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Abstract

Cloud computing provides on-demand access to a shared pool of computing resources, which enables organizations

to outsource their IT infrastructure. Cloud providers are building data centers to handle the continuous increase in
cloud users’ demands. Consequently, these cloud data centers consume, and have the potential to waste, substantial
amounts of energy. This energy consumption increases the operational cost and the CO2 emissions. The goal of this

paper is to develop an optimized energy and SLA-aware virtual machine (VM) placement strategy that dynamically
assigns VMs to Physical Machines (PMs) in cloud data centers. This placement strategy co-optimizes energy
consumption and service level agreement (SLA) violations. The proposed solution adopts utility functions to formulate

the VM placement problem. A genetic algorithm searches the possible VMs-to-PMs assignments with a view to
finding an assignment that maximizes utility. Simulation results using CloudSim show that the proposed utility-based
approach reduced the average energy consumption by approximately 6 % and the overall SLA violations by more

than 38 %, using fewer VM migrations and PM shutdowns, compared to a well-known heuristics-based approach.

Keywords: Cloud computing, Virtual machine placement, Cloud resource management, Utility functions,

Energy-aware, Service level agreement (SLA)

Introduction
Cloud computing delivers application, platform or infras-

tructure services to large numbers of users with diverse

and dynamically changing requirements. To meet the

expectations of their users in a cost-effective manner,

cloud service providers must make numerous resource

management decisions that satisfy different objectives, for

example to meet Service Level Agreements (SLAs) while

minimizing energy costs [1].

In this paper, we focus on the problem of adaptively

allocating virtual machines (VMs) to physical hosts, in

the context of unpredictable workloads. Specifically, this

involves making decisions such as when to relocate VMs,

which VMs to relocate, where to place VMs that are to be

relocated, and which physical machines can be switched

off. These decisions can be made with a view to meet-

ing different objectives; in our case, we seek to maximize

the profit of an Infrastructure-as-a-Service (IaaS) service

provider by trading off income (which involves meeting

SLAs) and expenditure (which involves saving energy by

*Correspondence: amosa@cs.man.ac.uk
School of Computer Science, University of Manchester, Oxford Road, M13 9PL
Manchester, UK

moving physical machines that are not needed into power

saving modes).

We are not the first to address this problem. For exam-

ple, in a series of papers Beloglazov et al. [2–4] develop

heuristic algorithms that make dynamic workload allo-

cation decisions, taking into account energy usage when

deciding where to place VMs. In adopting a heuristic

approach, these papers focus on identifying criteria that

suggest that an adaptation may be beneficial (which tends

to involve detecting which hosts are over- or under-

loaded), and then making reallocation decisions in ways

that take into account estimated energy usage. In devel-

oping and refining their heuristics, the authors focus on

challenges like detecting when the load on a physical node

suggests that an adaptation may be beneficial. By system-

atically refining their heuristics, the authors were able to

make proposals that significantly improved on their static

counterparts.

We note, however, that such heuristic approaches do

not address the objective of the problem directly. Here,

the goal is to meet SLAs while conserving energy, but the

focus of the heuristics, that determine when adaptations

should take place and which VMs should be moved, is on
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the load on physical nodes. Clearly, the load on physical

nodes is relevant to this problem, but it is effectively a

proxy for the goal. In this paper, we adopt what is referred

to as a utility-based approach to adaptive energy-aware

virtual machine placement. In the utility-based approach

to adaptive systems [5–7], a utility function is defined that

specifies the goal of the adaptation, and an optimization

algorithm explores alternative adaptations, to identify the

adaptation that maximizes utility. In this paper, the util-

ity of an assignment a over a time interval t is defined as:

Utility(a, t) = Income(a, t) − EnergyCost(a, t).

This utility function captures the objective for the ser-

vice provider. The Utility(a,t) returns the predicted finan-

cial return over a period of time t of an assignment a of

virtual machines (VMs) to physical machines (PMs). To

apply this in practice involves the development of models

for estimating the Income and EnergyCost of an assign-

ment over a time interval t, and the selection of a search

function that explores the space of alternative assign-

ments. Thus, the utility based approach captures the goal

of the adaptation explicitly and searches for solutions that

meet the goal. The utility based approach has been applied

to a range of applications, from workflow scheduling on

grids [8] to data center cooling [9], and here is applied to

adaptive VM placement.

The key contributions of this paper are summarized as

follows:

1. An application of the utility-based approach to the

VM placement problem.

2. A utility function that estimates the profit from

adaptive VM placement taking into account the

impact of adaptations, the energy used, and the SLA

violations.

3. An empirical evaluation of the proposed solution

using the CloudSim simulation framework.

The paper is structured as follows. In “Related

work” section, we describe related work on autonomic vir-

tual machine placement and utility-based resource alloca-

tion. In “Optimizing virtual machine placement” section,

we provide a precise description of the VM placement

problem. “Utility-based resource allocation” section indi-

cates how the utility-based approach has been applied

to the VM placement problem, and “Experimental eval-

uation” section empirically evaluates the approach, com-

paring it to an existing heuristic strategy. Conclusions

and future directions are discussed in “Conclusions and

further work” section.

Related work
This section discusses work that is related to that

described in the paper, considering in turn virtual

machine placement and utility based resource allocation.

We do not re-review less closely related research in cloud

computing, of which there is a considerable amount, and

for which review articles already exist (e.g. [1, 10, 11]).

Virtual machine placement: In relation to virtual

machine placement, we review results in terms of when

placement decisions are made, the objective that place-

ment decisions seek to meet, and the decision-making

paradigm that is used to identify a suitable allocation.

In terms of when placement decisions are made,

approaches can be considered to be static (e.g. [12–14]),

in which decisions once made are not reviewed during the

lifetime of the VM, or dynamic (e.g. [2, 15–18]), in which

the VM to PM assignment may change during the execu-

tion of the VM. As dynamic approaches often make use

of information on the actual load that is not available to

static approaches, dynamic approaches often use a static

approach for initial placement. In the remainder of this

section, we will focus on dynamic approaches, as these are

the most relevant to this paper.

Virtual machine placement decisions can involve trade-

offs, for example between energy usage and risk of SLA

violations, so methods implicitly or explicitly seek to meet

an objective. Dynamic VM placement techniques have

been developed that seek to maximize revenue (e.g. [12]),

conserve energy (e.g. [17, 19, 20]), and to meet SLAs while

saving energy where possible (e.g. [2, 21, 22]). In this

paper, we seek to maximize profit, by making allocation

decisions that take into account the cost of energy usage

and the loss of income that would result from the violation

of SLAs.

Researchers have investigated a range of decision-

making paradigms, which decide when to change the VM

to PM assignment, what migrations to carry out, and per-

haps also what PMs can be turned off to save energy.

Dynamic VM placement proposals have employed heuris-

tics (e.g. [2, 12, 16, 17]), integer linear programming (e.g.

[12]) and bespoke algorithms (e.g. [15]). In this paper, we

deploy a utility based approach, in which an evolutionary

search is used to explore alternative allocations.

We know of no other work that has both addressed the

same problem as we address (dynamic virtual machine

placement with the objective of maximizing profit, tak-

ing into account both SLAs and energy) using a utility-

based decision-making paradigm. However, to enable the

evaluation of our approach, we compare our results

with a proposal that addresses the same problem, but

using a different decision-making paradigm. Beloglazov

et al. [2, 3, 23] proposed a heuristics-based energy-

aware resource management system that meets quality

of service (QoS) requirements. Their solution follows the

divide and conquer concept by dividing the main prob-

lem into 4 sub-problems namely, host overload detection,
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host underload detection, VM selection and VM place-

ment. The host overload detection problem determines

when a host is considered to be overloaded. Once the host

is considered overloaded, VMs are selected for migra-

tion from this overloaded host to a non-overloaded one.

The host underload detection problem involves deciding

that a host is underloaded. After host underload detec-

tion, all VMs in the underloaded host should be migrated

to another host if possible, thereby enabling that host

to be placed in a power saving mode. The VM selec-

tion problem involves deciding which VMs should be

selected for migration from the overloaded host. Finally,

the VM placement problem involves choosing the appro-

priate host for migrating the VMs to. Further details

of this approach are provided in “Experimental evalua-

tion” section, where it is compared with our utility-based

proposal.

Utility-based resource allocation: In this paper, we use

utility functions to compare alternative adaptations, and

thereby to select the adaptation that is expected to yield

the highest utility. As discussed by Kephart et al. [6],

decision-making in computing involves a transition from

a current state into one of several alternative future

states, by way of candidate adaptations. In this context,

it is the role of the utility function to quantify the suit-

ability of each of the alternative future states. In the

original proposal for utility-based adaptation [5], a con-

troller is responsible for selecting the collection of control

parameters that maximize the utility function, using a

utility calculator that implements a model of the environ-

ment. Utility functions have been applied in autonomic

computing for: configuring the properties of application

hosting environments such as web servers [5], for select-

ing between alternative providers of a service [24], for

managing the physical environment within data centres

[9], for allocating jobs within a collection of workflows to

machines on a grid [8], for optimizing resource utiliza-

tion for scientific applications [25], and for balancing the

load of a collection of database queries over the nodes in

a cluster [26]. As the designs of these applications have

various features in common, a methodology has been pro-

posed for the development of utility-based applications

[27], which we follow in “Utility-based resource alloca-

tion” section.

Optimizing virtual machine placement
This section demonstrates the virtual machine placement

problem by describing the input, processing, and output

model in “Input, processing and output for the VM place-

ment” section. Moreover, “Monitoring, analysis, planning

and execution of VM placement” section describes mon-

itoring information that is used for the analysis, planning

and the actual execution of the VM placement.

Input, processing and output for the VM placement

Figure 1 illustrates the input, processing, and output of the

VM placement problem. The summary of the problem is

as follows:

• Input: Given a cloud data center with N
heterogeneous physical machines (PMs) with limited

resource capabilities, the cloud provider receives VM

placement requests consisting ofM virtual machines

(VMs) which need to be assigned to the PMs. Finally,

the cloud user runs application workloads on the

VMs. In the conducted experiments, the VMs come

in batch mode, however they can be online.

• Processing: The processing of the VM placement

problem involves identifying an assignment a that

associates each vmi ∈ VM, with a single pmj ∈ PM.

The processing consists of the initial placement
controller and dynamic placement controller.

– The initial placement controller either accepts
or rejects VM placement requests based on

the resource constraints in the data center.

This is simply a bin packing problem and there

are dozens of techniques for solving it in the

literature.

– The dynamic placement controller
periodically reallocates existing VMs based on

resource utilization. The goal of the dynamic

placement is to save energy while minimizing

SLA violations (SLAVs).

• Output: A VMs-to-PMs assignment.

In this paper, we develop a utility based solution for the

dynamic placement problem. Furthermore, we evaluate

the proposed solution and compare it with a heuristics-

based one proposed in [2, 3]. The dynamic placement

based on VM consolidation is a strictly NP-hard problem

[28].

Fig. 1 IPO model. Input, processing and output for the VM placement
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Monitoring, analysis, planning and execution of VM

placement

Figure 2 shows the loop design model of the proposed

utility-based solution in terms of monitoring, analysis,

planning and execution (MAPE). The monitoring (M)

component monitors the CPU utilization of the PMs and

the VMs based on the applications’ workload in the cloud

data center. By the end of each scheduling interval, the

analysis (A) component searches for alternative VMs-to-

PMs assignments based on the collected monitoring data.

The search process runs periodically depending on the

scheduling interval. The planning (P) performs a utility-

based assessment of candidate VMs-to-PMs assignments

and considers the best one found so far. Moreover, it

finds which VMs are going to be migrated, if any, and

to where, based on the best found VMs-to-PMs assign-

ment. Finally, the execution (E) component performs the

migration of the VMs in addition to switching the unused

PMs off.

Utility-based resource allocation
Abstracting from several experiences of using the utility

based approach, a methodology has been developed for

its application [7], which we follow here for applying the

approach to VM placement.

Utility property selection

Selecting the properties of the utility function is crucial

as they affect the value of the utility function. From [7],

utility property selection involves selecting the property

that it would be desirable to maximize. Our solution tries

to maximize the profit, which is derived from income,

energy cost and violation costs. The income represents the

money that the cloud provider receives from cloud cus-

tomers due to hosting their VMs. Energy cost represents

the cost of the energy consumed due to placing the VMs

and the running of applications. Finally, the violation costs

represent the amount of money that the cloud provider

has to pay to cloud customers due to SLA violations

(SLAVs).

Utility function definition

The utility function expresses the self-managing policy

adopted for creating an autonomic cloud data center. The

goal of the utility function is to maximize the profit of VM

placement by minimizing energy consumption and SLA

violations (SLAVs). Equation (1) provides the high-level

definition of the utility function.

Utility(a, t) = Income(a, t) − (EstimatedEnergyCost(a, t)

+ EstimatedViolationCost(a, t) + PDMCost(a, t))

(1)

Here, a is a map representing the VMs-to-PMs assign-

ment, and t is the assignment time period. Income(a, t)

is the total income from hosting the customers’ VMs;

EstimatedEnergyCost(a, t) is the expected cost of energy

consumption due to the assignment. EstimatedViolation-

Cost(a,t) represents the cost of SLA violation due to the

over-utilization of the hosting PMs, a cost that is calcu-

lated based on the number of VMs in violation. VMs are

not available during migration and hence there should

be a way to estimate the cost resulting from this viola-

tion. PDMCost(a,t) represents the violation cost of the

performance degradation due to the migration (PDM)

of VMs among PMs. The utility function requires the

development of models for estimating both the Energy-

Cost and the violation costs of an assignment over a time

interval t, which are provided in “Utility model devel-

opment” section. This is followed by a description of a

genetic algorithm that searches the space of VM-to-PM

assignments for solutions that maximize the utility.

Fig. 2MAPE of VM placement. Monitoring, Analysis, Planning and Execution (MAPE) loop design model of the VM placement problem
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Utility model development

The utility model estimates the expected energy cost and

the two types of SLA violations due to the VMs assign-

ment. The utility model calculations depend on the per-

centage of CPU utilization, which is calculated as shown

in the following sub-section.

Calculating PM’s CPU utilization based on VMutilization

Algorithm 1 estimates the CPU utilization of the PM

based on the candidate assignments. Algorithm 1 uses the

captured monitoring information to calculate the CPU

utilization of each of the PMs in the candidate assignment.

Algorithm 1 depends on two assignments, the current

assignment and the candidate assignment. The current

assignment (c), is the currently running VMs-to-PMs

assignment. The genetic algorithm produces a number

of candidate assignments that need to be compared to

the current one. The candidate assignment (a), repre-

sents an assignment that might or might not be adopted.

If the best candidate assignment is better than (i.e. has a

higher fitness value than) the current assignment then the

candidate assignment should replace the current one. A

new assignment means that some VMs might be removed

from a PM while others might be added according to

the new VMs-to-PMs mapping. The key idea is passing

the candidate assignment a as a parameter to the Esti-

matedUtilization(a) function for computing the expected

utilization due to the assignment.

Algorithm 1:The expected CPU utilization of each

PM
allPmsUtilizations[] EstimatedUtilization(a)

Result: The CPU utilization of each PM in the

cloud data center due to the candidate

assignment

Initialization:

assignment c ← getCurrentAssignment(pm);

addedVms ← VMs associated with the PM in a

that are not in c;

removedVms ← VMs associated with the PM in c

that are not in a;

allPmsUtilizations[] ← 0;

u[pm] ← 0;

foreach pm in the Assignment a do

u[ pm]←pm.getUtilization()+

sum(addedVms.getUtilization())−

sum(removedVms.getUtilization());

allPmsUtilizations[ ] .add(u[ pm] );
end

return allPmsUtilizations[];

In Algorithm 1, pm refers to the physical machine;

pm.getUtilization() returns pm’s current CPU utiliza-

tion in millions of instructions per second (MIPS) and

added.getUtilization() returns the total CPU utilization

of VMs that are in the candidate, a, assignment and not

in the current, c, one. The removed.getUtilization() call

returns the total CPU utilization of VMs that are in the

current assignment c and not in the candidate, a, one; and

u[ pm] stores the utilization of each PM in MIPS. Finally,

allPmsUtilizations[ ] is an array holding the utilization of

each single PM in the cloud data center.

Energy cost estimation

Algorithm 2 calculates the expected cost of energy due to

the candidate assignment during the time interval t. For

computing power consumption, a power model should be

used. In this work, real power consumption data is used

for calculating the power consumption. These real con-

sumption data are provided in the SPECpower_ssj2008 [3]

benchmark. These data are provided with the CloudSim

simulator through two different servers, HP ProLiant

ML110 G4 and HP ProLiant ML110 G5. Figure 3, from

[3], exhibits a table that shows the variation of power con-

sumption of those two servers according to the level of

utilization in Watts.

Algorithm 2: Energy Cost Estimation

float EstimatedEnergyCost(a, t)

Result: Total Energy cost of the running PMs

Initialization:

powerConsumedPerPm[] = 0;

totalPowerConsumed = 0;

totalEnergyCost = 0;

allPmsUtilizations[] = EstimatedUtilization(a);

foreach pm in the Assignment a do
powerConsumedPerPm[pm] =

pm.getPowerModel().getPower

(cpuUtilization[pm]);

totalPowerConsumed +=

powerConsumedPerPm[pm];

end

totalEnergyCost = totalPowerConsumed *

energyCostPerSec * t;

return(totalEnergyCost);

The function getPower(cpuUtilization[pm]) returns

the power according to the power model used and

EstimatedUtilization(a) is shown in Algorithm 1. The

return value from this algorithm is the cost of the total

energy consumed due to the assignment in the cloud data

center in the specified time period t.
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Fig. 3 Power consumption at different utilizations, from [3]. Power consumption for HP ProLiant G4 and G5 provided by SPECpower benchmark

Violation cost due to PM over-utilization

Many factors might lead to SLA violations in a virtual-

ized environment such as the over-utilization of the PMs,

the migration of VMs, performance interference among

co-located workloads [29], overheads from co-locating

network-intensive or CPU-intensive workloads in isolated

VMs, and system failure or outage. However, we only

consider the over-utilization of the PMs and the VMs

migration, as shown in “Violation cost due to VM migra-

tions” section, for comparison purposes, and as there

is no interference between the VMs that constitute the

workload used in the experiments in “Experimental eval-

uation” section. Algorithm 3 calculates the violation cost

resulting from the over-utilization of the PMs based on

the number of VMs in violation.

VMList represents the list of VMs assigned to each

PM, and demand represents the total CPU demand of

the PM resulting from the currently assigned VMS. The

sort(VMList) method sorts the VMs in descending order

according to the CPU demand. Descending order was

used so as to minimize the number of VMs in violation.

If the CPU demand is greater than the actual PM’s CPU

Algorithm 3: Violation cost due to PMs’ over-

utilization

float EstimatedViolationCost(a, t)

Result: SLA violation cost due to PMs’

over-utilization

Initialization:

numOfVMsInViolation ← 0; violation ← 0;

foreach pm in the Assignment a do

VMList ← list of VMs from a in pm ;

VMList ← sort(VMList) by demand ;

demand ← sum of demands in VMList ;

supply ← pm.getTotalMips();

while demand >supply do

violation++;

demand ← demand -

vmDemand(VMList[violation]);

end

numOfVMsInViolation ←

numOfVMsInViolation + violation;

end

return(numOfVMsInViolation *

slaViolationCostPerSec * t);

capabilities (supply), this means that there is a violation

and the number of VMs’ in violation will be counted.

Violation cost due to VMmigrations

Performance degradation due to migration (PDM) repre-

sents the performance degradation due to the overhead

resulting from the migration of VMs among PMs. VMs

are not available until the end of the migration process,

which causes violation to the SLA. Algorithm 4 computes

the cost of performance degradation due to VMmigration

where the migrationTime represents the time required

until the VM is migrated. The time required to migrate

a VM equals the amount of memory used by the VM

divided by the available network bandwidth [3].

Algorithm 4: Violation cost due to VMmigration

float PDMCost(a, t)

Result: Cost of SLA violations (SLAVs) due to

migration

Initialization:

migrationTime ← 0; pdmViolationCost ← 0;

foreach vm in the Assignment a do

if the vm is migrated then
migrationTime ← vm.getAllocatedRam() /

pm.getBw();

pdmViolationCost ← pdmViolationCost +

migrationTime * pdmCostSec;

end

end

return(pdmViolationCost);

Representation design

The solution to the VMs-to-PMs assignment problem is

simply represented by a map. This map has m elements

where each element, key, represents a VM and the value of

that element is the PM’s ID to which the VM is assigned.

Figure 4 displays the representation of the solution.

Optimization algorithm

Finding a good assignment that maximizes the utility, fit-

ness, function involves searching candidate assignments.

A genetic, evolutionary, algorithm can be used for search-

ing the search space for an appropriate assignment.
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Fig. 4 Representation of the solution. Solution representation of the VMs-to-PMs assignment problem

Genetic algorithms are one of the evolutionary compu-

tation methods that are considered as powerful stochas-

tic search and optimization techniques based on the

Darwinian principle of natural selection [30, 31]. Genetic

algorithms search a population of individuals in paral-

lel; therefore they have the ability to avoid locally optimal

solutions. Algorithm 5, adopted from [31, 32], shows a

high-level pseudo-code of the genetic algorithm used for

finding the VM-to-PM assignment that maximizes the

utility. The genetic algorithm goes through the following

phases: creation of initial population, fitness evaluation,

parents selection, crossover, mutation and new popula-

tion selection.

Algorithm 5: Genetic Algorithm Pseudo-code,

modified version of [31, 32]

Result: Best-found VMs-to-PMs assignment

Initialization:

popSize ← population size; genCount ← number

of generations;

P ← {}; ⊲ Population: set of VMs-to-PMs

assignments(a1, a2, ...an)

P ← initialVmsToPmsAssignments(popSize);

fitnessEvaluation(P); ⊲ based on the utility function

defined in “Utility function definition” section

while generation number is less than genCount do
newPop ← {}; ⊲ new population for next

generation

for popSize times do
parentAssignment ai, aj ←

parentsSelection(P);

childrenAssignment ci, cj ←

crossover(ai, aj);

newPop ← newPop ∪ {mutate(ci),

mutate(cj)};

end

fitnessEvaluation(P, newPop);

P ← newPopulation(P, newPop);

end

return(best-found VMs-to-PMs assignment)

Initial population

The initial population consists of a number of individ-

uals where each individual is considered a candidate

solution to the problem. In the VM placement prob-

lem, each individual is described by a map, where a VM

represents the key and the value of that key is the ID

of the PM to which the VM is assigned, as shown in

“Representation design” section. The initialVmsToPmsAs-

signments(popSize) in Algorithm 5, generates the initial

set of solutions, candidate VMs-to-PMs assignments, by

mutating the currently working solution. The current

VMs-to-PMs assignment is a member of the initial popu-

lation so that it can be kept if there is nothing better. The

number of individuals in the population depends on the

populationSize parameter.

Fitness/utility function evaluation

Each individual, candidate solution, is evaluated against

the fitness, utility, function introduced in “Utility func-

tion definition and Utility model development” sections.

A higher fitness means a better result as the goal is tomax-

imize the income due to the VM placement. The fitness

function calculates the utility of each individual.

Parents selection

We need to select individuals from the current population

to be parents for the crossover operation. There are many

selection methods such as roulette wheel selection, ran-

dom selection, tournament selection, rank selection, and

Boltzmann selection [33].We have deployed random selec-

tion by randomly selecting individuals from the current

population for crossover.

Crossover

The crossover operator creates new individuals by com-

bining parts of two individuals. Parents need to be

selected from the current population to be crossed over.

There are various crossover techniques such as single

point crossover, multi-point crossover, uniform crossover,

shuffle crossover and ordered crossover [33]. We have

deployed a single point crossover where swapping between

the two individuals is done beyond the crossover point.

The crossover operation creates a new population of the

crossed over individuals. Table 1, shows how the new off-

spring is created by mating two parents using single point

crossover. The “‖” symbol represents the crossover point.

Mutation

The mutation function creates new individuals by making

changes in one or more values in a single individual. These

new individuals are similar to current individuals, with
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Table 1 Single point crossover

Parent1 PM1 PM2 PM1 ‖ PM3 PM2 PM1

Parent2 PM2 PM1 PM3 ‖ PM1 PM3 PM3

Offspring1 PM1 PM2 PM1 ‖ PM1 PM3 PM3

Offspring2 PM2 PM1 PM3 ‖ PM3 PM2 PM1

changes occurring based on a pre-defined probability. The

mutation is used to make changes to the population from

one generation to another. A portion of the current popu-

lation is randomly selected to bemutated. Each individual,

VMs-to-PMs assignment, resulting from the selection is

mutated using the mutation probability. The mutation

process creates a new separate population of the mutated

individuals. Table 2 shows an example of how the muta-

tion of the PMs works. The PMs in bold in the original

offspring are mutated to new ones in the mutated off-

spring which means that some VMs are assigned to new

PMs.

New population selection

Suppose that population size is N VMs-to-PMs assign-

ments. The population of the next generation is created

by selecting best K VMs-to-PMs assignment and copying

them to the new population where K < N . The remaining

N−K solutions are randomly copied to complete the pop-

ulation size. This approach ensures that individuals, VMs-

to-PMs assignments, with the highest utility are retained,

while also maintaining diversity in the population.

The resulting assignment

The genetic algorithm goes into a loop, the number of iter-

ations of this loop is defined by the number of generations.

After the end of the specified number of generations, the

algorithm selects the individual with the highest fitness

from the current population to represent the solution of

the problem.

Experimental evaluation
Baseline heuristic method

We compared our utility-based solution against the

heuristics-based one proposed by Beloglazov et al. [2, 3].

Beloglazov et al. [2, 3] have carried out a comprehen-

sive investigation of heuristic techniques for energy-aware

dynamic VM placement in cloud data centers. They

divided the dynamic VM consolidation problem into four

sub-problems and proposed different algorithms for solv-

ing each of these sub-problems.

Table 2 Mutating the PMs

Original Offspring PM1 PM2 PM1 . . . PM1 PM3 PM3

Mutated Offspring PM1 PM4 PM1 . . . PM2 PM2 PM3

The first sub-problem is host overload detection and

involves deciding when a specific host PM is consid-

ered to be overloaded. Host overload detection requires

migrating one or more VMs from the overloaded host

to a non-overloaded one. They developed three main

solutions for solving the host overload detection prob-

lem. These solutions are using a static CPU utilization

threshold, an adaptive threshold using median absolute

deviation (MAD) and interquartile range (IQR), and local

regression-based using local regression (LR) and robust

local regression (LRR). They found that the LRR algo-

rithm was the best for solving the host overload detection

problem. The second sub-problem was host under-load

detection, which involves identifying when to decide that

a host PM is under-loaded. They migrate all VMs from

an under-loaded host to other hosts, if possible, and then

switch that machine into power saving mode. The third

sub-problem was VM selection and it involves identifying

which VMs should be selected from an overloaded host

for migration. They proposed 3 VM selection policies,

namely minimum migration time (MMT), random selec-

tion (RS) and maximum correlation (MC). They found

that MMT was the best for VM selection. The final sub-

problem was the VM placement problem, and it involves

identifying which hosts should be used for placing the

migrated VMs. They deployed a power aware best fit

decreasing (PABFD) algorithm, which is a modified ver-

sion of the best fit decreasing (BFD) that considers CPU

utilization during the allocation.

According to their evaluations, LRR andMMT were the

best solutions for host overload detection and VM selec-

tion problems respectively. Therefore, we compare our

proposed solution against the heuristics-based one that

uses LRR and MMT.

Performance metrics

Four performance metrics are used for evaluating the

effectiveness of the proposed VM placement approach

and comparing it with the baseline heuristic method.

These performance metrics are energy consumption,

overall SLA violations, the number of migrations and the

number of PM shutdowns.

• Energy Consumption: represents the total amount of

energy consumed by all running PMs in the cloud

data center. Lower values of energy consumption

help reduce expenditure. This means that the lower

the amount of energy consumed, the better the

assignment.
• Overall SLA Violations: The SLA violations occur

either due to the over-utilization of the PM or due to

the migration of VMs among PMs. The lower the

overall SLA violations, the better the assignment. The

overall SLA violations are represented as a
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percentage and calculated as follows:

overallSlaViolations =
totalRequestedMips − totalAllocatedMips

totalRequestedMips

where totalRquestedMips is the totals MIPS

requested by all VMs and totalAllocatedMips is the
actual total MIPS allocated to the VMs based on the

resource demand.
• Number of Migrations: This metric shows how often

the VMs are migrated among PMs. Too many

migrations degrade the performance and increase the

SLA violations, and too few migrations might lead to

an inappropriate assignment, and hence a balance is

required to consider this trade-off.
• Number of PM Shutdowns: This metric indicates how

many times the PMs are shut down. The frequent

switching of a PM on and off might lead to PM failure

on the long run [34].
• Profit: The profit metric calculates the average profit

per day. The profit is calculated using:

profit = incomeFromVMs − (eneryCost +

overallViolationCost). It ignores the PMs’ cost, and

the profit is highly dependent on factors such as the

specifics of SLA violations and energy costs.

Simulation environment

The CloudSim simulation toolkit is used for simulat-

ing and evaluating the proposed utility-based approach

[35, 36]. One cloud data center is simulated using two dif-

ferent types of PM, namely, HP ProLiant ML110 G4 (Intel

Xeon 3040, 2 cores x 1860 MHz, 4096 MB RAM and 1

Gbps BW) and HP ProLiant ML110 G5 (Intel Xeon 3075,

2 cores x 2660MHz, 4096MB RAM and 1 Gbps BW). The

cloud data center hosts four different VM types namely

large, medium, small and extra small. The four types of

the VMs are large instance (1 core x 2500 MHz, 870 MB

RAM and 100Mbps BW),medium instance (1 core x 2000

MHz, 1740 MB RAM and 100 Mbps BW), small instance

(1 core x 1000 MHz, 1740 MB RAM and 100 Mbps BW)

and extra-small instance (1 core x 500MHz, 613MBRAM

and 100 Mbps BW).

Every VM runs an application with a different workload.

The Applications’ workloads are represented by CloudSim

Cloudlets [36]. The Cloudlets randomly generate utiliza-

tion data every 5 minutes based on a stochastic model

[3]. The average percentage of utilization is approximately

50 %. All the following experiments have been run on an

HP Pavilion g6 laptop(Core i7, 6 GB RAM).

Experiment setup

The simulation lasts for one day of simulation time which

is the same time used in the heuristics-based solution. The

algorithm runs every 5 minutes, 300 seconds, which is

the same interval used in VMware’s distributed resource

scheduler (DRS) [37]. We have used a population of

20 individuals, the number of generations was 40, the

crossover ratio was 0.8 and the mutation probability was

0.7. The total number of physical machines used in the

conducted experiments is 50 and 100 PMs. Moreover, the

total number of VMs used range from 50 to 200 VMs.

Two experiments with three different configurations for

each were conducted to evaluate the proposed solution.

The goal of the first experiment is to test the effective-

ness of the solution on lightly loaded data centers while

the second experiment tests the solution in more loaded

cloud data centers. These scenarios are considered rele-

vant because we need to be confident that: (i) the oppor-

tunities that exist to save energy are exploited in lightly

loaded settings, and (ii) adaptation costs and attempts at

energy saving do not lead to more SLAs being missed in a

heavily loaded setting. Eventually, an experiment has been

conducted to measure the execution time and compare

the profit gained from applying both the utility-based and

the heuristics-based solutions.

Experiments descriptions and results

Experiment 1: lightly loaded cloud data centres

Experiment 1 aims to appraise the effectiveness of the pro-

posed utility based solution in a lightly loaded data center.

In this experiment, the number of VMs is the same as the

number of PMs that they will be allocated to. Three dif-

ferent configurations have been chosen for testing lightly

loaded data centers:

1. Configuration 1.1: 50 VMs allocated to 50 PMs.

2. Configuration 1.2: 100 VMs allocated to 100 PMs.

3. Configuration 1.3: 150 VMs allocated to 150 PMs.

Figure 5 shows a scatter plot that presents the results of

running Configuration 1.1. Each point in the scatter plot

shows the results for a run of a workload; the vertical axis

reports the energy consumed by the run and the hori-

zontal axis shows the percentage of time when SLAs are

not met. Thus a position in the bottom left of the chart

is best. The blue triangles are results for the utility-based

approach and the orange dots for the heuristic approach.

The utility-based solution reduced energy consumption

on average by about 10 % and reduced the time in which

SLAs were being violated by around 29 %.

Figure 6 demonstrates the results of running Configura-

tion 1.2. The utility based solution reduced average energy

consumption by about 5 % and the time in which SLAs

were being violated on average by around 38 %.

Figure 7 exhibits the results of running Configuration

1.3. The utility based solution improved energy consump-

tion by about 5 % and reduced the time in which SLAs

were being violated on average by about 40 % compared to

the results of the heuristics based solution.
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Fig. 5 Overall SLA violations to energy consumption from running Configuration 1.1, 10 times. The blue triangles represent results from the

utility-based solution while orange circles represent the heuristics-based one

Fig. 6 Overall SLA violations to energy consumption after running Configuration 1.2, 10 times. The blue triangles depict results from the utility-based

approach while orange circles represent the heuristics-based one

Fig. 7 Overall SLA violations to energy consumption after running Configuration 1.3, 10 times. The blue triangles represent results from the

utility-based approach while orange circles represent the heuristics-based one
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Fig. 8 Average energy consumption, from Experiment 1. The blue columns represent average energy consumption from the utility-based solution

while the orange ones from the heuristics-based

For lightly-loaded data centers, the proposed utility-

based solution outperforms the heuristics-based one in

terms of energy savings and reduction of SLA violations,

as summarized in the average values of Experiment 1 in

Figs. 8 and 9. Furthermore, the average values of Exper-

iment 1, shown in Figs. 10 and 11, demonstrate that

the utility-based solution saves energy consumption and

reduces the overall SLAVs using a smaller number of VMs

migrations and PMs shutdowns. Experiment 1 shows an

average saving in energy consumption in lightly loaded

data centers of approximately 5 % and an average reduc-

tion in SLA violations of around 36 %. Finally, the average

number of VMs migrations and PMs shutdowns in the

utility-based solution represent only around 16 and 5 %

respectively, of the migrations and PMs shutdowns in the

heuristics-based one.

These reductions in the number of VM migrations and

PM shutdowns result from the fact that the utility-based

approach only migrates when it finds a VM-to-PM assign-

ment for which an adaptation is expected to be benefi-

cial. In contrast, the heuristics based approach migrates

whenever there is a problem (i.e. host/PM overload or

host under-load); however, a problem may be detected

without there being a solution to which it is worth-

while to adapt, and hence the heuristic approach tends to

over-adapt.

Experiment 2: more loaded cloud data centres

Experiment 2 aims to assess the impact of increasing the

number of VMs per PM on the specified performance

metrics. The three configurations used for testing the

more loaded data centers are as follows:

Fig. 9 Average SLA violations from Experiment 1. The blue columns represent average number of the overall SLAVs from the utility-based approach

while the orange ones from the heuristics-based
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Fig. 10 Average number of VM migrations from Experiment 1. The blue columns represent the average number of VM migrations from the

utility-based approach while the orange ones from the heuristics-based

1. Configuration 2.1: 100 VMs allocated to 100 PMs.

2. Configuration 2.2: 150 VMs allocated to 100 PMs.

3. Configuration 2.3: 200 VMs allocated to 100 PMs.

The results of running Configuration 2.1 are the same

as those for Configuration 1.2 in “Experiment 1: lightly

loaded cloud data centres” section, as they have the same

configurations. Figure 12 shows a comparison between

energy consumption and overall SLAVs after running

Configuration 2.2. The utility-based solution reduced

the average energy consumption and SLA violations by

around 6 and 42 %, respectively compared to the heuris-

tics based one. Comparing the results from Configuration

2.1 and Configuration 2.2, we can conclude that increas-

ing the number of VMs by 50 % using the utility based

approach resulted in nearly the same percentage of overall

SLA violations, while the energy consumption is increased

by about 50 %. However, the same increase in the number

of VMs using the heuristics based approach also results in

an increase in the percentage of the time spent in viola-

tions by about 6 % while the energy consumption is also

increased by about 50 %. This means that the utility-based

approach is more consistent in terms of SLAVs in more

loaded data centers. However, there is slightly more per-

formance degradation in the case of the heuristics based

approach.

The scatter plot in Fig. 13 shows the values of energy

consumption and overall SLAVs using both solutions

after running Configuration 2.3. The utility based solution

reduced energy consumption by about 6 %. Moreover, the

Fig. 11 Average number of PM shutdowns from Experiment 1. The blue columns represent the average number of PM shutdowns from the

utility-based approach while the orange ones from the heuristics-based
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Fig. 12 Overall SLA violations to energy consumption from running Configuration 2.2, 10 times. The blue triangles represent the utility-based

approach while the orange circles represent the heuristics-based one

Fig. 13 Overall SLA violations to energy consumption from running Configuration 2.3, 10 times. The blue triangles represent the proposed

utility-based solution while the orange circles represent the heuristics-based one

Fig. 14 Average energy consumption from Experiment 2. The blue columns represent average energy consumption from the utility-based approach

while the orange ones from the heuristics-based
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Fig. 15 Average SLA violations from Experiment 2. The blue columns represent average number of the overall SLAVs from the utility-based approach

while the orange ones from the heuristics-based

Fig. 16 Average number of VM migrations from Experiment 2. The blue columns represent the average number of VM migrations from the

utility-based approach while the orange ones from the heuristics-based

Fig. 17 Average number of PM shutdowns from Experiment 2. The blue columns represent the average number of PM shutdowns from the

utility-based approach while the orange ones from the heuristics-based
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Fig. 18 Average execution time. Each column represents the average execution time; blue columns represent the utility-based approach, while the

orange ones from the heuristics-based

utility based solution reduced time spent in SLA violations

by about 43 %.

Figures 14, 15, 16 and 17 confirm that the proposed

utility-based solution is also better than the heuristics-

based one as it can save more energy and reduces the

overall SLAVs using a smaller number of migrations and

PM shutdowns. Experiment 2 shows that the utility-based

solution reduces the amount of energy consumed inmore-

loaded data centers by around 6 % and also reduces the

average SLA violations by nearly 41 %.Moreover, the aver-

age number of VMsmigrations and PMs shutdowns in the

utility-based solution represent approximately 12 and 3 %

respectively, of the migrations and PMs shutdowns in the

heuristics-based one.

Results conclude that the proposed utility-based solu-

tion saves more energy and reduces SLA violations more

effectively than the heuristics-based one both in heavily

and lightly loaded data center settings.

Experiment 3: average execution time and profit

Experiment 3 measures the average execution time and

the average profit per day for both solutions. The time

complexity of the genetic algorithm is O(gnm) + the com-

plexity of the fitness (utility) function; where g is the num-

ber of generations, n is the population size and m is the

solution size (number of VMs). Figure 18 exhibits the aver-

age execution time of both approaches. It demonstrates

that the proposed utility-based approach can make

a better VMs-to-PMs assignment in less execution

time.

The profit is calculated based on the profit metric

defined in “Performance metrics” section and the param-

eters used as shown in Table 3; based on the VM pricing

offered by Amazon EC2 pricing1. Figure 19 confirms that

the average profit per day from the utility-based approach

outperforms the average profit from the heuristics-based

approach.

Conclusions and further work
Conclusion

This paper presented an approach based on utility func-

tions for creating a self-managing VM placement solution

in cloud data centers that dynamically assigns VMs-to-

hosts according to resource utilization. The main goal of

the approach is to increase the profit of an IaaS provider

by minimizing the cost of energy consumption and the

cost of different sources of SLAVs. Experiments have

been conducted for comparing the effectiveness of the

proposed utility based solution with an existing heuristic-

based solution. The heuristic method against which the

comparison took place was subjected by its proposers to

a systematic evaluation in comparison with alternative

heuristics, and shown to perform well [2, 3]. The empir-

ical evaluation uses the original authors’ implementation

of the heuristic approach.

Evaluation showed that the proposed utility based solu-

tion outperformed the existing heuristic based approach

in terms of energy savings and minimizing SLAVs in both

lightly loaded and more heavily loaded cloud data centers.

Perhaps the key factor that differentiates the approaches is

that the heuristics based approach adapts whenever there

is a problem (PM overload, or PM under-load). On the

contrary, the utility based approach adapts only if it can

identify an adaptation that is expected to improve on the

current allocation.

Table 3 Profit parameters

VMlarge VMmedium VMsmall VMXSmall Energy Overall SLAVs

0.293 $/h 0.146 $/h 0.073 $/h 0.028 $/h 0.11 $/h 0.4 $/h
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Fig. 19 Average profit per day. The blue columns depict the average profit/day from the utility-based approach, while the orange ones from the

heuristics-based

Future directions

Although the proposal as described has shown consid-

erable promise in empirical evaluations, the following

points represent some areas that may benefit from further

research:

1. Improving the utility model:

More work is required to refine the utility model. For

example, the calculations of the SLA violations could

be improved by implementing a proactive calculation

of the expected CPU utilization instead of the

reactive one deployed in the paper.

2. Considering memory and network I/O during VM

placement:

In this paper, we only considered CPU during VM

placement. Although the CPU consumes most of the

server’s power, all other host and network resources

should be involved in the adaptive VM-to-PM

assignment. For example, memory and network I/O

should be considered during VM placement as they

have a significant effect in memory and network

intensive applications.

3. Revisiting the search algorithm:

We have used a genetic algorithm for exploring the

search space to find an efficient assignment that

maximizes the utility. However, alternative

approaches could be explored, such as the use of

multi-dimensional optimization techniques that

optimize for SLA violations and energy as distinct

dimensions.

4. Scalability with real workload traces:

Building a scalable VM placement strategy still

requires further research for finding the most

suitable scaling technique. Moreover, we need to

conduct experiments with different workloads and

different sizes of Cloud data centres.

5. Considering multi-tenancy constraints:

The VM placement solution should consider

multi-tenancy constraints such as security,

anti-colocation and reducing network latency

between VMs belonging to the same user.

6. Considering other sources of violations in virtualized

environments:

In our proposed solution, we only considered two

sources of violations, namely performance

degradation due to migration and the over-utilization

of PMs. However, there are many other sources of

violations such as violations resulting from the

interference among collocated workloads, system

outage, and late-time failure.

Endnote
1https://aws.amazon.com/ec2/pricing.
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