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Optimizing Working Sets for Training Support
Vector Regressors by Newton’s Method

Shigeo Abe
Kobe University

Kobe, Japan
Email:abe@kobe-u.ac.jp

Abstract—In this paper, we train support vector regressors
(SVRs) fusing sequential minimal optimization (SMO) and New-
ton’s method. We use the SVR formulation that includes the
absolute variables. A partial derivative of the absolute variable
with respect to the associated variable is indefinite when the
variable takes on zero. We determine the derivative value
according to whether the optimal solution exits in the positive
region, negative region, or at zero. In selecting working set, we
use the method that we have developed for the SVM, namely, in
addition to the pair of variables selected by SMO, loop variables
that repeatedly appear in training, are added to the working set.
By this method the working set size is automatically determined.
We demonstrate the validity of our method over SMO using
several benchmark data sets.

I. INTRODUCTION

Support vector regressors (SVRs) are one of the most
frequently used regressors because of their high generalization
ability for a wide range of applications.

Support vector regressors are extended from support vector
machines (SVMs) by introducing the epsilon tube that confines
the training data near the boundary of the decision hyperplane.
This leads to increasing the number of variables twice as large
as that of SVMs. This problem is solved by combining the
two slack variables associated with an inequality constraint
pair into one [1].

One of the widely used training methods is sequential
minimal optimization (SMO) [2], [3], which optimizes two
variables at a time. The objective function discussed in [1]
includes absolute variables. Therefore, the partial derivatives
of the objective function with respect to the absolute variables
are indefinite when the variables take on zero values. This
problem is solved in [4], [5]. In their methods, they assume the
change of signs of the variables during variable corrections,
i.e., variables with positive signs may change their signs to
negative and vice versa.

The exact Karush-Kuhn-Tucker (KKT) conditions [6],
which exclude the bias term included in the original KKT
conditions, work to speed up SMO training. However, slow
SMO training still occurs when a large margin parameter
value is set. The use of quadratic information [7] works to
improve convergence for a margin parameter value around
1000, but for a larger value, training slows down significantly.
To cope with this situation, in [8] if a loop, in which the same
variable appears in a sequence of selected violating variables,
is detected, corrections are made combining the descent di-

rections of variables in the loop. This idea is extended to the
introduction of the momentum term [9].

To improve convergence, more than two variables are op-
timized at a time [10], [11], [12]. In [12] SMO-NM was
proposed, in which SMO and Newton’s method are fused. In
SMO-NM, in addition to the variables that are selected by
SMO, if a loop is detected, loop variables that are in the loop
are added to the working set.

In this paper, we extend SMO-NM to function approxima-
tion. In solving the optimization problem given in [1], we
assume that the signs of the variables do not change in a single
correction to allow support vectors to be non-support vectors.
By this assumption, for SMO we derive the partial derivative
of the objective function with respect to a variable around
the zero value, considering the conditions that the optimum
solution exists in a positive region, negative region, and at zero
point. Using the derived derivatives, monotonic convergence
of the solution by SMO is guaranteed.

For the working set size more than two, we calculate
the derivative based on SMO. By this method, monotonic
convergence may be violated if the variables are corrected
opposite to the directions calculated by SMO. But according to
the computer experiments, there was no convergence problem.

In Section II, we briefly summarize SVRs and the KKT
conditions, and in Section III we discuss the proposed training
method. In Section IV, we discuss characteristics of the
solution and in Section V we compare SMO-NM with SMO
using several benchmark data sets.

II. SUPPORT VECTOR REGRESSORS

We discuss three types of support vector regressor: L1
SVRs, L2 SVRs, and LS (least squares) SVRs [13].

A. L1 SVRs

Using the M training input-output pairs (xi, yi) (i =
1, . . . , M ), where xi is the ith training input and yi is the
associated output, we consider determining the regression
function f(x):

y = f(x) = w�φ(x) + b, (1)

where φ(x) is the mapping function to the feature space, w
is the coefficient vector of the hyperplane in the feature space
and b is its bias term.



The L1 and L2 SVRs are given by

min Q(w, b, ξ, ξ∗) =
1
2
‖w‖2 +

C

p

M∑
i=1

(ξp
i + ξ∗p

i ) (2)

s.t. yi − f(xi) ≤ ε + ξi for i = 1, . . . , M, (3)

f(xi)− yi ≤ ε + ξ∗i for i = 1, . . . , M, (4)

ξi ≥ 0, ξ∗i ≥ 0 for i = 1, . . . , M, (5)

where p = 1 for the L1 SVR and p = 2 for the L2 SVR,
ε is the parameter to define the epsilon tube, ξi and ξ∗i are
slack variables, and C is the margin parameter that determines
the trade-off between the magnitude of the margin and the
approximation error of the training data.

The above optimization problem can be converted into the
dual form introducing nonnegative slack variables αi and
α∗

i associated with the inequality constraints (3) and (4),
respectively. Then the number of variables of the support
vector regressor in the dual form is twice the number of the
training data. But because nonnegative dual variables αi and
α∗

i appear only in the forms of αi−α∗
i and αi +α∗

i and both
αi and α∗

i are not positive at the same time, we can reduce
the number of variables to half by replacing αi − α∗

i with
αi, which take negative values as well as nonnegative values,
and αi +α∗

i with |αi| [1]. Then, we obtain the following dual
problem for the L1 SVR:

max Q(α) = −1
2

M∑
i,j=1

αi αjK(xi,xj)

−ε

M∑
i=1

|αi|+
M∑
i=1

yi αi (6)

s.t.
M∑
i=1

αi = 0, (7)

C ≥ |αi| for i = 1, . . . , M, (8)

where αi are dual variables associated with xi and take
negative values as well as nonnegative values, K(x,x′) =
φ�(x)φ(x) is the kernel.

The KKT complementarity conditions are

αi (ε + ξi − yi +
M∑

j=1

αjKij + b) = 0 for αi ≥ 0, (9)

αi (ε + ξi + yi −
M∑

j=1

αjKij − b) = 0 for αi < 0, (10)

ηi ξi = (C − |αi|)ξi = 0 for i = 1, . . . , M, (11)

where Kij = K(xi,xj).
To avoid estimating b in the above KKT conditions during

training, we use the exact KKT conditions [6], [14].
We define Fi by

Fi = yi −
M∑

j=1

αjKij . (12)

We can classify the KKT conditions into the following five
cases:

Case 1. 0 < αi < C

Fi − b = ε, (13)

Case 2. −C < αi < 0
Fi − b = −ε, (14)

Case 3. αi = 0
−ε ≤ Fi − b ≤ ε, (15)

Case 4. αi = −C

Fi − b ≤ −ε, (16)

Case 5. αi = C

Fi − b ≥ ε. (17)

Then the KKT conditions are simplified as follows:

F̄i ≥ b ≥ F̃i for i = 1, . . . , M, (18)

where

F̃i =
{

Fi − ε if 0 ≤ αi < C,
Fi + ε if − C ≤ αi < 0,

(19)

F̄i =
{

Fi − ε if 0 < αi ≤ C,
Fi + ε if − C < αi ≤ 0.

(20)

To detect the violating variables, we define blow, bup as
follows:

blow = max
i

F̃i,

bup = min
i

F̄i.
(21)

Then if the KKT conditions are not satisfied, bup < blow and
the data sample i that satisfies

bup < F̃i − τ or blow > F̄i + τ

for i ∈ {1, . . . , M} (22)

violates the KKT conditions, where τ is a positive parameter
to loosen the KKT conditions.

As training proceeds, bup and blow approach each other and
at the optimal solution, bup = blow if the solution is unique.
If not, bup > blow. In this case, we set b = (bup + blow)/2.

B. L2 SVRs

Setting p = 2 in (2) we obtain the L2 SVR. Its dual form
is given by

max Q(α) = −1
2

M∑
i,j=1

αi αj

(
Kij +

δij

C

)

−ε
M∑
i=1

|αi|+
M∑
i=1

yi αi (23)

s.t.
M∑
i=1

αi = 0, (24)

where αi are dual variables associated with xi and take
negative values as well as nonnegative values and δij = 1
for i = j and 0, otherwise.



The KKT complementarity conditions are

αi (ε + ξi − yi +
M∑

j=1

αjKij + b) = 0 for αi ≥ 0, (25)

αi (ε + ξi + yi −
M∑

j=1

αjKij − b) = 0 for αi < 0, (26)

C ξi = |αi| for i = 1, . . . , M. (27)

For the L2 SVR, we define F̃i and F̄i as follows:

F̃i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fi − ε if αi = 0,

Fi − ε− αi

C
if αi > 0,

Fi + ε− αi

C
if αi < 0,

(28)

F̄i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fi + ε if αi = 0,

Fi − ε− αi

C
if αi > 0,

Fi + ε− αi

C
if αi < 0.

(29)

The remaining procedure is the same as that of the L1 SVR.

C. LS SVRs

In the LS SVR, the constraints (3) to (5) are replaced with
the equality constraints

yi − f(xi) = ε + ξi for i = 1, . . . , M (30)

and ξ∗p
i in (2) is deleted. The obtained LS SVR is the same

as the LS SVM and can be trained by solving a set of linear
equations. But because it is slow for a large data set, SMO is
extended to training LS SVMs [15].

The dual form of the LS SVR is as follows:

max Q(α) = −1
2

M∑
i,j=1

αi αj

(
Kij +

δij

C

)

+
M∑
i=1

αi yi (31)

s.t.
M∑
i=1

αi = 0. (32)

The KKT conditions of the above problem is given by

αi

⎛
⎝ M∑

j=1

αj Kij + αi/C + b− yi

⎞
⎠ = 0

for i = 1, . . . , M. (33)

We define

Fi = yi −
M∑

j=1

αj Kij . (34)

Then, (33) becomes

αi (b− Fi + αi/C) = 0 for i = 1, . . . , M. (35)

Because of the equality constraints in the primal form, we can
assume that irrespective of αi the following conditions are
satisfied for the optimal solution:

b− Fi + αi/C = 0 for i = 1, . . . , M. (36)

Then the KKT conditions are satisfied when

bup ≥ blow, (37)

where

blow = max
i=1,... ,M

(Fi − αi/C), (38)

bup = min
i=1,... ,M

(Fi − αi/C). (39)

In training, we use the stopping condition (22).

III. TRAINING METHODS

In this section we discuss SMO-NM for SVRs: corrections
of variables by Newton’s method including the derivation of
derivatives of absolute variables, working set selection, and
calculating corrections by the Cholesky factorization.

A. Calculating Corrections by Newton’s Method

First, we discuss corrections of variables for the L1 SVR
and then for the L2 and LS SVRs.

1) L1 SVRs: We optimize the variables αi (i ∈ W ) fixing
αi (i ∈ N), where W ∪ N = {1, . . . , M} and W ∩ N = φ,
by

max Q(αW ) = −1
2

∑
i,j ∈W

αi αj Kij

+
∑

i∈W

yi αi −
∑

i ∈ W,
j ∈ N

αi αj Kij − ε
∑
i∈W

|αi| (40)

s.t.
∑

i∈W

αi = −
∑
i∈N

αi, 0 ≤ |αi| ≤ C for i ∈W. (41)

Here αW = (. . . , αi, . . . )�, i ∈ W .
Solving the equality in (41) for αs (s ∈W ), we obtain

αs = −
M∑

i �=s,i=1

αi. (42)

Substituting (42) into (40), we eliminate the equality con-
straint. Let αW ′ = (. . . , αi, . . . )� (i �= s, i ∈ W ). Now
because Q(αW ′) is quadratic, we can express the change of
Q(αW ′), ΔQ(αW ′), as a function of the change of αW ′ ,
ΔαW ′ , by

ΔQ(αW ′) =
1
2
Δα�

W ′
∂2Q(αW ′)

∂α2
W ′

ΔαW ′

+
∂Q(αW ′)

∂αW ′
ΔαW ′ . (43)

Then, neglecting the bounds, ΔQ(αW ′) has the maximum
at

ΔαW ′ = −
(

∂2Q(α)
∂α2

W ′

)−1
∂Q(αW ′)

∂αW ′
, (44)



where

∂Q(αW ′)
∂αi

= Fi − Fs − ε (sign(αi)− sign(αs))

for i ∈W ′, (45)
∂2Q(αW ′)
∂αi∂αj

= −Kij + Kis + Ksj −Kss

for i, j ∈W ′. (46)

Here, sign(x) = 1 for x > 0 and sign(x) = −1 for x < 0.
We will discuss the derivative value for x = 0 in Section
III-A3. We assume that −∂2Q(α)/∂α2

W ′ is positive definite.
The procedure when the matrix is positive semi-definite is
discussed in Section III-C.

Then from (41) and (44), we obtain the correction of αs:

Δαs = −
∑

i∈W ′
Δαi. (47)

For αi (i ∈W ), if

αi = C, Δαi > 0 or αi = −C, Δαi < 0, (48)

we delete these variables from the working set and repeat
the procedure for the reduced working set. Let Δα′

i be the
maximum or minimum correction of αi that is within the
bounds. Here, if αi changes signs by the correction, we reduce
correction so that αi reaches zero to guarantee monotonic
convergence of the objective function value. Then,

1) if αi > 0 and αi + Δαi < 0, then Δα′
i = −αi;

2) if αi < 0 and αi + Δαi > 0, then Δα′
i = −αi;

3) if αi > 0 and αi + Δαi > C, then Δα′
i = C − αi;

4) if αi < 0 and αi + Δαi < −C, then Δα′
i = −C − αi;

5) otherwise Δα′
i = Δαi.

Then we calculate

r = min
i∈W

Δα′
i

Δαi
, (49)

where r (0 < r ≤ 1) is the scaling factor.
The corrections of the variables in the working set are given

by

αnew
W = αold

W + r ΔαW . (50)

2) L2 SVRs: The training method for the L2 SVR is similar
to that for L1 SVR.

We replace (45) and (46), respectively, with

∂Q(αW ′)
∂αi

= Fi − Fs − αi/C + αs/C

−ε (sign(αi)− sign(αs)) for i ∈W ′, (51)
∂2Q(αW ′)

∂αi∂αj
= −Kij + Kis + Ksj −Kij − 2 δij/C

for i, j ∈W ′. (52)

Because αi are not upper or lower bounded, (48) is not
necessary.

We do not allow αi to change signs by corrections. Thus
the change Δα′

i in (49) is given as follows: If αi > 0 and

TABLE I
THE CONDITIONS FOR THE OPTIMAL SOLUTION

A αopt Cond. for α > 0 Cond. for α < 0 Final Cond.
Positive F > 2 ε F > −2 ε F > 2 ε

Zero Negative F < 2 ε F < −2 ε F < −2 ε
Zero F ≤ 2 ε F ≥ −2 ε −2 ε ≤ F ≤ 2 ε

Positive F > 0 F > −2 ε F > 0
Positive Negative F < 0 F < −2 ε F < −2 ε

Zero F ≤ 0 F ≥ −2 ε −2 ε ≤ F ≤ 0
Positive F > 2 ε F > 0 F > 2 ε

Negative Negative F < 2 ε F < 0 F < 0
Zero F ≤ 2 ε F ≥ 0 0 ≤ F ≤ 2 ε

αi+Δαi < 0, or αi < 0 and αi+Δαi > 0, then Δα′
i = −αi.

Otherwise Δα′
i = Δαi.

In the L2 SVR, because 1/C is added to the diagonal
elements of the kernel matrix, −∂2Q(α)/∂α2

W ′ is positive
definite.

3) Derivative of |αi|: Because |αi| is not differentiable at
αi = 0, we need to determine the derivative according to
whether the correction of αi is positive, negative, or zero.
This is possible for SMO. We consider the following function,
which is a simplified SMO version of (40) and (41):

max Q(α) = −Kα2 − ε|α| − ε|A− α|+ F α, (53)

where α = α1, α2 = A, A is a constant, K = (K11 −
2K12 + K22)/2 > 0, F = F1 − F2 for the L1 SVR and
F1 − F2 − α1/C + α2/C for the L2 SVR. If A = 0, both α1

and α2 are zero, and otherwise, α1 = 0 and α2 �= 0.
According to the value of A, the objective function of (53)

becomes

1) For A = 0,

Q(α) =
{ −Kα2 − 2ε α + F α for α > 0,
−Kα2 + 2ε α + F α for α < 0.

(54)

2) For A > 0,

Q(α) =
{ −Kα2 + F α for A ≥ α ≥ 0,
−Kα2 + 2ε α + F α for α < 0.

(55)

Here, we exclude the constant terms and because α2

changes signs for α > A, we exclude this case.
3) For A < 0,

Q(α) =
{ −Kα2 − 2ε α + F α for α > 0,
−Kα2 + F α for 0 ≥ α ≥ A,

(56)

where the constant terms and the case for α > A are
excluded.

Table I shows the conditions for the optimal solution for
the above three cases. For example, for A = 0, the optimal
solution αopt is either positive, negative or zero. Suppose that
αopt is positive. Then, from the condition for α > 0 in (54), if
F > 2 ε (Cond. for α > 0) is satisfied, the optimum solution
exists for α > 0. And Q(α) needs to be monotonic for α < 0.
From the condition for α < 0 in (54), this is satisfied by
F > −2 ε (Cond. for α < 0). By combining these conditions,
αopt > 0 for F > 2 ε (Final Cond.) is obtained.
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Fig. 1. Objective functions for different parameters

According to the sign of αopt, we set the value to sign(0):

sign(0) =
{

1 for αopt > 0,
−1 for αopt < 0.

(57)

If αopt = 0, the initial α is optimal and thus, we delete α
from optimization.

Figure 1 shows the three cases for A = 0 with ε = 0.1:
F = 0.3 (αopt > 0), −0.3 (αopt < 0), 0.1 (αopt = 0) for
Q1(α), Q2(α), and Q3(α), respectively. For example, if F =
0.3, Q(α) takes the maximum value for α > 0. Therefore,
sign(0) = 1.

For SMO, by (57), the objective function value is guaranteed
to be non-decreasing. But for the working set size larger than
two, the objective function value may decrease if some of the
corrections given by (44) are opposite to the signs given by
(57). We may solve this problem by deleting the associated
variables and recalculate (44). But in our computer experiment
in the subsequent section, we continued training even if this
happened. The non-monotonic convergence did not cause any
significant problem.

4) LS SVRs: Training of the LS SVR is the same as that
of the LS SVM discussed in [12].

In the previous discussions, we replace the partial deriva-
tives of Q(αW ′) by

∂Q(αW ′)
∂αi

= Fi − Fs − αi/C + αs/C for i ∈W ′, (58)

∂2Q(αW ′)
∂αi∂αj

= −Kij + Kis + Ksj −Kss − 2 δij/C

for i, j ∈W ′. (59)

Because −∂2Q(α)/∂α2
W ′ is positive definite and there are no

inequality constraints, r = 1 and the corrections are always
possible. In the extreme case where |W | = M−1, the solution
is obtained in one step without iterations.

B. Working Set Selection

We adapt the loop variable (LV) selection strategy developed
for training SVMs [12] to function approximation. It is based

on SMO with the second order information [7] and loop
variable detection.

Let the variable associated with min F̄i (min Fi for the LS
SVR) be αimin .

In the second order SMO, to reduce computational burden,
fixing αimin , the variable that maximizes the objective function
value is searched [7]:

i2nd = arg max
i∈VKKT

ΔQ(αi, αimin). (60)

We call the pair of variables that are determined by the second
order SMO, SMO variables.

To speed up convergence for a large C value, we add
variables, which are selected in the previous steps as SMO
variables into the working set in addition to the SMO variables.

When at least one of the current SMO variables has already
appeared as an SMO variable at a previous step, we consider
that a loop is detected and pick up the loop variables that
are the SMO variables in the one step to lc steps prior to
the current step, where lc is a user-defined parameter and we
call the detected loop, lc-cycle loop. To avoid obtaining an
infeasible solution by adding loop variables to the working set,
we restrict loop variables to be unbounded support vectors for
the L1 SVR and support vectors for the L2 SVR. But for the
LS SVR, any variables are selected.

Let |Ws| denote the maximum working set size. Then we
set |Ws| = 2 lc + 2.

In the following we show the procedure of LV selection for
the L1 SVR more in detail.

At the start of training, we initialize status(i) = 0 for i =
1, . . . , M , where status(i) = 0 for αi not being selected as
an SMO variable, and status(i) = 1, already being selected,
and ptr is the read pointer of the first-in last-out stack filo
with the stack size of |Ws|. After filo is full, ptr points to
the last element of filo and does not change afterwards. At
each iteration step, after imin and i2nd are calculated, we do
the following.

Loop detection and working set selection
1) (Loop detection) Set W1 = imin and W2 = i2nd.

If status(i2nd) = 1 or status(imin) = 1, then a
loop is detected and go to 2. Else, status(i2nd) = 1,
status(imin) = 1, filo← {imin, i2nd}, and exit.

2) (Working set setting) Set k = 1.
do j = 1, ptr

if filo(j) /∈ W and 0 < |αfilo(j)| < C, then k ←
k + 1, Wk = filo(j)
end do
Set status(i2nd) = 1 and status(imin) = 1, and filo←
{imin, i2nd} and exit.

In Step 2, the condition of filo(j) /∈W is to avoid duplicate
indices in the working set and the condition 0 < |αfilo(j)| < C
is to avoid obtaining an infeasible solution. For the L2 SVR,
the condition is changed to C �= 0 and for the LS SVR, no
condition is imposed on αfilo(j).

The advantage of the LV selection is that the working set
size |W | is determined automatically according to whether



loop variables exist. Thus, the overhead caused by matrix
inversion is reduced.

C. Calculating Corrections by Cholesky Factorization

We use the Cholesky factorization in calculating (44).
We set αs = αimin , which is the first element of W and

W ′ = W − {imin}. Let K = {Kij} = −∂2Q(α)/∂α2
W ′

(i, j = 1, . . . , |W ′|). Here, the set {1, . . . , |W ′|} is a subset of
VKKT and the elements are renumbered from 1 to |W ′| and 1
corresponds to i2nd. If K is positive definite, it is decomposed
by the Cholesky factorization into

K = L L�, (61)

where L is the regular lower triangular matrix.
Then during the Cholesky factorization, if the argument of

the square root associated with the diagonal element is smaller
than the prescribed value η (> 0), we stop factorizing the
matrix and use the already-factorized matrices to obtain the
corrections. This happens for the L1 SVR and for the L2, LS
SVRs with extremely large C values. Otherwise, we use the
full L to obtain the corrections.

For the L1 and L2 SVRs, we check whether the corrections
satisfy the inequality constraints. If some of the variables
do not satisfy the constraints, we recalculate the corrections,
deleting the rows in the L after the rows associated with
the variables that violate the inequality constraints. We repeat
this procedure, until the feasible corrections are obtained (i.e.,
r > 0). The above procedure is done using the matrices
factorized so far. For the LS SVR, r = 1.

Because we select the SMO variables as αs and the first
variable in W ′, the first diagonal element of −∂2Q(α)/∂α2

W ′

is non-zero and the SMO variables give the feasible solution.
Therefore, for the L1/L2 SVRs, SMO-NM reduces to SMO,
at worst.

The Cholesky factorization requires |W ′|3/3 floating oper-
ations [16] compared to one division for SMO. Therefore, to
speed up training using the Cholesky factorization over SMO,
enough reduction of the number of iterations is necessary.

D. Training Procedure of SMO-NM

In the following we show the training procedure of SMO-
NM for the L1 SVR using the LV selection strategy.

1) (Initialization) Set an appropriate value to lc. Set αi = 0
for i = 1, . . . , M and select a pair i, j for corrections.

2) (Corrections) Calculate partial derivatives (45) and (46)
and calculate corrections by (44). Then, modify the
variables by (50).

3) (Convergence Check) Update Fi and calculate bup and
blow. If (22) is satisfied, stop training. Otherwise calcu-
late i2nd by (60).

4) (Loop detection and working set selection) Do loop
detection and working set selection and go to Step 2.

IV. CHARACTERISTICS OF SOLUTIONS

In this section, we discuss convergence of SMO-NM.
For the L1 and L2 SVRS, the following Theorem holds.
Theorem 1: Assume that the signs of variable corrections

for the working set W (|W | > 2) are the same as those given
by (57). Then, the increase of the objective function value,
ΔQ(αW ′), is given by

ΔQ(αW ′) = −1
2
rW (2− rW )

∂Q(αW ′)
∂αW ′

�

(
∂2Q(αW ′)

∂α2
W ′

)−1
∂Q(αW ′)

∂αW ′
≥ 0, (62)

where rW is the scaling factor for W . Then if rW ≥ rWS ,

ΔQ(αW ′) ≥ ΔQ(αW ′
S
) (63)

is satisfied, where W ⊃WS. The strict inequality holds when
some values of αi ∈ W −WS are not equal to those of the
optimal solution for the working set W .
The proof is similar to that given in [12]. If the assumption
does not hold for the L1 and L2 SVRs, there may be cases
where the objective function value decreases by the variable
corrections.

For the LS SVR, the above theorem holds without the
assumption and r = 1. Therefore, (63) holds for any working
set size. This means that the number of iteration by SMO-NM
is smaller than or equal to that by SMO.

Because by SMO the SMO variables, which improve the
objective function value most, are selected, by variable cor-
rections the objective function value increases monotonically.
By SMO-NM, if the assumption holds for all the iterations
steps, convergence to the optimal solution is guaranteed. But
unlike for L1 and L2 SVMs, the monotonic convergence of
SMO-NM is not theoretically guaranteed.

V. PERFORMANCE EVALUATION

Using the benchmark data sets downloaded from the LIB-
SVM homepage [17], we evaluated the convergence, including
training time and the number of iterations, of the proposed
method over that of SMO and LIBSVM, which is one of the
fastest training tools based on SMO.

Because the tendency is similar for L1, L2, and LS SVRs,
in the following we only show the results for the L1 SVR.
Table II lists the seven data sets used in our study. It includes
the number of input variables and the number of data samples
for each data set. For all the data sets, we normalized the input
range into [−1, 1], set ε = 0.1, and used the RBF kernels:

K(x,x′) = exp(−γ||x− x′||2/m), (64)

where m is the number of inputs for normalization and γ is
a spread of a radius.

We set η = 10−9 and τ = 0.001 [7]. We measured the
training time using a personal computer (3GHz, 2GB memory,
Windows XP operating system). If training time was shorter
than 60 s, we measured training time five times and took the
average. We prepared a cache memory with the size equal to



TABLE II
CROSS-VALIDATION RESULTS USING L1 SVR

Data Inputs Samples C γ MAE
mpg 7 392 100 5 1.803
housing 13 506 100 5 2.110
mg 6 1385 10 5 0.093
space ga 6 3107 10 15 0.075
abalone 8 4177 10000 0.5 1.457
cpusmall 12 8192 100 15 2.026
cadata 8 20640 10000 15 38247
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Fig. 2. Objective function values for the mpg data set with C = 100000.

the kernel matrix. This was possible for the data sets excluding
the cadata set.

To show that large C values are necessary to realize
best generalization ability, for each data set we carried
out fivefold cross-validation selecting the C value
from {10, 100, 1000, 10000} and the γ value from
{0.05, 0.1, 0.5, 1, 5, 10, 15}. The selected C and γ values and
the associated mean absolute errors (MAEs) are listed in
Table II.

As in [12], we set the maximum working set size |Ws| to
be 600 (the number of cycles = 298).

Training time is also affected by the selection of the γ value.
But here we set γ = 1 in (64), which is a default value in
LIBSVM.

Figure 2 shows the change of the objective function values
as the training proceeded for the mpg data set with C =
100000. For the SMO-NM, the monotonic convergence was
violated only once but the decrease was so small, it did not
appear in the graph. Although SMO converged monotonically
but because the convergence was so slow there was a large
gap of the objective function values at the iteration step near
700, where SMO-NM converged.

Figure 3 shows the change of the working set size for the
mpg data set with C = 10 during convergence. The loop was
detected at the 98th step. Afterwards, the working set size
changed dramatically.

Table III shows the results for the number of iterations
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Fig. 3. Working set size for the mpg data set

(Iterations), the average working set size for SMO-NM, the
training time (Time), the mean square error (MSE) of the
training data set for SMO-NM, and the numbers of support
vectors (SVs) for SMO-NM and LIBSVM. In the table, SMO
and SMO-NM denote the second order SMO and the proposed
method using the LV selection strategy with |Ws| = 600. For
“Iterations” and “Time” columns, the smallest and shortest
values are shown in boldface, respectively.

The MSEs for SMO and LIBSVM were almost the same
as that for SMO-NM and the SVs for SMO was almost the
same for SMO-NM. The SVs for SMO-NM and LIBSVM
were almost the same except for the space-ga data set with
C = 100000. Therefore, almost the same solutions were
obtained by the three methods.

Comparing SMO and LIBSVM, the number of iterations
of SMO was usually smaller but training time was longer. In
SMO, sophisticated optimization techniques such as shrinking
were not implemented. This might make training time longer.

Comparing SMO and SMO-NM, the number of iterations
by SMO-NM was always smaller and training time by SMO-
NM was in most cases shorter and comparable even if longer.

SMO-NM was faster than LIBSVM for C = 105 except
for the cadata set. Slower convergence for the cadata set was
because the average working set size was only 2.73, and the
speeding up by the Newton’s method did not work.

According to the computer experiments, the SMO-NM
worked to accelerate training over SMO for large C values.
To speed up SMO-NM for small C values, it is better to
combine Newton’s method with LIBSVM, because SMO-NM
can readily be implemented into LIBSVM.
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VI. CONCLUSIONS

We proposed training the support vector regressor (SVR)
with the absolute variables by combining sequential minimum



TABLE III
PERFORMANCE COMPARISON FOR THE L1 SVR

Data C Iterations WS size Time (s) MSE SVs
SMO-NM SMO LIBSVM SMO-NM SMO-NM SMO LIBSVM SMO-NM SMO-NM LIBSVM

mpg 10 257 740 731 5.50 0.065 0.087 0.065 6.882 378 379
1000 569 23218 43159 35.25 0.224 1.090 0.265 4.689 374 374

100000 681 2078552 5211733 93.82 0.803 112.1 27.92 3.086 374 374
housing 10 295 652 733 5.57 0.093 0.109 0.087 16.67 489 489

1000 710 34164 41151 56.81 0.506 2.196 0.375 5.587 486 486
100000 773 1744860 3727411 160.74 3.297 142.2 37.47 1.704 486 488

mg 10 1304 5118 5907 17.30 0.774 0.884 0.228 0.014 525 524
1000 1244 346873 347689 58.17 1.778 50.01 2.925 0.012 492 490

100000 1442 19272281 154899003 115.84 5.400 3192 988.9 0.010 501 546
space ga 10 2261 5718 6822 12.90 2.325 2.293 0.556 0.012 967 969

1000 2902 929034 610363 36.06 5.475 261.8 9.190 0.010 903 905
100000 2768 41003167 357534630 82.79 12.27 13869 1905 0.009 861 1431

abalone 10 2182 3219 3886 3.32 2.650 2.778 1.528 4.648 3940 3941
1000 5449 125129 189285 25.43 11.16 46.28 3.468 4.328 3953 3950

100000 9207 7715526 21051891 71.37 47.84 3601 186.1 4.101 3953 3963
cpusmall 10 4226 4798 5028 2.81 10.30 10.13 5.965 32.96 7933 7931

1000 12367 126940 233103 32.78 74.92 106.1 13.29 9.051 7820 7821
100000 17936 12220687 44966369 117.48 451.4 11469 1000 7.639 7805 7835

cadata 10 10321 10321 13094 2.00 67.77 68.91 35.62 1.376E+10 20640 20640
1000 10339 10411 12621 2.01 68.08 69.52 33.61 6.166E+09 20640 20640

100000 10767 24681 24697 2.73 87.67 135.7 33.31 4.310E+09 20640 20640

optimization (SMO) and Newton’s method. For SMO, we
derived the partial derivative of an absolute variable at the zero
point according to whether the optimal solution exists in the
positive region, negative regions, or at the zero point. For the
working set size more than two, we assumed the derivative
values at the zero points by those of SMO. The proposed
training method uses the working set strategy developed for
SVMs and it reduced to SMO when the working set size is
two.

By computer experiment using seven benchmark data sets,
we showed that the proposed method was faster than SMO for
the large margin parameter values.
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[15] J. López, Á. Barbero, and J. R. Dorronsoro. Momentum acceleration
of least–squares support vector machines. In T. Honkela, W. Duch,
M. Girolami, and S. Kaski, editors, Artificial Neural Networks and
Machine Learning – ICANN 2011, volume 6792 of Lecture Notes in
Computer Science, pages 135–142. Springer, 2011.

[16] G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition.
The Johns Hopkins University Press, Baltimore, MD, 1996.

[17] C.-C. Chang and C.-J. Lin. LIBSVM–A library for support vector
machines: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.


