other
schemes. The results show that the optimized schemes have
better performance than other schemes. OIR outperforms OCR
when the size of the sensing data is small or the monitoring
region is small, and the trend is reversed in other cases.
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