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Abstract

A well-built dataset is a necessary starting point for ad-

vanced computer vision research. It plays a crucial role

in evaluation and provides a continuous challenge to state-

of-the-art algorithms. Dataset collection is, however, a te-

dious and time-consuming task. This paper presents a novel

automatic dataset collecting and model learning approach

that uses object recognition techniques in an incremental

method. The goal of this work is to use the tremendous re-

sources of the web to learn robust object category models in

order to detect and search for objects in real-world cluttered

scenes. It mimics the human learning process of iteratively

accumulating model knowledge and image examples. We

adapt a non-parametric graphical model and propose an

incremental learning framework. Our algorithm is capa-

ble of automatically collecting much larger object category

datasets for 22 randomly selected classes from the Caltech

101 dataset. Furthermore, we offer not only more images in

each object category dataset, but also a robust object model

and meaningful image annotation. Our experiments show

that OPTIMOL is capable of collecting image datasets that

are superior to Caltech 101 and LabelMe.

1. Introduction
Type the word “airplane” in your favorite Internet search

image engine, say Google Image (or Yahoo!, flickr.com,

etc.). What do you get? Of the thousands of images these

search engines return, only a small fraction would be con-

sidered good airplane images (∼ 15%). It is fair to say that

for most of today’s average users surfing the web for images

of generic objects, the current commercial state-of-the-art

results are far from satisfying.

This problem is intimately related to the problem of

learning and modeling generic object classes, a topic that

has recently captured the attention of search engine de-

velopers as well as vision researchers. However, in order

to develop effective object categorization algorithms, re-
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Figure 1. Illustration of the framework of the Online Picture col-

lecTion via Incremental MOdel Learning (OPTIMOL) system.

This framework works in an incremental way: Once a model is

learned, it can be used to do classification on the images from

the web resource. The group of images classified as being in this

object category are incorporated into the collected dataset. Other-

wise, they are discarded. The model is then updated by the newly

accepted images in the current iteration. In this incremental fash-

ion, the category model gets more and more robust. As a conse-

quence, the collected dataset becomes larger and larger.

searchers rely on a critical resource - an accurate object

class dataset. A good dataset serves as training data as

well as an evaluation benchmark. A handful of large scale

datasets exist currently to serve such a purpose, such as Cal-

tech 101 [4], the UIUC car dataset [1], etc. Sec.1.1 will

elaborate on the strengths and weaknesses of these datasets.

In short, all of them, however, have rather a limited number

of images and offer no possibility of expansion other than

with extremely costly manual labor.

So far the story is a frustrating one: Users of the web

search engines would like better search results when look-

ing for, say, objects; developers of these search engines

would like more robust visual models to improve these re-
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sults; vision researchers are developing the models for this

purpose; but in order to do so, it is critical to have large

and diverse object datasets for training and evaluation; this,

however, goes back to the same problem that the users face.

In this paper, we provide a framework to simultaneously

learn object class models and collect object class datasets.

This is achieved by leveraging the vast resource of images

available on the Internet. The sketch of our idea is the fol-

lowing. Given a very small number of seed images of an

object class (either provided by a human or automatically),

our algorithm learns a model that best describes this class.

Serving as a classifier, the algorithm can pull from the web

those images that belong to the object class. The newly col-

lected images are added to the object dataset, serving as new

training data to update and improve the object model. With

this new model, the algorithm can then go back to the web

and pull more relevant images. This is an iterative process

that continuously gathers a highly accurate image dataset

while learning a more and more robust object model. We

will show in our experiments that our automatic, online al-

gorithm is capable of collecting object class datasets that are

far bigger than Caltech 101 or LabelMe [16]. To summa-

rize, we highlight here the main contributions of our work.

• We propose an iterative framework that simultaneously col-

lects object category datasets and learns the object category

models. The framework use Bayesian incremental learning

as its theoretical base. To the best of our knowledge, ours is

among the first papers (if not the first) that deals with these

two problems together.

• We have developed an incremental learning scheme that uses

only the newly added data points (i.e. images) for training a

new model. This memory-less learning scheme is capable of

handling an arbitrarily large number of images, a vital prop-

erty for large image datasets.

• Our experiments show that our algorithm is capable of both

learning highly effective object category models and collect-

ing object category datasets far larger than that of Caltech

101 or LabelMe.

1.1. Related works

Image Retrieval from the Web: Content-based im-

age retrieval (CBIR) has been an active field of research

for a number of years. However, we do not regard our

work as fitting in the conventional framework of CBIR. In-

stead of learning to annotate images with a list of words

and phrases, we instead emphasize collecting the most suit-

able images possible from the web resources given a single

word or phrase. One major difference between our work

and traditional CBIR is the emphasis on visual model learn-

ing. While collecting images of a particular object category,

our algorithm continues to learns a better and better visual

model to classify this object.

A few recent systems in this domain are closer to our

current framework. H. Feng et al. proposed a method to re-

fine search engine returns by co-training [7]. Their method,

however, does not offer an incremental training framework

to iteratively improve the collection. Berg and Forsyth de-

veloped a system to collect animal pictures from the web

[2]. Their system takes advantage of both the text surround-

ing the web images and the global feature statistics (patches,

colors, textures) of the images to collect a large number of

animal images. Another method close in spirit to ours is by

Yanai and Barnard [21]. Though their method focuses on

image annotation, they also utilize the idea of refining web

image returns by a probabilistic model. Finally, two papers

by Fergus et al. [8, 10] use idea of training a good object

class model from web images returned by search engines,

hence obtaining an object filter to refine these results. All

the techniques above achieve better search results by using

either a better visual model or a combination of visual and

text models to essentially re-rank the rather noisy images

from the web. We show later that by introducing an itera-

tive framework of incremental learning, we are able to em-

bed the processes of image collection and model learning

into a mutually reinforcing system.

Object Classification: Given the recent explosion of ob-

ject categorization research, it is out of the scope of this pa-

per to offer a thorough review of the literature. We would

like to emphasize that our proposed framework is not lim-

ited to the particular object model used in this paper as an

example: any model that can be cast into an incremental

learning framework is suitable for our protocol. Of the

many possibilities, we have chosen to use a variant of the

HDP (Hierarchical Dirichlet Process) [19] model based on

“the bag of words” representation of images. A number of

systems based on the bag of words model representation

have shown to be effective for object and scene classifica-

tion [8, 17, 6]. The models mentioned above are all de-

veloped for a batch learning scenario. A handful of object

recognition works have also dealt with the issue of incre-

mental learning explicitly. The most notable ones are [13]

and [4]. Our approach, however, is based on a model sig-

nificantly different from these papers.

Object Datasets: One main goal of our proposed work

is to suggest a framework that can replace much of the cur-

rent human effort in image dataset collection for object cat-

egorization. A few popular object datasets exist today as the

main training and evaluation resources for the community.

Caltech 101 contains 101 object classes each containing be-

tween 40 to 400 images [4]. It was collected by a group of

students spending on average three or four hours per 100

images. While it is regarded as one of the most compre-

hensive object category datasets now available, it is limited

in terms of the variation in the images (big, centered ob-

jects with few viewpoint changes), numbers of images per



category (at most a few hundred) as well as the number of

categories. Recently, LabelMe has offered an alternative

way of collecting datasets of objects by having people up-

load their images and label them [16]. This dataset is much

more varied than Caltech 101, potentially serving as a bet-

ter benchmark for object detection algorithms. But since

it relies on people uploading pictures and making uncon-

trolled annotations, it is difficult to use it as a generic object

dataset. In addition, while some classes have many images

(such as 8897 for “car”), others have very few (such as 6

for “airplane”). A few other object category datasets such

as [1] are also used by researchers. All of the datasets men-

tioned above require laborious human effort to gather and

select the images. In addition, while serving as training and

test datasets for researchers, they are not suitable or usable

for general search engine users. Our proposed work offers

a unified way of automatically gathering data useful both as

a research dataset as well as for answering user queries.

2. General Framework of OPTIMOL

Algorithm 1 Incremental learning, classification and data

collection
Download from the Web a large reservoir of images obtained

by searching for keyword(s)

Initialize the object category dataset with seed images (manu-

ally or automatically)

repeat

Learn object category model with the latest input images to

the dataset

Classify downloaded images using the current object cate-

gory model

Augment the dataset with accepted images

until user satisfied or images exhausted

OPTIMOL has two goals to fulfill simultaneously: to au-

tomatically collect datasets of object classes from the web

and to incrementally learn object category models. We use

Fig.1 and Alg.1 to illustrate the overall framework. For

every object category we are interested in, say, “panda”,

we initialize our image dataset with a handful of seed im-

ages. This can be done either manually or automatically 1.

With this small dataset, we begin the iterative process of

model learning and dataset collection. Learning is done via

an incremental learning procedure we introduce in Sec.3.3.

Given the most updated model of the object class, we per-

form a binary classification on a subset of images down-

loaded from the web (e.g. panda vs. background) 2. If

an image is accepted as a “panda” image based on some

statistical criteria (see Sec.3.3), we augment our existing

1To automatically collect a handful of seed images, we can use the

images returned by the first page of Google image search, or any other

state-of-the-art commercial search engines.
2The background class model is learnt by using a published ‘back-

ground’ image dataset [9, 5]
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Figure 2. Graphical model of HDP. Each node denotes a random variable.

panda dataset by appending this new image. We then up-

date our panda model with the subset of the newly accepted

images (see Sec.3.4 for details of the “cache set”). Note that

the already existing images in the dataset no longer partici-

pate in this round of learning. Meanwhile, the background

model will also be updated using a constant resource of

background images. We repeat this process till a sufficient

dataset is collected or we have exhausted all downloaded

images.

3. Detailed System of OPTIMOL

3.1. Object category model

We choose the “bag of words” representation for our ob-

ject category model, but our system is not committed to any

particular choice of object category representation or model

structure. As long as one could cast the model into an incre-

mental learning framework, it would be theoretically suit-

able for OPTIMOL. We make this choice, however, based

on the recent successes of the “bag of words” models in

object and scene recognition [17, 6], particularly the usage

of latent topic models for such representation [11, 3, 19].

Similarly to [18, 20], we adapt the Hierarchical Dirichlet

process(HDP) [19] for our object category model. Com-

pared to parametric latent topic models such as LDA [3] or

plSA [11], HDP offers a way to sample an infinite number

of latent topics, or clusters, for each object category model.

This property is especially desirable for OPTIMOL because

as we grow our dataset, we would like to retain the ability

to ‘grow’ the object class model when new clusters of im-

ages arise. We introduce our HDP object category model in

more detail in Sec.3.2.

3.2. Hierarchical Dirichlet process

We represent an image as a bag of visual words. Each

category consists of a variable number of latent topics cor-

responding to clusters of images that have similar visual

words attributes. We model both object and background

classes with HDP [19]. Given γ, α as the concentration pa-

rameters and H as a base probability measure, HDP defines

a global random probability measure G0 ∼ DP (γ, H).
Based on G0, a random measure Gj ∼ DP (α, G0) is in-

dependently sampled for each group to explain the internal

structure. Here, DP represents the Dirichlet process.



Fig.2 shows the graphical model of HDP. θ corresponds

to the distributions of visual words given different latent

topics shared among different images. H indicates the prior

distribution of θ. Let xji be the ith patch in jth image. For

each patch xji, there is a hidden variable zji denoting the

latent topic index. If β is the stick-breaking weights and πj

is the mixing proportion of z for the jth image, the hierar-

chical Dirichlet process can be expressed as:

β|γ ∼ GEM(γ) πj |α, β ∼ DP(α, β)

θk|H ∼ H zji|πj ∼ πj xji|zji, θk ∼ F (θzji
) (1)

where GEM represents the stick-breaking process.

For both Fig.2 and Eq.1, we omit the mention of object

category to avoid confusion. The distribution of π is class

specific, and so is x. In other words, two class-specific θs

govern the distribution of x. Given an object class c, a topic

z can be generated using a multinomial distribution param-

eterized by π. Given this topic, a patch is generated using

the multinomial distribution of F (θc
z).

3.3. Incremental learning of a latent topic model

Given the object class model, we propose an incremen-

tal learning scheme such that OPTIMOL could update the

model at every iteration of the dataset collection process.

Our goal here is to perform incremental learning by using

only new images selected at this given iteration. We will

illustrate in Fig.7(b) that this is much more efficient than

performing a batch learning with all images in the existing

dataset at every iteration. Let Θ denote the model param-

eters, and Ij denote the jth image represented by a set of

patches xj1, · · · , xjn. For each patch xji, there is a hidden

variable zji denoting the latent topic index. The model pa-

rameters and hidden variable are updated iteratively using

the current model and the input image Ij in the following

fashion:

zj ∼ p(z|Θj−1, Ij) Θj ∼ p(Θ|zj , Θ
j−1, Ij) (2)

where Θj−1 represents the model parameters learned from

the previous j − 1 images. Neal & Hinton [15] provides a

theoretical ground for incrementally learning mixture mod-

els via sufficient statistics updates. We follow this idea by

keeping only the sufficient statistics of the parameters asso-

ciated with the existing images in an object dataset. Learn-

ing is then achieved by updating these sufficient statistics

with the those provided by the new images. One straight-

forward method is to use all the new images accepted by the

current classification criterion. It turns out that this method

will favor too much those images with a similar appearance

to the existing ones, hence resulting in more and more spe-

cialized object models. In order to take full advantage of the

non-parametric HDP model, as well as to avoid this “over

specialization”, we only use a subset of images to update

our model. This subset is called the “cache set”. We detail

the selection of the “cache set” in Sec.3.4.

3.3.1 Markov Chain Monte Carlo sampling

The goal of learning is to update the parameters in the hier-

archical model. In this section, we describe how we learn

the parameters by Gibbs sampling [13] of the latent vari-

ables. We choose the popular Chinese restaurant franchise

[19] metaphor to describe this procedure. Imagine multiple

Chinese restaurants sharing a set of dishes. At each table of

each restaurant, a dish is shared by the customers sitting at

that table. Metaphorically, we describe the jth image as the

jth restaurant and the image level mixture component for

xji as a table tji, where xji is the ith customer in the jth

restaurant. Similarly, the global latent topic for the tth table

in the jth restaurant is represented as the dish kjt :

tji|tj1, . . . , tji−1, α,G0 ∼

Tj
∑

t=1

njtδtji=t + αG0 (3)

kjt|k11, k12, . . . , k21, . . . , kjt−1, γ ∼

K
∑

k=1

mkδkjt=k + γH (4)

where njt denotes the number of customers sitting at the tth

table in the jth restaurant, Tj is the current number of tables

in the jth restaurant, mk represents the number of tables or-

dered dish k, and K denotes the current number of dishes.

A new table and new dish can also be generated from G0

and H , respectively, when needed.

Sampling the table. According to Eq.3 and Eq.4, the prob-

ability of a new customer xji assigned to table t is:

P (tji = t|xji, t−ji, k) ∝







a0ptnew
for t = tnew

njtf(xji|θkji
) for used t

(5)

where ptnew
is the likelihood for tji = tnew:

K
∑

k=1

mk
∑K

k=1
mk + γ

f(xji|θkji
) +

γ
∑K

k=1
mk + γ

f(xji|θknew
)

f(xji|θkji
) is the conditional density of patch xji given all

data items associated with global latent topic k except itself.

The probability of assigning a newly generated table tnew

to a global latent topic is proportional to Eq.6.






mkf(xji|θkji
) for used k

γf(xji|θknew
) for new k

(6)

Sampling the global latent topic. For the existing tables,

the dish can change according to all customers of table. A

sample of the global latent topic for the image level mixture

component t in image j, kjt, can be obtained from:






mkf(xjt|θkji
) for used k

γf(xjt|θknew
) for new k

(7)

Similarly, f(xjt|θkjt
) is the conditional density of a set of

patches xjt given all patches associated with topic k except

themselves. A new global latent topic will be sampled from

H if k=knew according to Eq.7. njt and mk will be updated

respectively regarding the table index and global latent topic

assigned. Given zji = kjtji
, we in turn update F (θc

zij
).



3.4. New Image Classification and Annotation

For every iteration of the dataset collection process, we

have a binary classification problem: classify images with

foreground object versus background images. Given the

current model, we have p(z|c) parameterized by the distri-

bution of global latent topics for each class in the Chinese

restaurant franchise and p(x|z, c) parameterized by F (θc
z)

learned for each category c by Gibbs sampling. A testing

image I is represented as a collection of local patches xi,

where i = {1, . . . ,M} and M is the number of patches.

The likelihood p(I|c) for each class is calculated by:

P (I|c) =
∏

i

∑

j

P (xi|zj , c)P (zj |c) (8)

Classification is made by choosing the category model that

yields the higher probability. From a dataset collection

point of view, incorporating an incorrect image into the

dataset (false positive) is much worse than missing a correct

image (false negative). Hence, a risk function is introduced

to penalize false positives more heavily:

Ri(A|I) = λAcf
P (cf |I) + λAcb

P (cb|I)

Ri(R|I) = λRcf
P (cf |I) + λRcb

P (cb|I) (9)

Here A represents acceptance of an image into our dataset,

R rejection. As long as the risk of accepting this image

is lower than rejecting it, it gets accepted. Updating the

training set is finally decided by the likelihood ratio:

P (I|cf )

P (I|cb)
>

λAcb
− λBcb

λRcf
− λAcf

P (cb)

P (cf )
(10)

where the cf is the foreground category while the cb is the

background category.
λAcb

−λBcb

λRcf
−λAcf

is automatically adjusted

by applying the likelihood ratio measurement to a reference

dataset3 at every iteration. New images satisfying Eq.10 are

incorporated into the collected dataset.

The goal of OPTIMOL is not only to collect a good im-

age dataset, but also to provide further information about

the location and size of the objects contained in the dataset

images. Object annotation is carried out by first calculating

the likelihood of each patch given the object class cf :

p(x|cf ) =
∑

i

p(x|zi, cf )p(zi|cf ) (11)

The region with the most concentrated high likelihood

patches is then selected as the object region. Sample results

are shown in Fig.5.

As we mentioned in Sec.3.3, we use a “cache set” of im-

ages to incrementally update our model. The “cache set”

is a less “permanent” set of good images compared to the

3To achieve a fully automated system, we use the original seed images

as the reference dataset. As the training dataset grows larger, the direct

effect of the original training images vanishes in terms of the object model.

It therefore becomes a good approximation of a validation dataset.

actual image dataset. At every round, if all “good” images

are used for model learning, it is highly likely that many of

these images will look very similar to the previously col-

lected images, hence reinforcing the model to be even more

specialized in picking out such images for the next round.

So the usage of the “cache set” is to retain a group of im-

ages that tend to be more diverse from the existing images

in the dataset. For each new image passing the classifica-

tion qualification (Eq.10), it is further evaluated by Eq.12 to

determine whether it should belong to the “cache set” or the

permanent set.

H(I) = −
∑

z

p(z|I) ln p(z|I) (12)

According to Shannon’s definition of entropy, Eq.12 relates

to the amount of uncertainty about an event associated with

a given probability distribution. Images with high entropy

are more uncertain, which indicates possible new topics, or

its lack of strong membership to one single topic. Thus,

these high likelihood and high entropy images are good for

model learning. Meanwhile, images with low entropy are

regarded as confident foreground images, which will be in-

corporated into the permanent dataset.

4. Experiments & Results

We conduct 3 experiments to illustrate the effective-

ness of OPTIMOL. Exp.1 demonstrates the superior dataset

collection results of OPTIMOL over the existing datasets.

Exp.2 shows that OPTIMOL is on par with the state of

the art object models [8] for multiple object classification.

Exp.3 shows a performance comparison of the batch vs. in-

cremental learning methods. We first introduce the various

datasets, then show in Sec.4.2 a walkthrough for how OP-

TIMOL works for the accordion category.

4.1. Datasets Definitions

We define the following 3 different datasets that we will

use in our experiments:

1. Caltech 101-Web & Caltech 101-Human

2 versions of the Caltech 101 dataset are used in our exper-

iment. Caltech 101-Web is the original raw dataset down-

loaded from the web with a large portion of contaminated

images in each category. The number of images in each cat-

egory varies from 113 (winsor-chair) to 1701 (watch). Cal-

tech 101-Human is the clean dataset manually selected from

Caltech 101-Web. By using this dataset, we show that OP-

TIMOL can achieve comparable or even better retrieval per-

formance compared to human labeled results.

2. Web-23

We downloaded 21 object categories from online image

search engines with corresponding query words randomly

selected from object categories in Caltech 101-Web. In ad-

dition, “face” and “penguin” categories are also included in

Web-23 for further comparison. The number of images in

each category varies from 577 (stop-sign) to 12414 (face).



Most of the images in a category are incorrect images (e.g.

352 correct accordions out of 1659 images).

3. Fergus ICCV’05 dataset

A 7-Category dataset provided by [8]. Object classes are:

airplane, car, face, guitar, leopard, motorbike and watch.

4.2. Walkthrough for the accordion category

As an example, we describe how OPTIMOL collects im-

ages for the accordion category following Alg.1 and Fig.1.

We first download 1659 images by typing the query word

“accordion” in image search engines such as Google im-

age, Yahoo image and Picsearch. We use the first 15 im-

ages from the web resource as our seed images, assuming

that most of them are good quality accordions. We repre-

sent each image as a set of local regions. We use the Kadir

and Brady [12] salient point detector to find the informa-

tive local regions. A 128-dim rotationally invariant SIFT

vector is used to represent each region [14]. We build a

500-word codebook by applying K-means clustering to the

89058 SIFT vectors extracted from the 15 seeds images of

each of the 23 categories. In Fig.3, we show some detected

interest regions as well as some codeword samples. Fig.4

illustrates the first and second iterations of OPTIMOL for

accordion category model learning, classification and im-

age collection.

Figure 3. Left: Interest regions found by Kadir&Brady detector. The

circles indicate the interest regions. The red crosses are the centers of these

regions. Right: Sample codewords. Patches with similar SIFT descriptor

are clustered into the same codeword, which are presented in same color.

4.3. Exp.1: Image Collection

21 object categories are selected randomly from Caltech

101-Web for this experiment. The experiment is split into

two parts: 1. Retrieval from Caltech 101-Web. The num-

ber of collected images in each category is compared with

the same numbers in Caltech 101-Human. 2. Retrieval from

Web-23 using the same 21 categories as in part 1. Results of

these two parts are displayed in Fig.5. We first observe that

OPTIMOL is capable of automatically collecting very simi-

lar number of images from Caltech 101-Web as the humans

have done by hand in Caltech 101-Human. Furthermore, by

using images from Web-23, OPTIMOL achieves on average

6 times as many images as Caltech 101-Human (some even

10× higher). In Fig.5, we also compare our results with

LabelMe [16] for each of the 22 categories. In addition,

a “penguin” category is included so that we can compare

our results with the state-of-art dataset collecting approach
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Figure 4. Example of the first and second iterations of OPTIMOL. In the

first iteration, a model is learned using the seed images. Classification is

done on a subset of raw images collected from the web using the “accor-

dion” query. Images with low likelihood ratios given by Eq.10 will be

discarded. For the rest of the images, those with low entropies given by

Eq.12 are incorporated into the permanent dataset, while the high entropy

ones stay in the “cache set”. In the second iteration, we update the model

using only the images held in the ”cache set” from the previous iteration.

Classification is done on the new raw images as well as those in the cache.

In a similar way, we append the images with high likelihood ratio and low

entropy to the permanent dataset and hold those with high likelihood ratio

and high entropy in the “cache set” for the next iteration of model learning.

This continues till the system comes to a halt.

[2]. In all cases, OPTIMOL collected more positive images

than the Caltech 101-Human, the LabelMe dataset and the

approach in [2], with very few mistakes. Note that all of

these results are achieved without any human intervention,

thus suggesting the viability of OPTIMOL as an alternative

to costly human dataset collection.

4.4. Exp.2: Classification

To demonstrate that OPTIMOL not only collects large

datasets of images, but also learns good models for object

classification, we conduct an experiment using the Fergus

ICCV’05 dataset under the settings as in [8]. 7 object cat-

egory models are learnt from the same training sets used

by [8]. Similarly to [8], we use a validation set to train a

7-way SVM classifier to perform object classification. The

feature vector of the SVM classifier is a vector of 7 entries,

each denoting the image likelihood given each of the 7 class

models. The results are shown in Fig.6, where we achieve

an average performance of 74.8%. This result is compara-

ble to (slightly better than) the 72.0% achieved by [8]. Our

results show that OPTIMOL is capable of learning reliable

object models.

4.5. Exp.3: Comparison of incremental learning
and batch learning

In this experiment, we compare both the computation

time and accuracy of the incremental learning and the batch
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Figure 6. Confusion table for Exp.2. We use the same training and test-

ing datasets as in [8]. The average performance of the OPTIMOL-trained

classifier is 74.82%, whereas [8] reports 72.0%.

learning (Fig.7). Due to the space limit, all results shown

here are collected from the “euphonium” dataset; other

datasets yield similar behavior. Fig.7(a) shows that the in-

cremental learning method yields a better dataset than the

batch method. Fig.7(b) illustrates that by not having to train

with all available images at every iteration, OPTIMOL is

more computationally efficient than a batch method. Fi-

nally, we show a ROC comparison of OPTIMOL vs. the

batch method. In our system, the classifiers change every

iteration according to the updates of the models. It is there-

fore not meaningful to show the ROC curves for the inter-

mediate step classifiers. Thus, an ROC is displayed to com-

pare the classification performance of the model learned by

the batch learning and the final model of the incremental

learning. Classifier quality is measured by the area under

its ROC curve.
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Figure 7. Batch vs. Incremental Learning (case study for the “eupho-

nium” category). Left: the number of images retrieved by incremental

learning and batch learning with false alarms represented as a darker hat

on the top of each bar. Middle: running time comparison of batch learning

and OPTIMOL’s incremental learning method as a function of number of

training images. The incrementally learned model is initialized by using

the batch mode on 10 training images, which takes the same time as batch

method does. After initialization, incremental learning is more efficient

compared to the batch method. Right: Receiver Operating Characteristic

(ROC) Curves of the incrementally learned model (green lines) versus the

model learned by using the same seeds images (red line). The area under

the ROC curve of OPTIMOL is 0.94, while it is 0.90 for batch learning.

5. Conclusion and future work
We have proposed a new approach (OPTIMOL) for im-

age dataset collection and model learning. Our experiments

show that as a fully automated system, OPTIMOL achieves

accurate dataset collection result nearly as good as those

of humans. In addition, it provides a useful annotation of

the objects in the images. Further experiments show that

the models learnt by OPTIMOL are competitive with the

current state-of-the-art model object classification. Human

labor is one of the most costly and valuable resources in re-

search. We provide OPTIMOL as a promising alternative to

collect larger image datasets with high accuracy. For future

studies, we will further improve the performance of OPTI-

MOL by refining the model learning step and introducing

more descriptive object models.
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Figure 5. Image collection and annotation results by OPTIMOL. Due to the space limit, we only show the annotation figures for eighteen categories, and

for the remaining five categories, only the image collection results are shown here (Refer to the bar plots shown in the bottom row). The notations of the bars

are provided at the bottom. The first 18 blocks are presented in two columns, with each row of the left (right) half page representing a category. Let us use

“Laptop” as an example. The left sub-panel gives 4 sample annotation results (bounding box indicates the estimated locations and sizes of the laptop). The

right sub-panel shows the comparison of the number of images in “Laptop” category given different datasets. The blue bar indicates the number of “Laptop”

images in LabelMe dataset, the yellow bar the number of images in Caltech 101-Human. The OPTIMOL result is displayed using the red and green bars.

The red bar represents the number of images retrieved for the “Laptop” category in Caltech 101-Web, the dark part on the top of the red bar is the number

of False Positives. The green bar shows the number of clean images retrieved from the “Laptop” category in the Web-23 dataset. Again, the dark part on the

top is the number of False Positives. In the last row of the figure, five bar plots for five different object categories are shown. The colors of the bars have the

same meaning as the first 18 blocks. Since the pictures in the “face” category of Caltech 101-Human were taken by camera instead of downloading from the

web, the raw images of the “face” category are not available. All of our results have been put online at http://vision.cs.princeton.edu/projects/OPTIMOL.htm


