
Optimizing Vehicle Distributions and Fleet
Sizes for Shared Mobility-on-Demand

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Wallar, Alex et al. “Optimizing Vehicle Distributions and Fleet Sizes
for Shared Mobility-on-Demand.” 2019 International Conference
on Robotics and Automation, May 2019, Montreal, Canada, Institute
of Electrical and Electronics Engineers, August 2019. © 2019 The
Author(s)

As Published 10.1109/ICRA.2019.8793685

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Citable link https://hdl.handle.net/1721.1/130545

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130545
http://creativecommons.org/licenses/by-nc-sa/4.0/

Optimizing Vehicle Distributions and Fleet Sizes for

Mobility-on-Demand

Alex Wallar∗, Javier Alonso-Mora†, and Daniela Rus∗

Abstract— Mobility-on-demand (MoD) systems are revolu-
tionizing urban transit with the introduction of ride-sharing.
Such systems have the potential to reduce vehicle congestion and
improve accessibility of a city’s transportation infrastructure.
Recently developed algorithms can compute routes for vehicles
in real-time for a city-scale volume of requests with ride-
sharing. However, these algorithms focus on optimizing the
performance for a given fleet of vehicles and do not tell us
how many vehicles we need to service all the requests. In this
paper, we present a method to optimize the vehicle distributions
and fleet sizes for MoD systems that allows requests to share
vehicles. We present an algorithm to determine how many
vehicles are needed, where they should be initialized, and how
they should be routed to service all the travel demand for
a given period of time. Evaluation using 23,529,740 historical
taxi requests from Manhattan shows that on average 2864 four
passenger vehicles are needed to service all of the taxi demand
in a day with an average waiting time of 41.9 secs and added
travel delay of 2.8 mins.

I. INTRODUCTION

Autonomous vehicles and transportation network com-

panies are revolutionizing personal mobility by making

transportation available anywhere at anytime. Mobility-on-

demand (MoD) has the potential to provide faster and

more efficient transportation using fleets of coordinated au-

tonomous vehicles. State of the art algorithms are able to

efficiently manage fleets of vehicles to service large volumes

of requests as is needed in dense urban areas.

Ride-sharing, where more than one passenger is able to

use the same vehicle at the same time, is improving the

efficiency of these algorithms by allowing less vehicles to

service more requests. Services such as UberPool and Lyft

Line have demonstrated how effective ride-sharing can be at

extending our means of transportation within a city. Global

vehicle dispatching algorithms have been developed that

make use of ride-sharing by considering batches of requests,

and optimizing routes for a set of vehicles to service these

requests. These algorithms can ensure that passengers do not

need to wait too long to be picked up and that by sharing

a ride, the passenger will not go too far out of their way.

However, these approaches cannot guarantee that all requests

are serviced and do not tell us how many vehicles we need.

∗ The authors are at the Computer Science and Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology, 32 Vassar St,
02139 Cambridge MA, USA {wallar,rus}@csail.mit.edu

† The author is at the Department of Cognitive Robotics, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
J.AlonsoMora@tudelft.nl

*This work was supported in part by the Netherlands Organisation
for Scientific Research NWO Veni 15961, the Amsterdam Institute for
Advanced Metropolitan Solutions, and the MIT-Singapore Alliance on
Research and Technology under the Future of Urban Mobility.

Fig. 1: A cropped view of the initial vehicle distributed

needed to service all of the taxi demand in Manhattan for a

particular day

In what follows, we address the problem of determining

how many vehicles are needed and where they should be

for a MoD fleet to service all the taxi demand at city-scale

with a maximum waiting time and maximum incurred delay

while allowing multiple requests to be serviced by the same

vehicle. We show that optimizing the number of vehicles and

their distribution, we can significantly improve the efficiency

of a MoD fleet.

A. Related Work

Early work for MoD systems focused on developing

algorithmic techniques for fleets with single occupancy ve-

hicles [1]–[6]. However, with the explosion of the sharing

economy [7], [8], there is great potential for ride-sharing to

make our fleets more affordable and efficient.

Recently, algorithms for large-scale ride-sharing have been

developed. The work in [9] showed that 80% of rides in

Manhattan could be pairwise shared while increasing the

travel time by only a couple minutes. They later extended the

analysis to multiple cities [10]. Alonso-Mora et al. developed

a scalable approach to allow more than two passengers to

share a vehicle by finding an optimal assignment of requests

to a given fleet of vehicles [11]. The efficiency of the fleet

improved in [12] by proactively routing the vehicles through

areas of high demand. However, these approaches did not

determine how many vehicles would be needed to service

all the travel demand.

There has been some research focussing on fleet sizing

but either analyzes how different fleet sizes will perform

to satisfy travel demand [13] or use a fixed start and end

point model [14]. A recent breakthrough in [15] provides

a method to optimally solve the minimum fleet problem,

but assumes a vehicle can only transport one passenger at a

time and cannot be easily extended to ride-sharing. Čáp and

Alonso-Mora [16] used multi-objective analysis to determine

the required fleet size for a set of requests while allowing

multiple requests to share a ride, but the method was not

scalable and they only presented experiments using 1 minute

of request data.

B. Method Overview

The method for optimizing the fleet size and vehicle

distribution is split into multiple steps. First we select a

set of starting locations we call vehicle deposits such that

every node in the road network is reachable from at least

one deposit within given amount of time. These deposits are

computed once offline and remain constant. We then iterate

over the set of requests in batches backwards in request time.

The batch size is fixed for all iterations and we only iterate

over the batches once. We can think of the set of requests

as a stack remaining requests to satisfy and at each iteration

we are popping off the latest batch.

For each batch, we compute a set of travel schedules to

pick up and drop off requests in that batch using the method

from [11]. We assume vehicles are located at the vehicle

deposits when computing these schedules.

While iterating over batches of requests, we maintain a

set of initial travel schedules. These are the first schedules

vehicles would execute after initializing. For the first iter-

ation, this set is empty. For each iteration, we determine

how vehicles can transition between schedules computed

for the current batch of requests to the set of initial travel

schedules. We then select a set of schedules and transitions

from those computed that minimizes a cost function, satisfies

certain constraints, and services all travel requests from the

batch. Any initial travel schedule that receives an incoming

transition is then removed from the set and all selected

schedules are added to the set.

After iterating over all requests, we compute a maximum

bipartite matching between travel schedules that have no

outgoing transitions and our set of initial travel schedules

using more lenient transition constraints. Schedules in the

initial travel schedule set that receive incoming transitions

from this matching are removed. Afterwards, this set of

initial travel schedules will tell us how many vehicles we

need and where they should be to service all the travel

demand.

II. PRELIMINARIES

A. Definitions

We assume that the vehicles travel along a road-network,

G = (N,E), represented as a directed graph, and that we

have a function τ(ni, nj) for ni, nj ∈ N that gives the

shortest travel times between nodes in the graph.

We consider a set of travel requests,R, and a set of vehicle

deposits, D. A travel request is a tuple r = (pr, dr, t
r
r),

where pr ∈ N is the pickup location, dr ∈ N is the dropoff

location, and trr is the time the request was made. R is sorted

in ascending order by request time. R is iterated over in

batches of n requests backwards in time. That means the

first batch will consist of requests from r|R|−n to r|R|.

A vehicle deposit is a location on the graph, D ⊆
N , where vehicles are initialized. Vehicle deposits can be

thought of as starting locations for vehicles before they have

been assigned any requests.

For the formulation we consider a travel request to be

satified if 1) the waiting time, ωr, given by the difference

between the pickup time, tpr , and the request time, trr is less

than a specified maximum waiting time, Twait and 2) the total

travel delay for the request given by δr = tdr− t∗r is less than

a specified maximum travel delay, Tdelay, where tdr is the time

when the request is dropped off and t∗r = trr + τ(pr, dr) is

the earliest possible time the destination could be reached.

For the approach, we will compute a set of travel schedules

and schedule transitions that vehicles will follow to satisfy

the travel requests in R. A travel schedule, S = {(l, t), ...},
for a given vehicle, v, is a sequence of pick up and drop

off locations along with the time the pick up or drop off

will occur and R(S) ⊆ R is the set of requests for a

given schedule S. For convenience, let’s call ℓS(k) and

tS(k) the location and time of the kth event in the schedule

respectively. We assume that the vehicle takes the shortest

path between those locations. For a schedule to be valid,

all the travel requests in the schedule must be satisfied

given the maximum waiting time and maximum travel delay

constraints and the number of passengers in the vehicle

must not surpass the vehicle’s capacity at any given time.

We define the cost of each schedule as the sum of the

travel delays for the requests associated with the schedule

δ(S) =
∑

r∈R(S) δr.

A schedule transition is a pair of schedules, (Si, Sj), such

that a vehicle is able to satisify Si then Sj without idling for

longer than a given maximum vehicle idle time, Tidle. Let’s

define the transition time and idle time between schedules

as ξ(Si, Sj) = τ(ℓSi
(|Si|), ℓSj

(1)) and θ(Si, Sj) = tSj
(1)−

tSi
(|Si|)− ξ(Si, Sj) respectively.

B. Selecting Vehicle Deposits

Due to the maximum waiting time and maximum delay

constraints for travel requests, it is not possible to guarantee a

prescribed service rate for an arbitrary set of vehicle deposits.

For instance, if the travel time from the closest vehicle

deposit to a request’s pick up location is larger than the

maximum waiting time, that request may be impossible to

service. Therefore, in order to provide a guaranteed service

rate, we must intelligently select the locations for the vehicle

deposits.

Using the road-network, G = (N,A), we can select a

set D ⊆ N as vehicle deposit locations such that ∀n ∈ N ,

∃d ∈ D with τ(d, n) ≤ Tdepos where 0 ≤ Tdepos ≤ Twait. To

reduce the computational overhead for computing schedules,

we select the minimum number of vehicle deposits needed.

We can do this by solving an integer linear program. First

let’s define a reachability matrix as follows,

Hij =

{

1, if τ(ni, nj) ≤ Tdepos

0, otherwise
(1)

This matrix describes which nodes are reachable from a

given node within a specified amount a time. Let’s also define

a set of binary variables x where xi = 1 if ni is used as a

deposit location and 0 otherwise. We can now solve an ILP

to determine the minimum number of nodes to use as vehicle

deposits such that the reachability constraint is satisfied:

min
x

|N |
∑

i=1

xi (2)

s.t.

|N |
∑

i=1

xi ·Hij ≥ 1 ∀j ∈ [1, |N |] (3)

Eq. (3) guarantees that every node in N is reachable within

Tdepos travel time from at least one vehicle deposit. Now we

can define the set of vehicle deposits as D = {ni : 1 ≤ i ≤
|N | ∧ xi = 1}

III. FLEET OPTIMIZATION

In this section we describe how schedules and schedule

transitions are selected for each batch using an integer linear

program (ILP) and how are set of initial travel schedules is

updated after each iteration.

A. Schedule Chaining Overview

We compute the schedule chains using an iterative batch

process working backwards in time. At each iteration we

are selecting a set of schedules and schedule transitions that

minimizes the cost function and satisfies the constraint set.

After each iteration, the selected schedules and schedule

transitions are fixed and must remain selected. Any schedule

that is selected that does not have an incoming transition is

called a start as it requires a new vehicle. At each iteration

we will maintain a set of starts that could be used for future

transitions. This reduces the computational overhead of the

approach.

At the kth iteration, we are given a set of requests,

Rk ⊆ R, ordered by request time. We can consider Rk the

remaining requests left to service after k − 1 batches have

been processed. For the first iteration, k = 1 and R1 = R.

The batch of requests for the kth iteration, Rlatest
k ⊆ Rk,

are the n latest requests from Rk, that is the n requests

in Rk with the latest request times. We then compute valid

schedules using the requests in Rk that service requests in

Rlatest
k using the method from [11]. We limit the number of

schedules by only considering requests in Rk that occurred

within some time, Treqs since the requests in Rlatest
k were

made. Note that these schedules will contain all the requests

in Rlatest
k but may also contain other requests from Rk. We

can think of this set of schedules as the candidate schedules

to be selected that service batch k. We will call this set of

candidate schedules, Sk where Sk,i is the ith schedule in that

set. We will define the set of associated requests for the set

of schedules, Sk as Rassoc
k =

⋃|Sk|
i=1 R(Sk,i).

We want to select a set of schedules, S∗k , at each iteration

that would require new vehicles (i.e. schedules that have

no incoming transitions). We select these schedules from

the computed schedules for the current iteration, Sk, and

schedules selected from the previous iteration, S∗k−1. At the

first iteration, S∗k−1 = ∅. In conjunction with selecting initial

schedules, we select a set of schedule transitions out of

candidate transitions from Sk to S∗k−1. The transitions and

schedules, S∗k are solved for at the same time. Note that

not all schedules in S∗k−1 need to be in S∗k . If a transition

is computed between some uk ∈ S
∗
k and vk−1 ∈ S

∗
k−1,

then vk−1 will not be in S∗k since it would not require

a new vehicle. Since we are iterating through the request

set backwards in time, at the final iteration, we will have

a set of schedules where vehicles will begin their routes.

This will give us an initial distribution of vehicles and by

iterating through the transitions, will provide the temporal

distribution.

B. Integer Linear Program Formulation

We formulate this schedule selection problem as an ILP.

Let’s first define a set of binary variables S = {si : ∀i ∈
[1, |Sk|]} where si = 1 if schedule i is selected from Sk and

zero otherwise. Let’s also define a set of binary transition

variables, E = {ǫij : ∀i ∈ [1, |Sk|], ∀j ∈ [1, |S∗k−1|]}, where

ǫij = 1 if schedule i in Sk should transition to schedule

j in S∗k−1 and zero otherwise. For convenience, we also

define two more sets of binary variables, X = {χi : ∀i ∈
[1, |Rlatest

k |]} and H = {ηi : ∀i ∈ [1, |S∗k−1|]} where χi = 1
if the ith request in Rlatest

k was not used and ηi = 1 if the

ith schedule in S∗k−1 was not used. With these variables,

Y = (S,E,H,X), we can define a cost function for ILP to

minimize as:

C(Y) =

|Sk|
∑

i=1

[

δ(Sk,i) · si +

|S∗

k−1
|

∑

j=1

ξ(Sk,i,S
∗
k−1,j) · ǫij

]

+Kr ·

|Rassoc
k |
∑

i=1

χi +Ks ·

|S∗

k−1
|

∑

i=1

ηi (4)

This cost combines the sum of the delays for the selected

schedules from Sk, the transition times for schedule tran-

sitions selected from Sk to S∗k−1, and additive costs for

ignoring requests inRassoc
k and schedules in S∗k−1. In, Eq. (4),

Kr and Ks are constant cost values for ignoring requests and

schedules respectively.

1) Requests Are Serviced At Most Once: For a schedule

selection to be valid, we must ensure that each request in

Rassoc
k is serviced at most once. This is described in the

constraint:

χi +
∑

j∈I
Sk
r=i

sj = 1 ∀i ∈ [1, |Rassoc
k |] (5)

In Eq. (5), the set ISk

r=i corresponds to the indices of

schedules in Sk that service the ith request in Rassoc
k .

2) Minimal Acceptable Service Rate: We also want to

select schedules that will guarantee at least a minimum

acceptable service rate is achieved. We do this by ensuring

at least β ·n are serviced out of the n latest requests, Rlatest
k .

This constraint is formulated as:

|Rlatest
k |

∑

i=1

χi ≤ β · n (6)

3) Maximum Idle Time: To ensure that the vehicles do not

idle for more than a specified amount of time, Tidle, between

transitions, we must constrain transition variables. Though

we already take into account the transition times into the cost

function, direcly constraining the amount of vehicle idling

allows us to provide guarantees for the maximum idle times

for vehicles. This constraint is formulated as:

ǫij · θ(Sk,i,S
∗
k−1,j) ≤ Tidle (7)

∀i ∈ [1, |Sk|] and ∀j ∈ [1, |S∗k |]

4) Schedules Start On Time: To gaurantee that requests

in schedules selected in previous iterations are still satisfied,

we must only select transitions such that the previously

selected schedules, S∗k−1, start on time. This constraint over

the transition variables is formulated as:

ǫij ·
(

tSk,i
(|Sk,i|) + ξ(Sk,i,S

∗
k−1,j)

)

≤ tS∗

k−1,j
(1) (8)

∀i ∈ [1, |Sk|] and ∀j ∈ [1, |S∗k |]

This constraint ensures that the following schedule will

be reached in time such that the waiting time and delay

constraints are satisfied. This constraint also guarantees that

all other schedules in the chain are also satisfied.

5) Schedule Flow Constraints: Also, to enable valid tran-

sitions, we must apply flow constraints to the transition

variables. There can only be an outgoing transition from

schedule i if the ith schedule is selected. This is described

as:

|S∗

k−1
|

∑

j=1

ǫij ≤ si ∀i ∈ [1, |Sk|] (9)

Likewise, we can only have at most one incoming tran-

sititon to a any given schedule in S∗k−1 from Sk. This is

described by the constraint:

ηj +

|Sk|
∑

i=1

ǫij = 1 ∀j ∈ [1, |S∗k−1|] (10)

Note that we have introduced the variable ηj here to

indicate if the jth schedule in S∗k−1 is not selected. This

is used in the cost function.

6) Complete ILP Description: Combining the cost func-

tion from Eq. (4) with the constraints described in this

section, we can formulate an ILP that will select a set of

schedules and schedule transitions that will minimize the cost

function while satisfying service rate, delay, waiting time,

and transition constraints for the set of given requests. The

full ILP is then formulated as:

min
Y

C(Y) (11)

s.t. constraints (5)− (10)

C. Preparing For Next Iteration

After solving this ILP, we need to gather the selected

schedules in preparation for the next iteration. To determine

S∗k , we first add all schedules from Sk for which the

corresponding variable si = 1 We also add all schedules

from S∗k−1 that do not have any incoming transitions. These

are all the schedules which would require a new vehicle

to service since they are not going to be transitioned to

by another vehicle after finishing its schedule. This set is

constructed as:

S∗k = {Sk,i : si = 1, ∀i ∈ [1, |Sk,i|]}

∪ {S∗k−1,i : ηi = 1, ∀i ∈ [1,S∗k−1,j]} (12)

For the next iteration we also need to remove all the

requests from the set of requests that have already been

serviced by schedules selected in the current iteration:

Rk+1 = Rk\

|S∗

k |
⋃

i=1

R(S∗k,i) (13)

Finally, to keep track of all the schedules and associated

transitions, we maintain a set of all schedules selected, S ,

and a function N : S → S , that maps all schedules to their

transitions. In the case that a given schedule s ∈ S has no

outgoing transitions, N (s) = ∅.
Now that the remaining requests have been gathered

and schedules have been selected, we can move on to

the next iteration. An overview of the schedule chaining

algorithm is shown in Algo. 1. In the algorithm we use

the short hand functions LatestRequests(Rk) to represent

the n latest requests from Rk, ComputeSchedules(Rlatest
k)

to represent all the schedules computed from Rlatest
k , and

SolveScheduleSelectionILP(Sk,S
∗
k−1,R

latest
k ,Rassoc

k) to rep-

resent solving Eq. (11) and extracting the schedules selected

from the optimization variables.

IV. LONG TERM REBALANCING

After computing the starting schedules using the schedule

chaining algorithm, there may be more starting schedules

selected than necessary due to the constraint on the maximum

idling time for a vehicle. We perform what we call long term

rebalancing, which relaxes the constraint on the maximum

idling time after the last iteration of the schedule chaining

algorithm to reduce the total number of vehicles needed in

the fleet. Long term rebalancing computes a matching from

schedules which have no outgoing transitions to schedules

that have no incoming transitions using a larger maximum

idling time, denoted as Treb, while ensuring the delay and

waiting time constraints for the future schedules remain

satisfied.

Let us define the two sets for the matching problem, the

set of schedules with no outgoing transitions, A = {s :

Algorithm 1 Overview of the Schedule Chaining Algorithm

1: S ← {}
2: S0 ← {}
3: R1 ← AllRequests()
4: k ← 1
5: while |Rk| > 0 do

6: Rlatest
k ← LatestRequests(Rk)

7: Sk ← ComputeSchedules(Rlatest
k)

8: Rassoc
k =

⋃|Sk|
i=1 R(Sk,i)

9: S∗k ← ScheduleSelectionILP(Sk,S
∗
k−1,R

latest
k ,Rassoc

k)

10: Rk+1 ← Rk\
⋃|S∗

k |
i=1 R(S∗k,i)

11: S ← S ∪ S∗k
12: for i = 1 to |Sk| do

13: for j = 1 to |S∗k−1| do

14: if si = 1 ∧ ǫij = 1 then

15: N (Sk,i)← S
∗
k−1,j

16: end if

17: end for

18: end for

19: k ← k + 1
20: end while

N (s) = ∅, ∀s ∈ S}, and the set of schedules without any

incoming transitions, B = {s : ∄uN (u) = s, ∀s ∈ S}.
To minimize the total number of vehicles needed, we will

perform a maximum cardinality bipartite matching between

sets A and B. We will do so using an ILP.

To formulate this ILP, let’s define a set of binary variables,

E = {ǫij : ∀i ∈ |A|, ∀j ∈ |B|} which represent if schedule

Ai should transition to schedule Bj . With these variables, we

can maximize the number of transitions to minimize the total

number of vehicles needed in the fleet. The utility function

is given as:

J (E) =

|A|
∑

i=1

|B|
∑

j=1

ǫij (14)

We also need to constrain the matching so that the idling

and waiting times for the schedules are respected. These are

the same constraints as in Eq. (7) and (8), however a larger

vehicle idling time, Treb, is used:

ǫij · θ(Ai,Bj) ≤ Treb (15)

ǫij ·
(

tAi
(|Ai|) + ξ(Ai,Bj)

)

≤ tBj
(1) (16)

∀i ∈ [1, |A|] and ∀j ∈ [1, |B|]

Since we are computing a matching, we need to apply flow

constraints to the transition variables to guarantee that there

will be at most one outgoing transition for any schedule in

A and at most one incoming transition to any schedule in B:

|A|
∑

i=1

ǫij ≤ 1 ∀j ∈ [1, |B|] (17)

|B|
∑

j=1

ǫij ≤ 1 ∀i ∈ [1, |A|] (18)

Now we can combine these constraints along with the

cost function in Eq. (14) to formulate the ILP for long term

rebalancing:

max
E

J (E) (19)

s.t. constraints (15)− (18)

V. EVALUATION

We evaluate the proposed algorithm using historical taxi

request data from Manhattan [17] and compare the perfor-

mance to the actual efficiency of the taxi fleet from the data.

A. Experimental Setup

For the experiments, we used one month of historical taxi

data from 00:00 on May 1st to 23:59 on May 31st, 2013.

The data contains the origin, destination, pick up time and

drop off time for all taxi requests in Manhattan. From this

raw data, we use the reported pick up time as the request

time since request time was not provided. The road network

we use is extracted from OpenStreetMap [18] and the travel

times were queried from Google Maps. The shortest paths

and travel times between every pair of nodes in the road

network were computed offline. We ran the algorithm inde-

pendently for each day of the month. A computer with a 3.0

GHz, 36 core (72 thread) processor and 144GB of memory

was used to run the experiments and we ran four instances

of the algorithm at the same time (18 threads per instance).

We assess the performance of the algorithm using vehicles

of capacity two and four. We use a fixed maximum waiting

time of Twait = 3 minutes and a maximum delay of Tdelay =
6 minutes. The vehicle deposits were computed using a

maximum travel time of Tdepos = 1 minute and we use a

batch size of n = 10 requests. The minimum acceptable

service rate is β = 1 (i.e. we want to service all requests).

The maximum idle time for schedule chaining is Tidle = 30
seconds and for rebalancing Treb = 24 hours.

We compare the fleet sizes produced by the proposed

algorithm with the actual fleet sizes used to service the

requests.

B. Results

We collect several metrics to access the performance of

the proposed algorithm including the travel delay, waiting

time, vehicle idle time, passenger load, computational time,

and fleet size. The travel delay and waiting time are defined

in Sec. II-A. The vehicle idle time is the amount of time

a vehicle would have to idle between schedules and is also

precisely defined in Sec. II-A. The passenger load is the

maximum number of passengers in a vehicle at any time

for a given schedule. The computation time includes the

time required to compute schedules and solve the schedule

chaining ILP for all batches. The fleet size is the total number

of vehicles needed to service all of the requests. The averages

of these metrics for the whole month are shown in Table I.

In the table we show the actual metrics from the raw data for

comparison. We also plotted the fleet size and computational

time as a function of the number of requests in Fig. 2.

Fig. 2: A comparison of the fleet size and computational time needed for each day of the month for vehicle capacites of

two and four passengers as a function of the number of requests in the day

Avg. Delay [m] Avg. Veh. Idle Time [m] Avg. Load Avg. Wait Time [s] Avg. Comp. Time [hr] Avg. Fleet Size

Capacity=2 1.7 4.8 1.9 35.4 7.6 3761.5
Capacity=4 2.8 4.7 3.1 41.9 5.9 2864.0
Actual 0.0 22.3 1.0 0.0 - 12237.4

TABLE I: Performance metrics and fleet sizes for vehicle capacities of two and four passengers compared to the performance

of the current fleet of NYC taxis

We observe a large reduction in the required fleet size to

service all the requests when using the proposed algorithm

against the baseline. For a fleet with a two passenger vehicle

capacity, on average we need 3761 vehicles and for a four

passenger vehicle capacity fleet, we need 2864 vehicles.

This is a 69% and 77% reduction in fleet size respectively

compared to the baseline. The proposed algorithm also

reduces the average vehicle idle time significantly from 22.3

mins to 4.7 mins for capacity two and 4.8 mins for capacity

four. This is due to the fleet operating more efficiently.

The reduction in fleet size comes at the cost of added

waiting time and associated travel delay, however our data

shows that these costs are very low. Passengers on average

would expect to experience an average travel delay 1.7 mins

for a capacity two fleet and 2.8 mins for a capacity four

fleet. The average waiting times are both less than a minute

at 35.4 secs and 41.9 secs respectively.

We can see that the proposed algorithm is efficiently uti-

lizing the vehicles by inspecting the average passenger load.

For capacity two fleets, the average load is 1.9 passengers per

schedule (95% seat utilization) and for capacity four fleets,

it is 3.1 passengers per schedule (76% seat utilization).

The time it took to for the algorithm to compute and select

the schedules for a given day took on average 7.6 hours

and 5.9 hours for fleets of capacity two and capacity four

vehicles respectively. The time is higher for capacity two

fleets because it takes longer to iterate through the set of

requests since more schedules are needed. This algorithm

is not inteded for online use, but to generate statistics on

historical demand to make decisions for fleet sizing. For this

case, we think the computational times are sufficiently low

to run the algorithm.

We plot the fleet size and computational time against the

number of requests for a given day Fig. 2. In our experiments

we observe that fleets of capacity two always have higher

fleet sizes and take longer to compute than fleets of capacity

four for a given number of requests. For our sample, we

observe a linear trend in the fleet size against the number

of requests for both vehicle capacities. We see that fleet size

grows more rapidly for capcity two than for capacity four.

For all days the fleet size remains under 4500 vehicles for

capacity two and 3500 for capacity four.

VI. CONCLUSION

In this paper, we presented a method to optimize the

vehicle distributions for a mobility-on-demand fleet. We

presented an algorithm to determine how many vehicles

are needed, where they should be initialized, and how they

should move to service all the travel demand for a given

period of time while allowing multiple passengers to be

serviced by the same vehicle. The algorithm can be used to

inform a ride-sharing fleet operator of how vehicles should

be distributed to handle the demand for an area.

We demonstrated a significant improvement in the vehicle

efficiency of the taxi fleet when using the proposed algorithm

as compared to how taxis are currently utilized in Manhattan.

On average, we can reduce the fleet size by 69% by allowing

up to two passengers per vehicle and by 77% for up to four

passengers per vehicle while guaranteeing all travel requests

are serviced compared to the baseline. These benefits come

at only a small cost to the user with an added travel delay

of 1.7 mins and 2.8 mins and waiting times of 35.4 secs and

41.9 secs for vehicle capacities of two and four respectively.

Future work will focus on determining a lower bound on

the fleet size so we have a range to inform fleet operators.

We also plan to investigate how this method can be extended

for online use for real-time fleet management.

REFERENCES

[1] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load
balancing for mobility-on-demand systems,” The International Journal
of Robotics Research, vol. 31, no. 7, pp. 839–854, 2012.

[2] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and
M. Pavone, “Toward a systematic approach to the design and eval-
uation of automated mobility-on-demand systems: A case study in
singapore,” in Road vehicle automation, pp. 229–245, Springer, 2014.

[3] K. Treleaven, M. Pavone, and E. Frazzoli, “Asymptotically optimal
algorithms for one-to-one pickup and delivery problems with appli-
cations to transportation systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 9, pp. 2261–2276, 2013.

[4] A. Prorok and V. Kumar, “Privacy-preserving vehicle assignment
for mobility-on-demand systems,” in Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on, pp. 1869–1876,
IEEE, 2017.

[5] G. Clare and A. G. Richards, “Optimization of taxiway routing and
runway scheduling,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 4, pp. 1000–1013, 2011.

[6] R. Zhang and M. Pavone, “Control of robotic mobility-on-demand
systems: a queueing-theoretical perspective,” Proceedings of Robotics:
Science and Systems Conference, July 2014.

[7] T. Rosenberg, “Its not just nice to share, its the future,” 2013.
[8] A. Sundararajan, “From zipcar to the sharing economy,” Harvard

Business Review, vol. 1, 2013.
[9] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and C. Ratti,

“Quantifying the benefits of vehicle pooling with shareability net-
works.,” Proceedings of the National Academy of Sciences, vol. 111,
no. 37, pp. 13290–4, 2014.

[10] R. Tachet, O. Sagarra, P. Santi, G. Resta, M. Szell, S. Strogatz, and

C. Ratti, “Scaling law of urban ride sharing,” Scientific reports, vol. 7,
p. 42868, 2017.

[11] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle as-
signment,” Proceedings of the National Academy of Sciences, vol. 114,
no. 3, pp. 462–467, 2017.

[12] A. Wallar, M. van der Zee, J. Alonso-Mora, and D. Rus, “Vehicle
rebalancing for mobility-on-demand systems with ride-sharing,” 2018.

[13] P. M. Boesch, F. Ciari, and K. W. Axhausen, “Autonomous vehicle
fleet sizes required to serve different levels of demand,” Transportation
Research Record: Journal of the Transportation Research Board,
no. 2542, pp. 111–119, 2016.

[14] K. Winter, O. Cats, G. H. d. A. Correia, and B. Van Arem, “Designing
an automated demand-responsive transport system: Fleet size and
performance analysis for a campus–train station service,” Transporta-
tion Research Record: Journal of the Transportation Research Board,
no. 2542, pp. 75–83, 2016.

[15] M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. Ratti, “Ad-
dressing the minimum fleet problem in on-demand urban mobility,”
Nature, vol. 557, no. 7706, pp. 534–538, 2018.

[16] M. Čáp and J. Alonso-Mora, “Multi-objective analysis of ridesharing
in automated mobility-on-demand,” Proceedings of Robotics: Science
and Systems Conference, 2018.

[17] B. Donovan and D. B. Work, “New York City Taxi Trip Data (2010-
2013).” http://dx.doi.org/10.13012/J8PN93H8, 2014.

[18] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org .” https://www.openstreetmap.org , 2017.

[19] O. Tange, “Gnu parallel - the command-line power tool,” ;login: The
USENIX Magazine, vol. 36, pp. 42–47, Feb 2011.

