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Supersaturated designs (SSDs) are often used to reduce the number of experimental runs in screening
experiments with a large number of factors. As more factors are used in the study, the search for an
optimal SSD becomes increasingly challenging because of the large number of feasible selection of factor
level settings. This article tackles this discrete optimization problem via an algorithm based on swarm
intelligence. Using the commonly used E(s2) criterion as an illustrative example, we propose an algorithm
to find E(s2)-optimal SSDs by showing that they attain the theoretical lower bounds found in previous
literature. We show that our algorithm consistently produces SSDs that are at least as efficient as those
from the traditional CP exchange method in terms of computational effort, frequency of finding the E(s2)-
optimal SSD, and also has good potential for finding D3-, D4-, and D5-optimal SSDs. Supplementary
materials for this article are available online.

KEY WORDS: Balanced design; Columnwise-pairwise algorithm; Df-criterion; E(s2)-criterion.

1. INTRODUCTION

Researchers are increasingly interested to investigate large-
scale systems with a large number of potentially relevant factors.
The cost of such a study can be prohibitive in terms of time, labor,
and monetary resources. To address these challenges, research
in experimental design has lately focused on supersaturated de-
signs (SSDs) for their run-size economy.

A two-level SSD with N runs and m factors is represented
by an N × m matrix X with every entry equal to 1 or −1. It is
assumed that N < m for run-size economy and no two columns
of X are identical. An SSD is called balanced if +1 and −1 levels
of each factor appear the same number of times in the design.
The balance property ensures that main effects and interactions
are orthogonal so that the effect of each factor can be estimated
and tested as if it were the only one under consideration and
there is very little loss in efficiency in the presence of other
factors (Wu and Hamada 2000). In what is to follow, we focus
on balanced designs, which means that N is an even number.
The effect sparsity principle (Box and Meyer 1986) suggests
that only a few factors are active in practice and an SSD is
cost saving for factor screening purposes. This has led to many
refined analyses for SSDs in recent years, see Georgiou (2014)
and Phoa (2014).

There are several ways to construct SSDs. Satterthwaite
(1959) was an early proponent of constructing SSDs us-
ing random balanced designs. Lin (1993) proposed a class
of special SSDs that can be easily constructed using half-
fractions of the Hadamard matrices. We recall that a k-

dimensional Hadamard matrix H is a k × k square matrix with
entries ±1 and satisfies HHT = kI , and I is the k × k iden-
tity matrix. A library of Hadamard matrices is available at
http://neilsloane.com/hadamard/ and reader unfamiliar with
such matrices may refer to Seberry and Yamada (1992) for
further discussion. Booth and Cox (1962) proposed a formal ap-
proach by minimizing the average nonorthogonality between all
pairs of columns in the design matrix as an optimality criterion
and called this the E(s2) criterion. Specifically, the E(s2) value
of an SSD is

E(s2) =
∑
i<j

s2
ij /

(
m

2

)
,

where sij is the dot product between the ith and jth columns
of X. Both Nguyen (1996) and Tang and Wu (1997) indepen-
dently derived a useful lower bound for the design criterion of
a balanced SSD with m-factors and N-runs:

E(s2) ≥ m − N + 1

(m − 1)(N − 1)
N2.

This lower bound is called the Nguyen-Tang-Wu bound.
When m is a multiple of N − 1, Cheng (1997) showed that an
SSD that achieves the Nguyen-Tang-Wu bound is equivalent to
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44 FREDERICK KIN HING PHOA ET AL.

a balanced incomplete block design (BIBD) with N − 1 treat-
ments and m blocks of size N/2 − 1. Bulutoglu and Cheng
(2004) provided a BIBD-based theoretical method for construct-
ing some SSDs that achieve the Nguyen-Tang-Wu bound. Bu-
lutoglu (2007) gave a theoretical method for finding an N run
E(s2)-optimal SSD that attained the Nguyen-Tang-Wu bound
when there are m factors and N = 0 (mod) 4 or when there are
2m factors and N = 2 (mod) 4. A comprehensive list of work in
the construction of optimal SSDs when there are many factors
in the study is available in Liu and Liu (2011).

The design criterion E(s2) is a measure of nonorthogonality
between any two active factors out of the m factors, and it is
desirable to minimize it. Wu (1993) considered a more general
setup when there are f -active-factors. For a user-specified posi-
tive integer f , let X(f ) be an N × f submatrix of the full design
matrix X and let

Df =
∑
X(f )

∣∣∣∣ 1

N
XT

(f )X(f )

∣∣∣∣
1/f /(

m

f

)
,

where the summation is over all submatrices X(f ). A Df -optimal
design maximizes the Df value over all possible designs and
when f = 2, Li and Wu (1997) showed that E(s2) and D2-
criteria are closely related. In this article, we propose an al-
gorithm based on swarm intelligence to find balanced E(s2)-
optimal SSDs and has good potential for finding Df -optimal
designs as well.

Section 2 gives a brief discussion of swarm intelligence and
shows how we develop an algorithm to find SSDs using ideas
from swarm intelligence. In Section 3, we implement our algo-
rithm to optimize SSDs under the E(s2) criterion and compare
results with those from Bulutoglu and Cheng (2004), Bulutoglu
(2007), and Lin (1993). Additionally, we study properties of the
SSDs found using our algorithm. Section 4 discusses potential
applications of our algorithm to find other types of optimal SSDs
and Section 5 summarizes our work with some future directions
of the work.

2. SWARM INTELLIGENCE FOR FINDING
E(s2)-OPTIMAL SSDS

Swarm intelligence (SI) is the collective behavior of decen-
tralized, self-organized systems, natural or artificial. The con-
cept is employed in work on artificial intelligence. The expres-
sion was introduced by Beni and Wang (1993) in the context of
cellular robotic systems. A coffee table book by Fisher (2009)
describes swarm intelligence in layman language and its broad
applications to solve different types of real problems in different
disciplines. Kennedy et al. (2001) provided a monograph with a
good introduction to the topic. It also has some technical details
and applications of swarm intelligence to solve real problems
in various fields. Recent advances on swarm intelligence are
available in the chapters of Tan et al. (2011) and Zhang et al.
(2014).

According to Corne et al. (2012), SI systems consist typically
of a population of many individual agents that share the follow-
ing properties. (1) The individual agents are largely homoge-
nous. (2) The individual agents act asynchronously in parallel.
(3) There is little or no centralized control. (4) Communication
between agents is largely effected by some form of stigmergy.

(5) The “useful behavior” is relatively simple (finding a good
place for food, or building a nest—not writing a symphony, or
surviving for many years in a dynamic environment). In other
words, SI is about the cooperation among these individual agents
to achieve a particular goal. Examples of algorithms based on
swarm intelligence include ant, bee, bat, cuckoo, and several
others.

One of the most popular swarm intelligence-based algorithms
is particle swarm optimization (PSO) proposed by Kennedy
and Eberhart (1995) with follow-up work by Shi and Eberhrat
(1998) and Eberhart and Shi (2001), among many others. It
is a good illustrative member of this class of algorithms. The
optimization technique was originally aimed at studying social
network structure and now it is widely used in computational
intelligence, industrial optimization, computer science, and en-
gineering research. PSO is also used in training neural networks
(Braendler and Hendtlass 2002), solving dynamic economic dis-
patch problems (Chakrabarti et al. 2006), pole shape optimiza-
tion problems (Brandstatter and Baumgartner 2002), quadratic
assignment problems (Gong and Tuson 2008), and many other
high-dimensional optimization problems in the real world with
multiple optima.

PSO is a population-space-based optimization tool that begins
with a population of particles and the whole population is traced
during the PSO procedures. The iterative procedure of PSO
relies on heuristics and stochastic and it has been shown in
many applied disciplines that PSO usually converges or nearly
converges to the global optimum. According to Engelbrecht
(2005), Pathak et al. (2009), Panduro et al. (2009), and many
others, the main advantages of PSO are that (i) time required to
find the optimum is usually short compared with other methods,
(ii) the algorithm is readily amenable to find the optimum for
another model or another criterion, (iii) there are few tuning
parameters in PSO and they are relatively easy to work with
compared to other algorithms, such as genetic algorithm, and
(iv) it is computationally inexpensive because the algorithm
requires only primitive mathematical operations and minimal
memory space. More interestingly, PSO does not require any
assumption on the objective function to be optimized. This is in
contrast to other methods of optimization, where, for example,
linear programming requires the objective function to be linear
and the Newton–Raphson’s method requires that the objective
function be differentiable.

2.1 The SIBSSD Procedure

In this section, we used ideas from swarm intelligence to
design an algorithm for finding optimal SSDs. We call it the
swarm intelligence-based SSD algorithm and refer it as SIBSSD
for short. Table 1 shows the main steps where each particle
(SSD) is first mixed with selected SSDs and then moved or
replaced by another SSD by the MOVE operation discussed
below.

The initialization step can be viewed as the zeroth iteration
of SIBSSD. Users have to first input a stopping criterion and
the swarm size, which is the number of randomly generated
N × m SSDs to be used in the search. Each of these SSDs has
m two-level columns of length N with equal numbers of −1 and 1
levels. Here similar to PSO, at any particular time, each particle
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Table 1. The SIBSSD algorithm

1:
Randomly generate a set of balanced N × m SSDs as
initial particles

2: Evaluate objective function value of each SSD
3: Initialize the LB for all SSDs
4: Initialize the GB
5: while not converge do
6: For each SSD, perform the MIX operation
7: For each SSD, perform the MOVE operation
8: Evaluate objective function value of each SSD
9: Update the LB for all SSDs

10: Update the GB
11: end while

(SSD) has its own perceived location of the optimum in the
search space and with each iteration, it moves toward it and
then updates its perceived optimum location. This perceived
optimum location of the particle (SSD) is its smallest criterion
value attained by the particle to date and this SSD is often
called the “local best” (LB). Throughout, the particles (SSDs)
share information by comparing its LB with other LBs and
collectively arrived at the perceived overall optimum location;
this position is called “global best” (GB). Thus at initialization
step, users may also input optional parameters for the number of
columns from each SSD to be exchanged with the LB and GB
SSDs. We denote these numbers by qLB and qGB, respectively,
and obviously, both numbers must be smaller than m, the total
number of factors in the SSDs. In the supplementary material,
we recommend default values for qLB and qGB. The values of
the objective function for all the SSDs, or simply design values,
are then evaluated. Since there are no prior objective function
values to compare with at the initial step, we take these SSDs
to be the LB SSDs. The SSD that provides the optimal value
for the objective function among all SSDs is the GB SSD. For
our E(s2)-optimality criterion, the optimal value is the smallest
value among all the SSDs.

Following the initialization step, the iteration starts from the
while-loop in Table 1. First, SIBSSD uses the MIX operation to
update all SSDs by exchanging a fixed number of their columns
with columns from another. In the next step, call the MOVE
step, SIBSSD moves the current design closer to the best SSD.
We now describe the MIX and MOVE operations.

The MIX operation is a column exchange procedure some-
what similar to the CP exchange algorithm between the two
designs. It consists of deleting and adding columns from an-
other design. For each of the generated candidate SSD X =
(x1, . . . , xm), the idea is to replace q columns in X by q columns
from another SSD Y = (y1, . . . , ym) so that the replaced design
has a smaller criterion value. In practice, the SSD Y is either
the LB SSD or the GB SSD. If Y is the LB SSD, the number of
columns to be exchanged is q = qLB and if Y is the GB SSD,
the number of columns to be exchanged is q = qGB. The values
for qLB and qGB are arbitrary but our experience is that setting
qLB > qGB generally avoids premature convergence to an SSD
with relatively small criterion value without adequate explo-
ration of the search space. Our numerical studies in part 1 of
the supplementary material suggest that setting qLB = [m/3] or

[m/4] and qGB = [m/6], respectively, are reasonable choices.
Here [x] refers to the rounded positive integer at least as large
as x.

The column deletion step for a design X is a recursive pro-
cedure that determines which column is the best column to
remove from X. To do this, we first construct all m reduced
designs X−1, . . . , X−m, where X−i consists of all columns of
X except the ith column (1 ≤ i ≤ m) and assume that among
all these designs now with m − 1 factors, X−d has the largest
objective function value. We delete column d from the current
design and treat it as the full design X in the next step. This
deletion procedure continues sequentially until q columns are
deleted from the original design X. We denote the reduced de-
sign with N rows and m − q columns by R. The column addition
step is the reverse of the column deletion step, where q columns
from Y are sequentially added in a similar way to the reduced
design R. We do this by first constructing extension matrices
Ri = [R; yi], where Ri contains all columns in R and yi is the
ith column from Y , i = 1, . . . , m. The selected extended ma-
trix is [R; yd ], if the objective function value of Rd is minimal
among all columns of Y . The process continues until q columns
are filled into the reduced matrix R. When this mixing process
for the candidate design X is complete, we have a new design
called mixwGB if Y is the GB SSD and a new design called
mixwLB if Y is the LB SSD. These two resulting designs incor-
porate the properties of the LB and GB SSDs in the search for the
new SSD in the next iteration while retaining properties from the
current SSD. This completes the MIX operation process for the
particle X.

The MOVE operation comes after each X has completed the
MIX procedure and it applies to each X as follows. Movement of
a particle is accomplished by replacing each current SSD with
possibly another SSD altogether, depending on its current value.
If the value of mixwGB is smaller than the values of mixwLB
and X, we replace the current SSD X by mixwGB. If, on the
other hand, mixwLB has the smallest value among all the three
designs, X is replaced by mixwLB; otherwise some columns of X
are randomly chosen to be replaced by some random balanced
columns. We recommend the number of such columns to be
replaced is qLB. The rationale for the random replacement is that
it helps to ensure that the search space is sufficiently explored
and at the same time, also reduces the possibility that X may be
trapped in a local optimum. We denote the updated SSD design
X in this way by mixwRC.

After each particle has completed the MOVE operation, the
objective function values of all SSDs are evaluated again and
compared to the values of the individual LB SSDs. If the updated
SSD has a smaller value than its LB SSD value, the current SSD
will be considered as the new LB SSD. Otherwise no change is
made to the LB SSD. Next, the value of the best LB SSD among
all LB SSDs is compared to that of the GB SSD, and this design
is updated only if the best LB SSD has a smaller value. After
all current SSDs, LB SSDs, and the GB SSD are updated, the
search continues into its next iteration in the same way until the
prespecified maximum number of iterations is reached or the
GB SSD reaches its optimal value if known.

The MOVE operation has some similarities with the crossover
and mutation operators in genetic algorithm. However, the sig-
nificant differences between the two operations are (i) the order
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46 FREDERICK KIN HING PHOA ET AL.

in the MOVE operation is to perform a crossover before selec-
tion, but it is the opposite in genetic algorithm, and (ii) each
SSD is mixed with LB or GB SSD in the MOVE operation, but
some genes are crossovered with some better genes in genetic
algorithm that are not necessarily the best.

2.2 Differences Between the SIBSSD and CP
Exchange Algorithms

Li and Wu (1997) proposed the CP exchange algorithm for
obtaining SSDs with good design properties under the Df cri-
terion. The MIX operation of SIBSSD has similar ideas but is
based on swarm intelligence. First, the CP exchange algorithm
selects a fixed number of columns to be exchanged at the be-
ginning of each iteration and then updates them individually. In
contrast, SIBSSD deletes and adds columns sequentially via the
recursive procedure described in the MOVE operation. Second,
the MIX operation in SIBSSD generates the candidate SSDs,
and then an acceptance-rejection rule is used to make the de-
cision. The LB and GB SSDs in SIBSSD are two candidate
sets that are generated from our MIX operation, but the candi-
date column set in the CP exchange algorithm is obtained by
switching the signs in the column. Third, SIBSSD allows a third
candidate to mix with the current SSD by randomly exchanging
columns to reduce the probability of a design being trapped in a
local optimum. In contrast, the CP exchange algorithm always
stops when there is no further improvement to be made.

3. RESULTS

In this section, we present results and characteristics of bal-
anced SSDs found from the SIBSSD algorithm using E(s2) as
the design criterion. Recall that we focused on balanced SSDs
because a lower bound for E(s2) is available for such designs
in Bulutoglu and Cheng (2004) and one may use these lower
bounds as proxies to the best possible values, which in many
cases, are the optimal values for E(s2). Accordingly, we propose
to compare our SIBSSD-generated designs using the measure
called Er -efficiency defined by

Er = E(s2)optimal

E(s2)X
× 100%.

Here E(s2)optimal is the best lower bound found in the literature
for E(s2) and E(s2)X is the E(s2) of the SSD X. Obviously, the
larger the value of Er , the better the SSD X is. If Er = 100%,
X is E(s2)-optimal.

Table 2 lists the SSDs with the best Er that we have found via
SIBSSD for selected values of N and m. The first and second
columns are, respectively, the number of rows and columns of
SSDs. The third column is the lower bound for E(s2) obtained
in Theorem 3.1 of Bulutoglu and Cheng (2004). The fourth
column is the Er -efficiency between our best and optimal SSDs.
The fifth to eighth columns have the same headers as the first
fourth columns but with different values of N and m.

When N = 10 and 12, the table shows all but one of the
SIBSSD-generated SSDs attain the values of lower bound for
E(s2), implying that they are E(s2)-optimal. An exception is
when the SSD has 10 rows and 13 columns, where the lower
bound is not attained but its Er -efficiency is about 96%. When

Table 2. Er -efficiencies of SIBSSD-generated SSDs as measured by
the lower bounds given in Bulutoglu and Cheng (2004)

N m Lower bound Er -efficiency N m Lower bound Er -efficiency

10 10 4.00000 100.0% 14 18 5.67320 100.0%
11 4.00000 100.0% 19 6.05848 100.0%
12 4.00000 100.0% 20 6.35790 100.0%
13 4.61538 95.75% 21 6.66667 98.87%
14 5.05495 100.0% 22 6.90909 96.15%
15 5.52381 100.0% 23 7.41502 100.0%
16 5.86667 100.0% 24 7.82609 100.0%
17 5.88235 100.0% 25 7.84000 97.35%
18 5.88235 100.0% 26 7.84000 96.37%

12 12 2.18182 100.0% 27 8.38746 98.00%
13 3.69231 100.0% 28 8.80423 99.76%
14 4.21978 100.0% 29 8.82758 98.46%
15 4.57143 100.0% 30 8.82758 95.71%
16 5.20000 100.0% 16 16 2.13333 100.0%
17 5.64706 100.0% 17 3.76471 100.0%
18 5.96078 100.0% 18 4.18300 95.24%
19 6.45614 100.0% 19 4.49122 87.27%
20 6.82105 100.0% 20 5.38947 91.43%
21 6.85714 100.0% 21 6.09523 97.56%
22 6.85714 100.0% 22 6.64935 96.97%

14 14 4.00000 100.0% 23 7.08300 97.39%
15 4.00000 100.0% 24 7.42029 96.97%
16 4.00000 88.24% 25 7.68000 96.00%
17 4.94118 100.0% 26 7.87692 95.24%

N = 14 and m ≤ 24, the SSDs are still E(s2)-optimal except
when we have m = 16, 21, and 22 factors. When the number
of columns is larger than 24, the SIBSSD-generated SSDs did
not attain the values of the lower bound for E(s2) but all have
consistently high Er values averaging above 97%. When N =
16 and m ≤ 26, we observe that the Er values of the SIBSSD-
generated designs are all above 91% except for the SSD when
m = 19, in which case the Er -efficiency is 85.7%.

Readers who are interested in the exact design structure can
refer to the three tables in the supplementary materials. These
tables provide designs with larger ranges of m than Table 2
does. In specific, in Table S3, 10 ≤ m ≤ 30 for N = 10 and
12 ≤ m ≤ 36 for N = 12; in Table S4, 14 ≤ m ≤ 42 for N =
14; and in Table S5, 16 ≤ m ≤ 48 for N = 16.

The above observations suggest that for some cases, SIBSSD
has difficulties producing E(s2)-optimal SSDs when we use 100
or fewer particles to conduct the search. In general, we expect
having more particles in the search will require fewer number
of iterations to arrive at an SSD that attains the lower bound
E(s)2 because having more particles is likely to result in a more
complete exploration of the search space. A possible downside
is that with more particles, a larger number of computational
steps and criterion evaluations are expected at each iteration. In
particular, the random columns mixed in the MOVE operation
may keep the particles from exploring the entire search space
when the GB SSD does not change after a certain number of
iterations. We illustrate our claim in the following figure.

Figure 1 illustrates an exemplary case where the E(s2) val-
ues of the 14 × 23 SSD listed in Table 2 converge to its lower
bound after about 141 iterations. Each point in the Figure 1
represents the E(s2) value of the 14 × 23 GB SSD at selected
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Steps 5−6: 8.4269
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Steps 12−29: 8.0474

Steps 30−51: 7.9209
Steps 52−138: 7.7945
Step 139: 7.6680
Step 140: 7.5415
Step 141: 7.4150

Figure 1. Convergence of the E(s2) values of an SIBSSD-generated
14 × 23 SSD to its optimal lower bound value of 7.4150.

iteration numbers. We observe that the E(s2) values decrease
as the step number increases, and the search ends when either
the magnitude reaches its lower bound or the maximum number
of iterations is attained. Figure 1 shows how quickly SIBSSD
generates an efficient E(s2)-optimal SSD; after the 12th itera-
tion, the generated GB SSD has Er > 90% and after the 52th
iteration, an SSD with Er > 95% is found. This pattern applies
for all SSDs shown in Table 3 where only a small number of it-
erations is required to produce an SSD with high Er -efficiency.
The exceptions are cases when the SSD sought is small. De-
tails are omitted but interested reader can request the details by
writing to the first author.

The dimension of the SSDs affects the number of iterations re-
quired to generate an E(s2)-optimal design. In general, a longer
time is required by SIBSSD to generate the optimal design if
there are more columns or rows in the SSD. As an illustration,
we used 500 particles in 500 repeated trials to generate three
higher-dimensional SSDs. The average number of iterations re-
quired to obtain the 12 × 12 E(s2)-optimal SSD was 14.38. This
average increased to 16.16 and 35.42 when the dimension of
the sought optimal SSD becomes 12 × 13 and 12 × 14, respec-
tively. Table 3 lists the Er -efficiencies of higher-dimensional
SIBSSD-generated SSDs using the lower bounds provided in
Bulutoglu (2007). These SSDs have much larger dimensions
than those in Bulutoglu and Cheng (2004) and the SIBSSD al-
gorithm required larger number of particles to generate these
designs. Interestingly, the algorithm still had difficulty attaining
the lower bounds for a small number of cases, specifically when
N = 18,m = 34 and N = 20,m = 38. The actual SSDs pro-
duced by the algorithm are shown in part 2 of the supplementary
materials.

4. DISCUSSION

This section discusses tradeoff issues between efficiency re-
quirements and computational effort, performance of the SIB-
SSD algorithm relative to other methods for finding optimal
SSDs, and potential applications of our algorithm to find other
types of optimal SSDs.

Figure 1, along with Table 2, shows the initial swarm require
more than 141 steps to converge to the E(s2)-optimal SSD
with 23 factors and 14 runs. A similar pattern can be observed
for other optimal SSDs shown in Tables 2 and 3. In practice,
a judgment has to be made on the tradeoff between attaining
an SSD with high Er -efficiency and computational efficiency.
Our guidelines on this issue are from results in part 3 of the
supplementary materials, where we conducted an experiment

Table 3. Er -efficiencies of SIBSSD-generated SSDs in larger dimensions as measured by the lower bounds from Bulutoglu (2007)

Lower Our Lower Our
N m bound E(s2) Er N m bound E(s2) Er

10 18 5.8824 5.8824 100.0% 18 34 9.8182 10.5597 92.98%
36 8.5714 8.5714 100.0% 68 14.5075 14.6760 98.85%
72 9.8592 9.8592 100.0% 102 16.0396 16.1204 99.50%

12 22 6.8571 6.8571 100.0% 136 16.8000 16.8488 99.71%
55 10.6667 10.6667 100.0% 170 17.2544 17.2812 99.85%
66 11.0769 11.0769 100.0% 204 17.5567 17.5767 99.89%

110 11.8899 11.8899 100.0% 272 17.9336 17.9475 99.92%
132 12.0916 12.0916 100.0% 306 18.0590 18.0721 99.93%
220 12.4932 12.4965 99.97% 408 18.3100 18.3177 99.96%

14 13 4.0000 4.0000 100.0% 544 18.4972 18.5011 99.98%
26 7.8400 8.2339 95.22% 20 38 10.8108 11.7440 92.05%
52 11.5294 11.5294 100.0% 57 14.2857 14.6266 97.67%
78 12.7273 12.7699 99.67% 76 16.0000 16.1853 98.86%

104 13.3204 13.3323 99.91% 114 17.6991 17.7885 99.50%
130 13.6744 13.6935 99.86% 171 18.8235 18.8621 99.80%
156 13.9097 13.9203 99.92% 190 19.0476 19.0744 99.86%
182 14.0774 14.0851 99.95% 228 19.3833 19.4068 99.88%
208 14.2029 14.2133 99.93% 342 19.9414 19.9575 99.92%
234 14.3004 14.3087 99.94%
312 14.4952 14.4998 99.97%
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using Er -efficiencies to compare abilities of two 14 × 23 SSDs
to identify active factor in a screening experiment.

We have two suggestions. First, if the same method of analysis
and the same criterion are used to analyze an SSD, an SSD with
a lower E(s2) value is likely to provide more accurate inference
in identifying the active factors. Our SIBSSD algorithm can
be an efficient tool for finding SSDs with small E(s2) values
when SSDs are unavailable from catalogs or softwares. Second,
two SSDs with similar E(s2) values typically produce the same
results from the same method of analysis. For example, Figure 1
suggests that at step 52, the SIBSSD algorithm found a GB SSD
with E(s2) = 7.9209. This is the 14 × 23 SSD proposed by Lin
(1993). At step 141, the SIBSSD algorithm found a GB SSD
with E(s2) = 7.4150, which is E(s2)-optimal SSD. These step
numbers imply that we have to spend additional amount of time
to bring about roughly a 6% improvement in the E(s2) value. Is
it worth spending the extra amount of time to obtain the E(s2)-
optimal SSD in light of the first finding? Our answer is generally
in the negative and this explains why we are satisfied with most
of our SSDs in Tables 2 and 3, which have Er -efficiencies, larger
than 90%.

We also compared performance of the SIBSSD algorithm
with the commonly used CP algorithm for generating efficient
SSDs. Our CP algorithm exchanged three columns in one it-
eration and terminated the search when there was no further
improvement in the next 100 iterations. Among 100 trials, the
CP algorithm found the E(s2)-optimal SSDs 31 times with
E(s2) = 4.00. For the rest of the 69 times, CP produced SSDs
with E(s2) = 4.49, 4.97, and 5.46. The frequency distribution
for these three values was 48 times, 17 times, and 4 times,
respectively. In contrast, the SIBSSD algorithm with a swarm
size of 500 and a stopping criterion of not more than 100 iter-
ations found the optimal SSD in all 100 times. We do not ex-
pect such excellent results to hold for every dimension but our
experience is that the SIBSSD algorithm does consistently pro-
vide more efficient SSDs than the CP algorithm does and finds
the E(s2)-optimal designs more often than the CP algorithm
does.

Our SIBSSD algorithm is also applicable to find other types
of optimal SSDs. The E(s2) criterion aims to reduce the av-
erage correlation among pairs of columns and the Df crite-
rion proposed by Li and Wu (1997) generalized the criterion
to the case when we want to minimize the average correla-
tion among sets of f columns. We modified our SIBSSD al-
gorithm and found Df -optimal SSDs when m = 12 factors and
N = 16 runs. This setup is the same as the example in Li and Wu
(1997). Results from the SIBSSD algorithm were compared with
those obtained from Wu’s method proposed in Wu (1993), Tang
and Wu’s method proposed in Tang and Wu (1997), CP(D =
(E(s2),m0 = 0.33)) and CP(D = (E(s2), n0 = 36)) proposed
in Li and Wu (1997). The values of m0 and n0 in the latter
two methods are user-specified and represent the maximum ab-
solute correlation among pairs of columns and the number of
nonorthogonal pairs, respectively. The first CP method is con-
sidered to have the worst-case performance and the second CP
method is considered to have average performance in terms of
finding the Df -optimal designs. Table 4 lists the various E(s2),
D3, D4, and D5 values for the generated design using the five
methods.

Table 4. Performance of different methods for generating a
12 × 16 SSD

Method E(s2) D3 D4 D5

Wu 6.00 0.9551 0.9259 0.9011
Tang and Wu 6.00 0.9545 0.9283 0.8992
CP(D = (E(s2),m0 = 0.33)) 5.20 0.9609 0.9382 0.9128
CP(D = (E(s2), n0 = 36)) 5.20 0.9601 0.9366 0.9100
SIBSSD 5.20 0.9609 0.9382 0.9128

For the above comparison, we used 500 randomly generated
particles or SSDs in the SIBSSD algorithm. After fewer than
10 iterations, SIBSSD produced an SSD with the following
values: D3 = 0.9609, D4 = 0.9382, and D5 = 0.9128. These
Df values are the same as the known optimal values obtained
from the CP(D = (E(s2),m0 = 0.33)) method. This suggests
the adaptability and good performance of the SIBSSD algorithm
for finding other types of Df -optimal SSDs.

5. SUMMARY

Finding an efficient SSD for a design problem with a large
number of factors is generally a difficult problem because of the
complexity of the optimization problem. This article proposes
a new and efficient algorithm based on swarm intelligence to
search for efficient E(s2)-SSDs. Our work suggests that the
proposed algorithm performs as efficient as the CP algorithm
under the E(s2)-optimality criterion.

We conclude by noting that there are a number of directions
for future work. First, our results in Table 4 from a small simula-
tion study suggests that the SIBSSD algorithm has good poten-
tial for finding an optimal SSD under other design criteria, such
as the Df optimality and f > 2. This class of criteria is useful
when we are concerned with detecting higher-order interactions
during the screening process (Li and Wu 1997). Second, one
can explore modifying the SIBSSD algorithm to search for (i)
unbalanced SSDs by incorporating other design properties into
the MIX operation and (ii) multi-level and mixed-level SSDs.
These searches will undoubtedly require more computing effort
and parallel computing with Graphics Parallel Units (GPUs)
may be helpful. Specifically, we will let one GPU thread take
charge of one particle (or one SSD) and launch a separate Com-
pute Unified Device Architecture (CUDA) kernel at each step to
achieve the necessary synchronization. Even though it is known
that the resulting speedup is case and parameter dependent, it is
encouraging to note that Chen et al. (2013) had found that GPU
implementation can save significant computational time when
large number of particles and a lot of iterations are involved.

SUPPLEMENTARY MATERIAL

Our article has supplementary material and it includes: (i)
information on our numerical studies for the choice of number
of columns to be exchanged in the MIX operation; (ii) design
tables of SIBSSD-generated supersaturated designs (SSDs); and
(iii) a practical use of an SIBSSD-generated SSD in a screening
experiment analyzed using the Stepwise Response Refinement
Screener (SRRS). All SSD we found in this paper are avail-
able to be downloaded in an online catalog and the website is
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http://phoa.stat.sinica.edu.tw:10080/SSD. This online catalog
is simple to use via entering basic parameters, and it is main-
tained continuously by the first author to make sure the results
are always new and certified.
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