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Abstract—Today’s mobile radio systems deploy reference sig-
nals which can be used or which are even dedicated for signal
propagation delay-based mobile terminal positioning. Usually, the
signal power of such reference signals is uniformly distributed
over the available spectrum. It is known from estimation theory
that such a uniform power distribution of reference signals is not
optimal for signal propagation delay estimation.

In this paper we consider mobile terminal positioning based
on signal propagation delay estimation in the uplink case. For
positioning, we introduce a parametric waveform. This waveform
provides a scalar parameter for controlling the distribution
of the available signal power over the spectrum. Using this
waveform parameter we aim to minimize the positioning error.
For optimization, we require a functional dependency between
the waveform parameter and the positioning error we can expect.
For the derivation of this function we combine the approaches
of the Cramér-Rao and Ziv-Zakai bounds for position and
propagation delay estimation. As an exemplary environment we
consider a mobile terminal located in an area surrounded by 3
base stations. For this environment we show that the optimized
waveform spends a significant part of the available power at the
spectrum edges, leading to a performance gain of 37.3% at the
center of the area between the base stations.

I. INTRODUCTION

The current deployed standard of cellular mobile radio sys-

tems is the 4th generation called Long-Term Evolution (LTE).

Up to its Release 9, LTE defined a single time-based procedure

to estimate the range between a mobile and a base station.

The range based procedure is called observed time difference

of arrival (OTDOA) and calculates the position through the

observed range based estimates of the mobile terminal in

the downlink. In Release 11 uplink TDOA (UTDOA) was

standardized. In this paper we present an analysis that is based

on uplink signals and is aligned with the current discussion

about the future waveform of the next generation cellular

mobile radio (5G) for communication needs.

Currently, the question how a communication system of the

5th generation will look like is intensely discussed. Insights

into research and development towards 5G can be found for

example in [1]–[3]. The trend here is clearly that 5G is not

an incremental evolution of LTE. By using new technology

and paradigms as well as seamless integration of radio access

technologies 5G aims to provide 10-100x higher user data rate,

1000x higher mobile data volume per area, 10-100x higher

number of connected devices, 10x longer battery lifetime

and 5x reduced end-to-end latency [3]. Besides requirements

related to communications, mentioned above, the authors of [4]

have addressed that in 5G network based positioning should be

supported with accuracy of 10 m down to less than 1 m in 80 %

of occasions and less than 1 m indoors. Several technologies

and properties envisaged for 5G in order to meet the chal-
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Figure 1. Mobile terminal positioning using uplink signals.

lenging requirements related to communications are beneficial

for positioning as well. Some of them are dense networks,

higher carrier frequencies and signal bandwidths, device-to-

device communications and the use of new waveform designs.

Our focus is on how this waveform shall be designed in

order to optimize the mobile terminal (MT) positioning. This

paper proposes a parametric approach to define a waveform

dedicated for positioning. The proposed waveform can be

tuned by the MT to adapt to the current needs of accuracy

and latency (time-to-first-fix) in line with the expected signal-

to-noise ratio (SNR). For ranging we compare the lower

Cramér-Rao bound with the Ziv-Zakai bound to determine

how the performances differ for the tunable parameter γ of

the waveform depending on the SNR as a key parameter to

control. Fig. 1 shows our investigated scenario with three base

stations (BSs) around the MT. We will provide insights how

the waveform will change the performance depending on the

location insight the given three BS cell structure.

The proposal of a new waveform integrates the demand

of flexibility depending on the needs of the mobile terminal

by parametrization the waveform to adopt it accordingly. The

paper is structured as follows. In Sec. II we present the tunable

waveform and two methods to bound the performance. In

Sec. III we present the system model and how we evaluated

the optimization of the waveform. Sec. IV presents the results.

II. A PARAMETRIC WAVEFORM FOR POSITIONING

The propagation delay of a radio signal can be utilized

for precise ranging, which potentially meets the positioning

requirement in 5G networks. For propagation delay-based

ranging, there is a trade-off between the estimation resolution

and the detection ambiguities. For a given SNR, a dedicated

https://doi.org/10.1109/SPAWC.2016.7536783


-B/2 +B/2

(1-γ)/B

|S(f)|2

f

γ/2

(a) Power spectrum density

(b) Autocorrelation function

Figure 2. Dirac-rectangular waveforms

power spectrum density (PSD) exists, which minimizes the

mean-square error of ranging. In this work, we investigate the

impact of the PSD on positioning accuracy.

A. Dirac-Rectangular Waveform

For our investigations we consider a parameterized band

limited waveform with bandwidth B. The waveform is built

as a weighted superposition of two component signals having

Dirac and rectangular PSD. The resulting PSD is

|S(f)|2 =

{

1−γ
B + γ

2

[

δ
(

f + B
2

)

+ δ
(

f − B
2

)]

, |f | ≤ B
2

0, |f | > B
2
.

(1)

The corresponding autocorrelation function as the Fourier

transform of the PSD calculates to

ϕ(τ) = (1− γ)
sin (π B τ)

(π B τ)
+ γ cos (π B τ) . (2)

Both the PSD and autocorrelation function graphs are shown

in Fig. 2 for different values of the waveform parameter γ out

of the domain interval [0, 1]. With an increasing γ, power is

more concentrated at the edges of the spectrum, which leads to

a tighter mainlobe and higher sidelobes for the autocorrelation

function.

B. Range Estimation Performance Bounds

The Cramér-Rao lower bound (CRB) is a lower bound

for the achievable variance of any unbiased estimator. For

Figure 3. Square root of the ZZB and CRB for range estimation using Dirac-
rectangular waveforms.

signal propagation delay based range estimation between a

transmitter and a receiver, the CRB calculates to

σ2
CRB =

c20
8π2 β2 Es

N0

, (3)

where c0 is the speed of light (cf. e.g. [5]). The CRB is inverse

proportional to the squared equivalent signal bandwidth β2

and the signal-to-noise ratio Es
N0

at the receiver. For the Dirac

rectangular waveform the squared equivalent signal bandwidth

is

β2 =

∫

f2 |S(f)|2 df
∫

|S(f)|2 df
=

B2

12
(1 + 2 γ) , 0 ≤ γ ≤ 1. (4)

A larger γ leads to a larger equivalent signal bandwidth,

which reduces the ranging CRB. However, it comes with the

price of higher autocorrelation function sidelobes as shown

in Fig. 2(b). Particularly at low SNRs, an estimator might

erroneously pick the delay of the sidelobe instead of the

mainlobe with non negligible probability. Due to this behavior,

the estimation variance rapidly increases for lower SNRs. This

threshold effect is not accounted by the CRB, which is known

to be tight only for reasonably high SNRs. The Ziv-Zakai

lower bound (ZZB), however, takes this effect into account.

There are several forms of the ZZB in literature. For our

purposes we require the ZZB for scalar parameter estimation.

According to [6], the ZZB for range estimation calculates to

σ2
ZZB = c20

Tobs
∫

0

τ

(

1− τ

Tobs

)

φ

(

√

Es

N0

(1− ϕ(τ))

)

dτ

(5)

where

φ (x) =
1√
2π

∞
∫

x

e−t2/2 dt (6)

denotes the Gaussian Q-function. Parameter Tobs describes the

length of an observation interval. The signal propagation delay,

as the parameter to be estimated, is equally distributed within

[−Tobs/2 , +Tobs/2].



The square root of the CRB and the ZZB for range

estimation are shown in Fig. 3 for a signal bandwidth of

B = 10MHz and an observation interval length of Tobs =
400m
c0

= 1.33µs, which is aligned to the distance dBS = 400m
between base stations we’ll use subsequently. The threshold

effect mentioned above is clearly visible for the ZZBs. For

increasing SNRs the ZZBs converge to the corresponding

CRBs. Contrary, the SNR value at which the ZZB starts

to diverge from the CRB increases with increasing squared

equivalent bandwidth β2. For the Dirac waveform, i.e. γ = 1,

the ZZB shows no convergence to the corresponding CRB. The

autocorrelaton function equals to a cosine and the amplitude of

the sidelobes are equal to the mainlobe amplitude. Therefore,

the autocorrelation function is ambiguous in its largest ampli-

tude such that an algorithm has equal probability in estimating

the delay of a sidelobe instead of a mainlobe.

Minimizing the ZZB with respect to the waveform parame-

ter γ leads to an optimal ZZB which is drawn in Fig. 3. This

optimum is the lower envelope curve of the ZZB graphs for

all γ ∈ [0, 1].
The results above indicate that there is a tradeoff between

the ranging performances at high and medium to low SNRs.

Depending on the available signal power respectively the

receiver SNR we might decide for an optimum spectrum form.

However, this depends on the local distribution of mobile

terminals. Therefore, it is beneficial to keep a 5G positioning

waveform flexible with respect to its power spectrum density.

III. POSITIONING PERFORMANCE EVALUATION

A. Signal Model

We investigate an uplink scenario, where a MT transmits a

signal s(t) as shown in Fig. 1. At the base stations (BSs) we

receive the signals

ri(t) = si(t− τi) + ni(t), i = 1, . . . , NBS, (7)

which consist of the delayed and attenuated transmit signal

and additive white Gaussian noise (AWGN) ni(t) with noise

power density N0. The observed propagation delays

τi(θ) =
di
c0

+TMT =
1

c0

√

(x− xi)2 + (y − yi)2+TMT (8)

depend on the distance di between the MT and BSi. With τi
we also consider an unknown time offset TMT between the MT

and the BSs. The BSs itself are assumed to be synchronized.

The unknown variables to be estimated, i.e., the position and

time offset of the MT, are collected in a parameter vector

θ = [x, y, TMT]
T. We assume line-of-sight free space signal

propagation conditions. Therefore, the signal-to-noise ratios

(SNRs)

SNRi =
Esi
N0

=
P si
Pnoise

=
PTX GTX GRX

(

c0
4π fC di

)2

kB ϑB
(9)

observed at the BSs depend on the TX power PTX, the antenna

gains GTX and GRX at the MT and BSs, carrier frequency fC,

signal bandwidth B and the distance di between the MT and

BSi. The noise power density N0 = kB ϑ is calculated from

the Boltzmann constant kB and the system noise temperature

ϑ (cf. Table I).

B. Fisher Information for Positioning

For the evaluation of the positioning performance of the MT

we start with the calculation of the CRB for vector parameter

estimation [5]. The unknown parameters which we wish to

estimate are the position and time base offset of the MT, which

we collect in a vector θ = [x, y, TMT]
T. For the calculation

of the CRB we require the Fisher information matrix. Its

components

Fk,ℓ = E

{(

∂

∂θk
log p (r(t)|θ)

)(

∂

∂θℓ
log p (r(t)|θ)

)}

=
2

N0

Re

+∞
∫

−∞

NBS
∑

i=1

(

∂

∂θk
si(t− τi(θ))

)

(

∂

∂θℓ
s∗i (t− τi(θ))

)

dt (10)

are calculated from the likelihood function which in case of

AWGN can be expressed as

p (r(t)|θ) ∝ exp



− 1

N0

NBS
∑

i=1

+∞
∫

−∞

|si(t− τi(θ))− ri(t)|2 dt



 .

(11)

For notational convenience we omit constant factors. These

factors will vanish when calculating derivatives of the loga-

rithmic likelihood function according to Eq. (10). The like-

lihood function provides the conditional probability density

of observing the signals r(t) = [r1(t), . . . , rNBS
(t)]

T
at the

BSs given the MT position and time offset collected in

θ = [x, y, TMT]
T. In matrix notation the Fisher information

matrix

F = c20 J
T
τ diag

(

σ−2
CRB1

, . . . , σ−2
CRBNBS

)

Jτ (12)

consists of the Jacobian matrix Jτ = ∂τ
∂θ for the delay

vector τ = [τ1(θ), τ2(θ), τ3(θ)]
T and a diagonal matrix

containing the inverse ranging CRBs according to Eq. (3).

Matrix G = c0 Jτ is also called the geometry matrix. It

only depends on the MT and BSs positions relative to each

other. This matrix does depend neither on the signal we have

transmitted at the MT nor on the SNR. The dependency on

the signal and propagation properties is solely contained in

the diagonal matrix diag
(

σ−2
CRB1

, . . . , σ−2
CRBNBS

)

. The CRB

is the inverse of the Fisher information matrix and contains

lower bounds for the variance of any unbiased estimation of

the unknown parameters — in our case θ = [x, y, TMT]
T —

in its main diagonal.

C. Waveform Optimization

The CRB for ranging, as introduced in Sec. II-B and

contained in Eq. (12), is known to be loose for low SNRs. This

bound is monotonically decreasing with increasing squared

equivalent bandwidth β2, or equivalently, increasing parameter

γ for all SNRs. Minimizing the CRB with respect to the wave-

form parameter γ results in an optimal waveform parameter

γopt = 1, independent of the SNRs, and therefore, the MT

position. The ZZB, however, does account for the threshold

effect as shown in Fig. 3.



Table I
SYSTEM PARAMETERS.

Parameter Value

Carrier frequency fC 5GHz

Effective power PTX ·GTX ·GRX 10 dBm

Signal bandwidth B 10MHz

Noise power density N0 = kB ϑ N0 = −173.8 dBm/Hz

Boltzmann constant kB 1.381 · 10−23 Ws/K

Noise temperature ϑ 300K

Base station distance dBS 400 m

As an approach for optimizing the positioning performance

with respect to the waveform parameter γ we replace the CRB

ranging variances in Eq. (12) with the corresponding ZZB

obtained from Eq. (5) and get

F̃ = c20 J
T
τ diag

(

σ−2
ZZB1

, . . . , σ−2
ZZBNBS

)

Jτ (13)

as a kind of modified Fisher information matrix. Its inverse

C̃ = F̃
−1 (14)

provides 2nd order moments for the estimation error of the

unknown parameters on its main diagonal. However, these

values are formally no lower bounds but provide an easy to

calculate cost function for waveform optimization. Similar to

the CRB approach we use the square root

σpos(γ) =

√

C̃1,1 + C̃2,2 (15)

of first two main diagonal elements of matrix C̃ as a measure

for the expectable position estimation variance. This metric

depends on the ZZB ranging variances σ2
ZZBi. Since the

optimal choice of the waveform parameter γ is dependent on

the SNR, we can expect that there is also an optimum

γopt = argmin
0≤γ≤1

σpos(γ) (16)

leading to an optimal positioning variance

σopt = σpos(γopt). (17)

The optimal positioning variance depends on the position of

the MT as well as on further system parameters like the base

station distance, effective power, etc.

IV. RESULTS

We consider an uplink transmission scenario as shown

in Fig. 1 and evaluate the positioning performance for a

MT in the area between 3 BSs. The system parameters for

positioning performance evaluation are summarized in Table I.

As a reference we consider a signal, transmitted at the MT

and received at the BSs, with uniform (rectangular) PSD.

This means we choose γ = 0 for the Dirac-rectangular

waveform introduced in Sec. II-A. Reference signals, which

are currently used in today’s mobile radio systems, typically

show uniform power distribution over the spectrum. For a

chosen position of the MT we calculate the SNRs observed

at the BSs according to Eq. (9). From these SNRs we obtain

the ZZB for ranging according to Eq. (5). The ZZB values

are plugged into Eq. (13). Using Eqs. (14) and (15) we

finally calculate the positioning error σpos(0) for our reference

waveform (γ = 0). Fig. 4 shows the positioning error for

each position of the MT in the considered environment as

a color plot. We achieve the best performance in the center

of the area between the BSs. Here we obtain SNR values

with similar order of magnitude. Leaving this center area the

obtained SNRs get more and more unbalanced. This leads to

worse performance since the positioning error is dominated by

the lower SNR values obtained at BSs at higher distances.
As a next step we minimize the positioning error according

to Eq. (16) for each MT position. The optimal choice for

the waveform parameter γ is shown in Fig. 5. Again, due

to similar SNR levels at the center area we can choose

waveforms which provide better performance at higher SNRs,

i.e., higher γ. For our environment we obtain γopt ≈ 0.8 at the

center area. This means that the optimum waveform spends

approximately 80% of the available power at the spectrum

edges. The remaining 20% are distributed uniformly over the

spectrum range in between. Leaving the center area we more

and more obtain unbalanced SNR values. Since the positioning

error is significantly determined by the lower SNRs, we have

to adapt the waveform such that we obtain a reasonable

ranging performance at these lower SNRs. When more and

more veering the area between the BSs, all SNR values

decrease and the optimum waveform parameter approaches

zero, i.e., γopt → 0 which means a rectangular PSD. The

optimal positioning performance obtained from the optimal

waveform parameter γopt according to Eq. (17) is shown in

Fig. 6. Compared to the reference waveform, the positioning

error decreases mainly at the center area. For comparison we

calculate the performance gain as

Gain =
σpos(0)− σopt

σpos(0)
= 1− σopt

σpos(0)
(18)

for the optimal waveform choice compared to the reference

waveform with rectangular PSD. As shown in Fig. 7 we

observe the highest gain of 37.3% at the center area. As

already discussed the gain approaches zero when leaving the

area between the BSs.
When decreasing the BS distance dBSor increasing the

effective power PTX ·GTX ·GRX we obtain higher SNR levels

at the center area, leading to a higher gain. The maximum

achievable gain for the Dirac-rectangular waveform is achieved

if the SNR values approach infinity. Therefore, we may

expect that γopt → 1. The maximum achievable gain can be

calculated as

Gmax = 1− σpos(1)

σpos(0)
= 1−

√

σ2
CRB(γ = 1)

σ2
CRB(γ = 0)

= 1−
√

β2
CRB(γ = 0)

β2
CRB(γ = 1)

= 1− 1√
3
= 42, 3% (19)

using Eqs. (3) and (4).

V. SUMMARY AND OUTLOOK

Today’s mobile radio systems deploy reference signals

which are used for signal propagation delay-based mobile ter-

minal positioning. Usually the signal power of such reference



Figure 4. Positioning error σpos(0) for a waveform with rectangular PSD
(γ = 0).

Figure 5. Optimal waveform parameter γopt for the Dirac-rectangular
waveform.

signals is uniformly distributed over the available spectrum.

Generally, a uniform power distribution is not optimal. We

have introduced the Dirac-rectangular waveform as a para-

metric waveform in order to adjust and optimize the power

spectrum of reference signals which are used for propagation

delay estimation. For optimization we have derived a cost

function which combines the approaches of the Cramér-Rao

and Ziv-Zakai lower bounds for position and propagation

delay estimation. In this paper we have considered mobile

terminal positioning in an area surrounded by 3 base stations.

The Dirac-rectangular waveform has been used in the uplink

case in order to estimate the signal propagation delays at

each base station. Investigations for an exemplary environment

with a pairwise base station distance of dBS = 400m have

shown that an optimized waveform choice can decrease the

positioning error by 37.3% at the center of the area between

the base stations compared to a state-of-the art reference

signal with uniform power spectrum density. When increasing

the observed signal-to-noise ratios at the base stations, e.g.

by increasing the transmit power at the mobile terminal or

decreasing the base station distance, this gain can become up

to 42.3%.

For our investigations, we have considered a waveform

which can be controlled by one scalar parameter. Further

evaluations will generalize the domain of waveforms which are

Figure 6. Optimal positioning error σopt = σpos(γopt) for the Dirac-
rectangular waveform.

Figure 7. Performance gain 1 − σopt/σpos(0) for the optimal waveform
choice compared to a reference waveform with rectangular PSD.

available for optimization, include more complex signal prop-

agation models and consider cooperative positioning methods.
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