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Abstract. Tabular data sharing serves as a common method for data exchange. However, shar-
ing sensitive information without adequate privacy protection can compromise individual privacy.
Thus, ensuring privacy-preserving data sharing is crucial. Differential privacy (DP) is regarded
as the gold standard in data privacy. Despite this, current DP methods tend to generate privacy-
preserving tabular datasets that often suffer from limited practical utility due to heavy perturbation
and disregard for the tables’ utility dynamics. Besides, there has not been much research on se-
lective attribute release, particularly in the context of controlled partially perturbed data sharing.
This has significant implications for scenarios such as cross-agency data sharing in real-world sit-
uations. We introduce OptimShare: a utility-focused, multi-criteria solution designed to perturb
input datasets selectively optimized for specific real-world applications. OptimShare combines the
principles of differential privacy, fuzzy logic, and probability theory to establish an integrated tool
for privacy-preserving data sharing. Empirical assessments confirm that OptimShare successfully
strikes a balance between better data utility and robust privacy, effectively serving various real-
world problem scenarios.
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1 Introduction

Sharing data containing personally identifiable information (PII) may result in the exposure of sensitive
personal information, thereby posing potential risks to user privacy. Data privacy, while possessing various
definitions, can be characterized as “Controlled Information Release” in the context of data sharing and
analysis [5]. The literature reveals several methods to ensure privacy in data sharing and analytics
via “Controlled Information Release”. Among these, disclosure control has gained prominence due to its
practicality [10,24]. This process entails applying various privacy preservation techniques to data prior to
its release for analysis. Differential privacy (DP) is the gold standard for disclosure control mechanisms,
attributed to its stringent privacy guarantees. An algorithm M adheres to differential privacy if, for
every pair of neighboring datasets x and y, and all potential outputs S, the inequality Pr[M(x) ∈ S] ≤
exp(ε)Pr[M(y) ∈ S] + δ holds. In this context, ε represents the privacy budget, indicating the privacy
leak, while δ signifies the probability of model failure.

In the realm of data sharing, tabular data sharing (non-interactive data sharing) is particularly sig-
nificant, as tabular data are often exchanged among agencies or released publicly in tabular format.
Non-interactive data sharing poses a significant challenge due to the high degree of randomization re-
quired to maintain privacy (acceptable ε values), which can result in reduced utility in the shared data [7].
Despite its complexity, non-interactive data sharing is crucial for enabling various opportunities, as it al-
lows analysts to access the entire dataset for analysis without being limited to a single query output (e.g.,
mean). Several differentially private (DP) approaches for non-interactive data sharing, have been pro-
posed [8,12,22,23]. However, selecting the optimal DP approach for differentially private non-interactive
data sharing is challenging due to factors such as the diversity of input datasets (e.g., statistical proper-
ties, dimensions) and the variety of applications (e.g., data clustering, deep learning) [29]. Furthermore,
unanticipated data leaks may occur when privacy constraints (ε and δ) are relaxed to achieve higher
utility [21].
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Prior solutions primarily emphasize one-to-one mapping between input dataset properties (e.g., table
size) and output datasets, assuming fully perturbed data can deliver sufficient utility, often diverging
from real-world needs [29]. However, factors such as trustworthiness levels of third parties (e.g., fully-
trusted → fully-untrusted) and unique utility dynamics for diverse applications must be considered.
Thus, investigating a partial data perturbation approach, where specific columns remain non-perturbed,
is crucial. Differential privacy (DP) in non-interactive data sharing with a subset of the dataset (strate-
gically chosen attributes) being released for mandated purposes has not been thoroughly explored. This
is paramount in real-world contexts, such as cross-agency data sharing settings. Incorporating a non-
perturbed vertical partition in the final dataset would enhance utility for custom query-based applica-
tions, but necessitates in-depth analysis concerning linkability and attack resilience, a problem we refer
to as controlled partially perturbed non-interactive data sharing (CPNDS). A framework enabling CP-
NDS in an application-specific utility and privacy-preserving manner is indispensable. CPNDS challenges
involve (1) the presence of various complex input data dynamics (e.g., categorical / non-categorical), (2)
utility maintenance for diverse application demands, and (3) striking an appropriate privacy-utility bal-
ance. A unified framework-based solution addressing these concerns is required for CPNDS, but currently,
no such comprehensive solutions exist.

In addressing this issue, we present a unified multi-criterion framework-based solution, called Op-
timShare, to generate a practical privacy-preserving instance of an input dataset under CPNDS. We
presume OptimShare operates under a central authority (a data custodian such as a government agency,
hospital, or bank) with full ownership and control over the datasets before releasing a privacy-preserving
version, which is a primary requirement for CPNDS. OptimShare employs an iterative method to iden-
tify the optimal perturbed instance for release in data analytics. The empirical results demonstrate that
OptimShare effectively balances utility and privacy for the selected dataset intended for release. Addi-
tionally, a comprehensive tool, available in both web-based and stand-alone versions, was developed to
automate the entire CPNDS process.

2 Background

This section briefly discusses the background of methods utilized in OptimShare. These approaches
include differential privacy and fuzzy logic.

2.1 Data Perturbation and Differential Privacy

OptimShare enforces data privacy through perturbation techniques, which can be classified into in-
teractive and non-interactive approaches. Interactive approaches involve aggregated data release [14],
while non-interactive methods enable the release of a perturbed, privacy-preserving version of an in-
put dataset, such as additive perturbation [16,26], data swapping [20], Privsyn [34], PrivatePGM [25],
and DP-WGAN [32]. OptimShare focuses on privacy-preserving tabular data release and employs non-
interactive perturbation techniques.

Differential privacy OptimShare’s objective is to enforce differential privacy (DP) on output data. DP
is the most widely accepted privacy model [15]. DP mechanisms such as Privsyn [34], PrivatePGM [25],
and DP-WGAN [32] have gained interest, with this paper focusing on PrivatePGM and DP-WGAN for
tabular data generation in OptimShare.

DP-WGAN, a DP data generation technique, uses the Generative Adversarial Network (GAN) frame-
work and the DP-SGD algorithm [1] to sanitize discriminator gradients during training [18,32]. Pri-
vatePGM [25] is a solution for privacy-preserving probabilistic graphical models (PGMs). PrivatePGM
leverages differentially private algorithms to enable the analysis of sensitive data without sacrificing
privacy.

Conventionally, DP uses two parameters, ε (the privacy budget) and δ (the model failure probability),
to constraint privacy leakage [3]. A randomization algorithm (DP mechanism - M) applied to a dataset
(D) is guided by these parameters [3]. For a mechanism to satisfy (ε, δ)-differential privacy, it must
satisfy Equation (1) [3], where d, and d′ are datasets differing by one record.

Definition 1 A randomized algorithm M with domain N|X | and range R: is (ε, δ)-differentially private
for δ ≥ 0 if for every adjacent datasets d, d′ ∈ N|X | and for any subset S ⊆ R,

P [M(d) ∈ S] ≤ eεP [M(d′) ∈ S] + δ (1)
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Postprocessing invariance property of DP Postprocessing invariance refers to the ability of a differential
privacy (DP ) algorithm to preserve its privacy guarantee despite additional computations on its outputs.
Consequently, the result of any postprocessing on an ε−DP output remains ε−DP [9].

2.2 Fuzzy Inference Systems

OptimShare employs Fuzzy Logic(FL) [19,31] to generate potential pairs of (ε, δ) values, conforming to
the pre-established privacy requirements of a dataset. FL models imprecise definitions computationally
via a fuzzy inference system (FIS) with three steps: fuzzification, rule evaluation, and defuzzification.
Fuzzification maps crisp inputs to fuzzy values; rule evaluation links fuzzy input memberships to an
output domain using a rule base; and defuzzification converts aggregated output memberships to a
crisp value using methods such as the center of gravity (Equation 2) [19,31].

COG =

∫max

min
µxxdx∫max

min
µxdx

(2)

3 The proposed work: OptimShare

OptimShare is controlled by a central authority (a data custodian), such as a government agency, to
handle Controlled Partially Perturbed Non-Interactive Data Sharing (CPNDS) with differential privacy,
as illustrated in Figure 1. The objective is to create a privacy-preserving version of the existing dataset
for third-party analytics utilization. For enhanced dataset security, user role management is integrated to
regulate access levels. The focus of this paper is on the OptimShare central algorithm, presuming that the
data curator has unrestricted access to the dataset and OptimShare for producing a privacy-preserving
dataset.

3.1 Problem Definition

Given a dataset D with n tuples, m attributes, and r(< m) sensitive attributes forming S − dataset,
Dr, the remaining (m − r) attributes form D(m−r). Applying differentially private algorithm M to Dr

generates perturbed dataset Dp
r with n tuples and r attributes, privacy constrained by the privacy

parameters of M . The composition of Dp
r and D(m−r) is released as Dp.

Derive
QS-dataset

Input dataset,

QS-dataset

PIF Analysis

FIS

DP-
Generators

Perturb
S-data

Refine
Q-attributes

...

Assess
Utility

Assess
Residual
Linkage

Generate
Effectiveness

Identify
 

Fig. 1: The modular arrangement of the OptimShare framework. Dp represents the perturbed output
dataset of the input dataset, D. FIS represents the Fuzzy Inference System. PIF represents the Personal
Information Factor. QSpi represents the intermediate perturbed instances of the QS dataset.

3.2 OptimShare Algorithm

Applying perturbation directly to an input dataset D using a mechanism M to create a privacy-preserving
dataset, Dp, leaves certain questions unresolved. Algorithm 1 demonstrates the approach employed by
OptimShare for generating privacy-preserving (perturbed) datasets, effectively addressing these concerns.
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Algorithm 1: OptimShare algorithm for generating a privacy-preserving dataset

Input:

D ← input dataset
Tε ← threshold ε
TNε,δ ← total (ε, δ)

combinations
TS ← total number of

searches
t ← perturbed instances

per combination
A ← application
C ← effectiveness

coefficient
ET ← effectiveness

threshold

Output: Dp ← perturbed dataset
of D

1 Identify identifiers (ID) and quasi-identifiers (Q);
2 Remove ID from the dataset to produce QS-dataset;
3 Identify tuple distribution of the QS-dataset;
4 Determine PIF of Q-dataset;
5 Determine PIF of Q-dataset conditioned to S;
6 Refine the Q attributes and S attributes;
7 Generate TNε,δ combinations as {(ε1, δ1),. . . ,(εTN , δTN )} (where εi < εi+1 and δi < δi+1);
8 for each (εi, δi) at TNε,δ intervals in TS do
9 Apply DP generators (DPA1, . . . , DPAn) to generate t perturbed instances;

10 Merge Q to all t perturbed instances (DP1, . . . , DPt);
11 Generate normalized utility values of all DPi;
12 Generate t residual leak normalized values;
13 Find effectiveness loss value eli of each t perturbed instances for A using C and Tε;
14 Choose all DPi that satisfy ei ≥ ET (where ei = 1− eli);

15 Return Dp with the highest ei;

First, OptimShare identifies the three primary types of attributes in the input dataset, namely identi-
fiers, quasi-identifiers, and sensitive attributes, subsequently eliminating the identifiers. Next, the distri-
bution of tuples in the remaining dataset, referred to as the QS-dataset, is determined. The QS attributes
are then further refined. The algorithm generates combinations of privacy parameters, ε and δ specific to
the input dataset. Next, OptimShare employs differentially private algorithms on the sensitive portion
of the dataset (S − dataset), leveraging each (ε, δ) combination to generate perturbed instances. The
effectiveness values for the perturbed QS-datasets are then calculated. The algorithm finally returns the
perturbed dataset with the highest effectiveness value.

3.3 The Main Steps of OptimShare Algorithm

Given an input dataset D with m attributes and n tuples, OptimShare identifies identifier attributes (ID)
and quasi-attributes (Q) within D. To protect against direct identification, ID attributes are excluded
from D based on their uniqueness. The dataset intended for publication after perturbation is formed by
combining Q and the remaining vertical partition S, referred to as the QS-dataset.

Identifying initial tuple distribution of the dataset to allow M to maintain the data distri-
bution in QS The optimal clustering dynamics are found using the k−means algorithm and Silhouette
analysis [13], unless the input dataset is a classification dataset with existing class labels representing
tuple distribution (refer to Algorithm 2).

Algorithm 2: Identifying original tuple distribution of the input dataset

Input: QS ← QS dataset
cn_range← list of cluster numbers to be searched

Output: Ts ← tuple status
1 for each cn ∈ {cn_range} do
2 run k −means clustering on QS, where k = cn;
3 scn = Silhouette Coefficient of cn;

4 select the cn of maximum(scn);
5 return Ts, which is the k −means cluster label of each tuple under maximum(scn);

Identification Q attributes A quasi-identifier (Q), a unique attribute set capable of distinguishing a
record, could potentially facilitate linkability via auxiliary data, posing a risk to privacy leakage.
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Declaring Q attributes Selecting data-specific Q attributes is challenging due to variable definitions of
sensitive attributes (i.e., domain specific). OptimShare addresses this by using a global set of common Q
attributes (GQ). These attributes are then refined based on their distinguishability using the personal
information factor (PIF), a measure that gauges record indistinguishability.

Cell surprise factor (CSF) and personal information factor (PIF) Ian et al. defined PIF using entropy-
based KL-divergence [27,28]. We extend the idea and propose CSF as a bounded measure for assessing
attribute impact on record indistinguishability. CSF is computed using Equations 3, 4, and 5. The CSF
provides a unique method to assess how the indistinguishability of records is affected by the introduction
of a specific attribute or set of attributes. PIF, bounded by [0,1], encapsulates the attribute’s CSF
distribution (Definition 1).

Prior(X) : Prior(X) = P (X = x) =
|x|
|X|

(3)

Posterior(X) : Posterior(X) = P (X = x|Y = y) =
|x, y|
|y|

(4)

CSF Definition : CSF = |Prior(X)− Posterior(X)| (5)

Note that CSF is upper bounded by Posterior(X) as OptimShare only looks at the increase in
indistinguishability. Hence, in all cases interested, Prior(X) ≤ Posterior(X).

Definition 1 (PIF). Let xi be the CSF value bins (bounded by [0,1]) of an attribute, where hi is the
number of occurrences of each xi.

Then,

PIF =

∑n
i=1 xihi∑n
i=1 hi

(6)

Application of perturbation on the QS-dataset The perturbation of the QS-dataset is a four-step
process: (1) Conduct the PIF analysis on the Q attributes, (2) Refine the Q and S attributes per PIF
outcomes, (3) Define the privacy parameters (ε and δ) for the S-dataset through the PIF analysis, and
(4) Implement perturbation on S data and determine the optimal perturbed instance for sharing.

Assessing the Q attributes using PIF Calculate QPIFi (i.e., PIF ) for all Q attributes in the Q-dataset.
Determine QSPIFi (i.e., PIF ) for all Q attributes in the QS-dataset to evaluate the influence of S
attributes on each Q attribute. The difference between QPIFi and QSPIFi indicates the independence
of a specific Q attribute’s data distribution from the S attributes. The inequality ∆PIFi ≥ αQPIFi

determines the extent of PIF change, where ∆PIFi = QSPIFi − QPIFi and α is the sensitivity coef-
ficient. If α = 1, it means the PIF leak from Qi in the QS dataset is exactly QPIFi, implying that
QPIFi < 0.5. Attributes that satisfy ∆PIFi ≥ QPIFi are moved to the S-dataset for perturbation, as
their distribution is significantly altered by S attributes, which could otherwise risk personal information
leakage.

Next, as the initial step to determine the privacy requirements of the S-dataset, we calculate the
PIF (PIFThresh) of the QS dataset using Equation 7. In the equation, QSMaxPIF is the maximum
PIF value returned by the QS dataset.

PIFThresh =

{
QSMaxPIF if QSMaxPIF < 1
1 otherwise (7)

Developing a link between PIF and (ε, δ) A link between PIF and (ε, δ) in terms of enforcing differential
privacy can be modeled as follows:

The definition of (ε, δ)-differential privacy characterizes the probabilistic bounds for a randomized
algorithm or statistical mechanism M . For every pair of neighboring datasets d and d′ (that differ by a
single individual’s data) and for every possible subset of the output space S ⊆ Range(M), this model
ensures that:

P [M(d) ∈ S] ≤ eεP [M(d′) ∈ S] + δ (8)
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where P [M(d) ∈ S] denotes the probability that the mechanism M produces an output in set S with
input dataset d.

Here, ε signifies the privacy parameter (the privacy budget), and δ is a negligible quantity representing
the probability of the privacy mechanism potentially violating the ε-privacy condition. As ε approaches
zero and δ is sufficiently small, a higher degree of privacy protection is conferred. Hence, we can define
a privacy metric f(ε, δ) = (1 − exp(−ε)) + δ, which serves as a suitable gauge for quantifying privacy
levels. Consequently, a decrease in the value of f(ε, δ) indicates an enhanced privacy protection.

One essential property of differential privacy is its postprocessing invariance, implying that if a random
mechanism M guarantees (ε, δ)-differential privacy, then any post-processing function g applied to the
output of M also maintains the (ε, δ)-differential privacy. Formally, if M ensures (ε, δ)-differential privacy,
then the composed mechanism g ◦M is also (ε, δ)-differentially private for all functions g.

In the non-interactive privacy-preserving data publishing paradigm, a data curator generates a differ-
entially private version of a dataset D using a differentially private mechanism M . In this setting, f(ε, δ)
acts as an upper bound for privacy loss, ensuring that privacy loss does not exceed (1− exp(−ε)) + δ.

Examining a particular attribute A ∈ D, we define the “Personal Information Factor” (PIFA) that
quantifies the attribute-specific distinguishability level. For each attribute A, we define ∆A as the increase
in indistinguishability, which can be represented as:

∆A = Posterior(A)− Prior(A) (9)

The relationship between PIFA and ∆A is given by:

PIFA =

∑n
i=1 ∆Ai

hi∑n
i=1 hi

(10)

where ∆Ai represents the increase in indistinguishability for the attribute A in the i-th bin with hi

occurrences.
Utilizing PIFA for each attribute, we can introduce the privacy measure fA as follows:

fA(PIFA, δ) = PIFA + δ. (11)

Consequently, we can derive a privacy measure for the entire dataset D using the maximum Personal
Information Factor (PIFThresh) over all attributes in D. Hence, the privacy measure for the dataset can
be defined as:

fD(ε, δ) = PIFThresh + δ. (12)

fD(ε, δ) signifies an upper bound to privacy loss upon the release of the dataset and provides a quan-
titative control mechanism balancing data utility and privacy protection. PIFThresh = max(PIFAi)
signifies the maximum PIF across all attributes, indicating the dataset’s potential to satisfy privacy pa-
rameters without any attribute surpassing this threshold. A fuzzy model can now be utilized to represent
this relationship between PIFThresh and (ε, δ).

Determination of the privacy parameters (ε and δ) for S-dataset perturbation Optimshare employs a
fuzzy inference system (FIS) for determining suitable ε and δ inputs for the S-dataset from PIFThresh.
Higher PIF (PIFThresh) suggests enhanced distinguishability of the QS dataset and, consequently,
greater privacy need for the S data via increased perturbation. We model an FIS to encapsulate the
relationship between PIF, ε, and δ. Each of the three fuzzy variables have three Gaussian-shaped mem-
bership functions (LOW,MEDIUM,HIGH) signifying different input value ranges and facilitating a
gradual shift between functions for a broader value spectrum (see Figure 2a). The mean (µ) and standard
deviation (σ) for LOW, MEDIUM, and HIGH are respectively set as (µ = 0, σ = 1), (µ = 0.5, σ = 1),
and (µ = 1, σ = 1).

Rule 1: IF (ε = LOW ) THEN (PIF = HIGH)

Rule 2: IF (δ = LOW ) THEN (PIF = HIGH)

Rule 3: IF (ε = MEDIUM AND δ = MEDIUM) THEN (PIF = MEDIUM)

Rule 4: IF (ε = HIGH ) THEN (PIF = LOW )

Rule 5: IF (δ = HIGH) THEN (PIF = LOW )

(13)

Figure 2a depicts the fuzzification of variables ε, δ, and PIF , with the y-axis quantifying their
degree of membership. A fuzzy rule base, providing the foundation for fuzzy inference, is established
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Fig. 2: The mapping between the three fuzzy variables and the change of PIF against the changes of δ
and ε.
next. Equation 13 represents the proposed FIS rules, defined by the IF-THEN convention (e.g., IF (ε =
MEDIUM AND δ = HIGH) THEN (PIF = MEDIUM)). The FIS rule evaluation step fuses fuzzy
conclusions into one via the fuzzy rule base, applying MAX−MIN (OR for MAX and AND for MIN)
operation. The minimum among membership levels is considered for each rule, while the maximum fuzzy
value from all rule outputs determines the value conclusion.

Figure 2 depicts the rule surface between the three fuzzy variables. As shown in the rule surface, higher
values of PIF correspond to lower values for ε and δ. The final step of the FIS is the defuzzification based
on the rule aggregated shape of the output function. We use the centroid-based technique to obtain
the final defuzzified output value, where x = output and µx = degree of membership of x. As depicted
in the fuzzy-rule surface (refer to Figure 2), a single PIF value corresponds to a collection of (ε, δ)
combinations.

Application of perturbation on the S-dataset OptimShare generates a list of (ε and δ) combinations
matching the input dataset’s PIFThresh. With a specific (ε and δ) pair, it perturbs the S-dataset,
generating a set number of perturbed instances that reflect the data distributions (refer to Section 3.3).
Each perturbed version is min−max rescaled to the original attribute min−max values, then merged
with the Q-dataset to create perturbed QS datasets.

Privacy analysis Our threat model assumes the worst-case scenario, with the attacker having full
knowledge of the Q attributes in the perturbed QS − dataset, to assess residual linkage risk. We define
a similarity group, SGk, as a collection of identical records (Q) in the QS dataset. We compute the
cosine similarity (CSi

r) between original and perturbed S attributes for each record (ri) in each SGk.
The worst-case record linkability is then defined as per Definition 2.

The Threat Model

The adversary has a complete knowledge (e.g., record order, attribute domain) of the Q attributes.
This assumption leads to a worst-case linkage risk by enabling the adversary to explore the
linkability of the records through Q (and perturbed S) attributes based on the tuple similarity.
The knowledge acquired will subsequently be leveraged by the adversary to extract the sensitive
information of individuals.

Definition 2 (Record linkability).
Let R be the set of all rows in the perturbed (P ) and original (D) datasets. If qα = qβ for some

α, β ∈ R and q ∈ Q, take (qα, sα) ∈ SG. For each SGk ∈ SG compute CSi
k for some i ∈ RSGk

, where
RSGk

is all records in SGk. If CSi
k ≤ CSj

k ∀ j ∈ RSGk
, then CSi

k ∈ L, where L is the set of linkable
records.

Theorem 1. For any α, β ∈ R such that qα = qβ for some q ∈ Q, the probability that (qα, sα) and
(qβ , sβ) are in the same similarity group and (qα, sα) is linkable is small. Refer to Section 8.1, Proof 1,
for the proof.

Theorem 2. OptimShare framework satisfies ε-differential privacy when the following inequality holds.
Refer to Section 8.1, Proof 2, for the proof.
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P [(qα,sα)∈SG ∧ CSi
k≤CSj

k ∀ j∈RSGk
]

P [(qα,sβ)∈SG ∧ CSi
k≤CSj

k ∀ j∈RSGk
]
≤ eε

Analysis of Utility and Effectiveness in Data Perturbation The utility can be measured based on
any measurement such as accuracy, precision, recall, and ROC area (KL-divergence for generic scenarios)
normalized within [0,1]. Consider KLx as the KL-divergence between a perturbed attribute, xp

i ∈ S, and
its unperturbed version, xi. The maximum KLx is the dataset’s KL-divergence, indicating the highest
distribution difference. The utility loss Ul quantifies the utility reduction resulting from data perturbation,
given an original utility Uo and a utility Up after the perturbation.

The effectiveness of perturbation is gauged by the normalized residual linkage leak PN and the ε-
threshold Tε set by the OptimShare curator. The dataset is not suitable for release if PN is too high,
which is calculated as εL

Tε
if Tε > εL, or 1 otherwise, where L represents linkable records.

The effectiveness loss (El) of a perturbed dataset is defined as a weighted measure of Ul and PN ,
calculated by El = C Ul + (1−C) PN . Here, C determines the emphasis on linkage protection (high C)
versus utility preservation (low C). The ranges of El are dependent on PN and Ul values: For Low PN

and Low Ul: El is in [0, C]. For High PN , low Ul: El is in [C, 1]. For Low PN , high Ul: El is in [1− C,
1]. For High PN and High Ul: El is in [C, 1]. In our study, we set C to 0.5 to treat residual linkability
leak and utility as equally crucial.

4 Results and Discussion

This section outlines the process of implementing OptimShare as a live tool (a usable product in the real
world) and setting up the experiments. Additionally, we discuss the intermediate steps and dynamics of
OptimShare.

4.1 Implementation

We developed two versions of OptimShare (using Python 3.8): a server-based for large-scale settings and
a stand-alone for single-computer use. Figure 8 and 9 show the screen captures of the stand-alone and
the server version.

Fig. 3: System design of the OptimShare server-based version

OptimShare server-based version Figure 3 outlines a server-based system design with three user
roles: curator (the data custodian), operator (admin), and data user, each with distinct privileges. Cura-
tors own and manage original datasets, applying OptimShare data perturbation, auditing, and publishing
perturbed datasets for data users. Operators, as administrators, manage the algorithms while being re-
stricted from accessing the original datasets. Data users consume the perturbed datasets approved by
curators. The system ensures security and data privacy by allowing dataset owners exclusive control and
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isolating servers from external access. OptimShare uses Docker containers to store the privacy-preserving
algorithm for scalability and continuous integration and deployment (CI/CD). The dataset manager then
pushes the published datasets to the public system, where data users can only access approved, perturbed
datasets.

4.2 Experiments

This section discusses the generation of perturbed privacy-preserving datasets using the datasets and
configurations mentioned in Table 1. The experiments were performed on an Apple MacBook Pro with
an M1 Max and 32GB of RAM, with all plots generated automatically by our live tool (see Section 4.1).

Table 1: Datasets used for the experiments. Note: all the datasets are tabular.
Dataset Abbr. Records Attributes Classes Global Q Attributes

NHANES diabetes Kaggle1 NHDS 4,412 17 2 ‘BPQ020’, ‘RIAGENDR’, ‘ALQ120Q’, ‘LBXTC’
Wine Quality2 WQDS 4,898 12 7 ‘free sulfur dioxide’, ‘total sulfur dioxide’
Page Blocks Classification3 PBDS 5,473 11 5 ‘at1’, ‘at2’, ‘at10’
Letter Recognition4 LRDS 20,000 17 26 ‘lettr’, ‘x-box’, ‘y-box’, ‘width’, ‘high’, ‘xy2br’
Statlog (Shuttle)5 SSDS 58,000 9 7 ‘b’, ‘d’, ‘i’
Credit Score Kaggle6 CSDS 150,000 11 2 ‘ID’, ‘#ofOCLL’, ‘#ofT90DL’, ‘#RELL’, ‘#ofT60DPDNW’, ‘#ofDependents’

The configurations of OptimShare In the experiments, the primary parameters for OptimShare
were set as follows: Tε = 8, Pl = 0.01% (δ = (1/(100 × number of rows of D)) × Pl), TNε,δ = 12,
t = 4, A = “classification - GaussianNB”, C = 0.5, ET = 0.5 (see Section 3 for parameter details).
Global Q attributes used for each dataset are provided in Table 1. All settings remained constant in all
experiments, ensuring uniformity for unbiased results. DP-WGAN (focusing non-categorical attributes)
and PrivatePGM (focusing categorical attributes) were used for S data perturbation.

Table 2: Experiment results

Dataset # of Records Total Processing
Time (sec)

Record Processing
Time (ms)

Average
Utility

Average
Effectiveness

NHDS 4,412 517.6 117.3 0.784 0.725
WQDS 4,898 471.1 96.2 0.801 0.900
PBDS 5,473 546.6 99.9 0.717 0.859
LRDS 20,000 4600.9 230.0 0.942 0.971
SSDS 58,000 11,579.3 199.6 0.925 0.962
CSDS 150,000 49,867.2 332.4 0.806 0.903

Fig. 4: Average utilities and ef-
fectivenesses

Results Table 2 displays the processing time for each dataset and the averages of utilities and effective-
nesses for the privacy-preserving datasets generated by OptimShare, while Figure 4 plots the averages of
utilities and effectivenesses. The datasets exhibit high effectiveness due to high utility and minimal resid-
ual data linkability. The average time complexity of the OptimShare algorithm is O(nl), where n is the
number of records and l is the product of TS and t. The training time of DP-WGAN and PrivatePGM
models increases according to the number of records. Thus, as the number of records increased, the total
processing time increased accordingly.

4.3 Dynamics of OptimShare Algorithmic Steps

In this section, we discuss the intermediate steps involved in OptimShare’s process for generating and
releasing a private dataset. By understanding these steps, we can gain a comprehensive understanding
of the experimental dynamics behind the process. As discussed in Section 3, one of the fundamental

1https://www.kaggle.com/cdc/national-health-and-nutrition-examination-survey
2https://archive.ics.uci.edu/ml/datasets/Wine+Quality
3https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
4https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
5https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29
6https://www.kaggle.com/c/GiveMeSomeCredit/data?select=cs-training.csv
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components of OptimShare is the determination of privacy requirements. This is done through PIF
analysis, as explained in Section 3. As shown in Figure 5a, the NHDS dataset (refer to Table 1) shows
extreme CSF values (represented by dark red in the heatmap) in certain attributes (e.g., BMXBMI,
BMXHT ), whereas certain other attributes such as BPQ020 shows lower CSF values (represented by
green). This is due to the introduction of BMXBMI drastically reducing the overall indistinguishability of
the tuples in the dataset. However, BPQ020, among other attributes in the dataset, has much less impact
on reducing the tuple indistinguishability. Hence, the comparison between Figures 5a and 5b provides a
clear indication of the intuition behind the PIF value generation. As shown in Figure 5b, higher PIF
values indicate higher levels of distinguishability (or PIF leak) compared to the other attributes.

The separate analysis of the Q attributes (represented by the red bars in Figure 5b) provides a
clearer understanding of their impact on PIF values compared to when they are introduced to the S
attributes, as demonstrated in Figures 5c and 5d. It is clear that PIF values of the attributes LBXTC
and ALQ120Q significantly increase when they are introduced to the S attributes.

Figure 6 shows the CSF and PIF dynamics of the refined set of Q attributes. As depicted by the plots,
OptimShare has identified that LBXTC and ALQ120Q should be removed from the set of Q attributes
as they leak too much information when released with no perturbation. Hence, LBXTC and ALQ120Q
are automatically considered as sensitive attributes and moved to the set of S attributes. As shown in
the plots (refer to Figure 6), the refined Q attributes show minimal data distinguishability, producing
more homogeneity in the refined Q-dataset tuples. This result, in turn, supports the application of less
perturbation on the S-dataset compared to the previous non-refined Q attribute set.

Figure 7 shows the utility and effectiveness variations of the 12 datasets produced for the twelve
ε, δ combinations (TNε,δ = 12). As Figures 7a and 7b show, the utility and effectiveness of the dataset
are almost similar. This is due to the corresponding datasets producing much lower normalized residual
linkage leak (PN ) than the utility values. This also suggests that OptimShare effectively refined the Q
attribute, so the datasets can still maintain a lower residual linkage leak.

(a) CSF analysis of the
dataset

(b) PIF analysis of the
dataset

(c) CSF analysis of the Q
attributes

(d) PIF analysis of the Q
attributes

Fig. 5: The CSF and PIF analysis of the input dataset and the CSF and PIF analysis of the Q attributes.
Note: The red bars in (b) represent the Q attributes.

(a) CSF analysis of the
refined set of Q at-
tributes

(b) PIF analysis of the
refined set of Q at-
tributes

Fig. 6: The CSF and PIF analysis of the refined
set of Q attributes

(a) Utility analysis
of privacy-preserving
datasets

(b) Effectiveness
analysis of privacy-
preserving datasets

Fig. 7: A comparison between utility and effec-
tiveness of the privacy-preserving datasets gen-
erated by OptimShare
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We compared DP-WGAN and OptimShare using the NHDS dataset, applying the configurations from
Section 4.2 to generate privacy-preserving datasets. Upon comparing these with the original dataset, the
mean and standard deviation of two Q-attributes (BPQ020 and RIAGENDR) were evaluated. DP-
WGAN’s perturbation of the entire dataset largely destroys individual statistics for these attributes,
whereas OptimShare preserves them, yielding nearly identical utility to the original except for a small
discrepancy, mostly due to replacing missing values. We also measured the Naïve Bayes classification
performance across the three datasets using RMSE, precision, and recall. Interestingly, DP-WGAN out-
performs the original dataset due to the beneficial effect of perturbation on the dataset’s distribution.
However, OptimShare still delivers good performance on all three metrics, benefiting from perturbation
and the preservation of certain attributes. This indicates OptimShare’s high utility and potential applica-
bility in scenarios requiring accurate global statistics, such as tracking exact COVID-19 case distribution
across postcodes, assuming postcode attributes meet OptimShare’s indistinguishability requirements.

Table 3: Comparison of results of OptimShare against direct perturbation by DP-WGAN. The following
experiments were carried out under the same configurations explained in Section 4.2. NB represents
Naïve Bayes classification, and std. represents the standard deviation.

Original DP-WGAN OptimShare

BPQ020_mean 0.0117 6.72105 0.0079
RIAGENDR_mean 1.30235 1.66805 1.35855
BPQ020_std. 0.6667 0.97205 0.6667
RIAGENDR_std. 0.45205 0.1451 0.47925
NB_RMISE 0.4015 0.4125 0.4153
NB_precision 0.760 0.780 0.811
NB_recall 0.789 0.794 0.798

5 Related Works

Literature shows a few attempts to utilize data perturbation to solve privacy issues in tabular data-
sharing (non-interactive data sharing) for different application-specific scenarios. Two of the primary
advantages of data perturbation against cryptographic protocols are efficiency and scalability. Examples
of data perturbation techniques include additive perturbation, random rotation, geometric perturbation,
randomized response, random projection, microaggregation, hybrid perturbation, data condensation,
data wrapping, data rounding, and data swapping [11,16,20]. However, the utilization of these pertur-
bation techniques is often intended for one application (e.g., histogram analysis, deep learning), which
restricts the utility of the corresponding perturbation approach to one dedicated task. Hence, the gen-
eralizability of a perturbation mechanism has not been of fundamental focus, and the practicality of
these approaches for real-world applications has been a challenge. The literature does not show many
mechanisms that have been developed to investigate the tradeoff between utility and privacy [33] re-
lated to tabular data perturbation, towards supporting practical utility (i.e., not restricting the utility
to one application). Bertino et al.’s framework for evaluating privacy-preserving data mining algorithms
is one of the few approaches developed to evaluate the balance between privacy and utility. However,
their approach is more of a perturbation quality evaluation approach than an approach to improve the
usability (practical utility) of data perturbation approaches [4]. FRAPP is another solution that pro-
vides matrix-theoretic framework-based solutions for random perturbation schemes [2]. Thuraisingham
et al. attempted to develop insights into balancing privacy and utility during privacy preservation [30].
Although these approaches are insightful, they did not specifically answer the usability aspect of a per-
turbation mechanism in the real-world setting. Although a few other framework-based solutions, such as
PSI (Ψ [17]), investigate the generalizability of data sharing with high privacy, they often focus only on
the interactive data sharing setting. Hence, it is essential to develop a unified framework-based solution
to improve the practical utility of non-interactive privacy preservation mechanisms.

6 Conclusion

This paper introduces OptimShare, a unified framework-based solution for privacy-preserving tabular
data sharing. Unlike existing methods that concentrate on one problem (e.g., histogram analysis), Op-
timShare caters to a wide range of use cases, resolving privacy and utility issues more effectively. Op-
timShare uniquely identifies the privacy requirements of a specific dataset through a novel approach
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called the Personal Information Factor (PIF) and allows a carefully selected limited set of raw attributes
to be released, adhering to differential privacy principles. OptimShare achieves this by a rigorous iterative
privacy enforcement mechanism, yielding a perfect balance between privacy and utility. This is verified by
the empirical evidence produced by OptimShare. Lastly, we developed both web-based and stand-alone
versions of OptimShare. In particular, the web-based system focuses more on security by isolating raw
datasets according to roles, and the system enables scalability and CI/CD using Docker containers.

Despite OptimShare’s effective approach to handling controlled partially perturbed non-interactive
data sharing (CPNDS), CPNDS still introduces new challenges around maintaining a proper balance
between utility and privacy. This arises largely from the complexity of input data that presents unlimited
potential scenarios, suggesting avenues for future work. We continuously examine these dynamics as part
of our development and strive for ongoing OptimShare improvements.
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8 Appendices

8.1 proofs

Proof 1

Proof. Consider D as an original dataset with n tuples and m attributes. Define S and Q as sets
of sensitive and non-sensitive attributes in D respectively. Assume the adversary possesses complete
knowledge of Q in perturbed dataset, Dp.

We define record linkability as follows. Consider R as the collection of all records in D and Dp. If
qα = qβ for some q ∈ Q and α, β ∈ R, then (qα, sα) and (qβ , sβ) are part of the same similarity group,
SG. Compute the cosine similarity, CSi

k, between original and perturbed S attributes of each record ri
in SGk. A record is linkable if CSi

k ≤ CSj
k for all i ∈ RSGk

, for some j ∈ RSGk
. Denote linkable records

set as L.
ε-differential privacy is satisfied if for any datasets D1 and D2 differing by at most one record, and

any outcome o of a randomized algorithm M , the following inequality holds:

P [M(D1) = o]

P [M(D2) = o]
≤ eε (14)

Take D1 as the original dataset and D2 as the dataset identical to D1 but with modified sensitive
attributes in one record. Then, we can apply ε-differential privacy, showing the adversary’s successful
record linkage probability is minimal.

Calculate the probabilities in the inequality’s numerator and denominator. The numerator’s proba-
bility is the chance that Dp contains a record (qα, sα) in the same SG as (qβ , sβ), and (qα, sα) is linkable.
This is:

P [M(D1) = o] = P [(qα, sα) ∈ SG ∧ CSi
k ≤ CSj

k ∀ j ∈ RSGk
] (15)

For the denominator, the probability is the chance that Dp contains a record (qα, sβ) in the same SG
as (qβ , sβ), and (qα, sβ) is linkable:

P [M(D2) = o] = P [(qα, sβ) ∈ SG ∧ CSi
k ≤ CSj

k ∀ j ∈ RSGk
] (16)

Substituting into Equation 14, we get:

P [(qα, sα) ∈ SG ∧ CSi
k ≤ CSj

k ∀ j ∈ RSGk
]

P [(qα, sβ) ∈ SG ∧ CSi
k ≤ CSj

k ∀ j ∈ RSGk
]
≤ eε (17)

This suggests the adversary’s successful record linking probability is limited, fulfilling the ε-differential
privacy requirement.



OptimShare: A Unified Framework for Privacy Preserving Data Sharing 13

Proof 2

Proof. The proof of Theorem 2 requires demonstrating the numerator and denominator of the Theorem’s
Equation are small, indicating the probability of a record in a similarity group being linkable is minimal.
This necessitates verifying that the perturbations on Dp’s sensitive attributes suffice to deter successful
record linking by an adversary.

This is feasible by ensuring the cosine similarity between the original and perturbed sensitive at-
tributes of all Dp records is minimal. Lower cosine similarity complicates record linking for the adversary
as it dictates the record’s linkability probability. Compliance with the privacy budget demands a negli-
gible change in a specific outcome’s probability when a record is added or deleted, which is achievable
by applying DP noise to sensitive attributes during perturbation.

The sufficiently small cosine similarity between original and perturbed attributes can be upper-
bounded using record linkability (Definition 2), computing the cosine similarity for each dataset record.
Complying with the privacy budget involves bounding the change in a specific outcome’s probability
upon record addition or deletion.

Considering two records, (q1, s1) and (q2, s
′
1), which have identical quasi-identifiers, and sensitive

attributes s1 and s′1, (where s′1 is the perturbed version of s1, generated using an (ε, δ)-differentially
private generator), we can compute the cosine similarity of original and perturbed sensitive attributes,
showing the insignificant change in a specific outcome’s probability with record addition or deletion.

The cosine similarity between s1 and s′1 is calculated as:

CS =
s1 · s′1
|s1||s′1|

(18)

We can use the Cauchy-Schwarz inequality [6] to show that:

s1 · s′1 ≤ |s1||s′1| (19)

Given the constraints set by εL
Tε

(where L represents the set of linkable records), we can establish an
upper bound for |s′1| to ensure that the cosine similarity is small.

For εL
Tε
≤ 1, we can ensure that the added noise is within the acceptable range defined by ε. This

limits the denominator of the cosine similarity expression to a value that’s consistent with the privacy
budget, ε.

Therefore, the cosine similarity between the original and perturbed sensitive attributes is upper-
bounded by a value that complies with the privacy budget ε, which confirms that the OptimShare
framework satisfies ε-differential privacy.

8.2 Different Interface Views of the OptimShare Live Tool

OptimShare web-based and stand-alone live tool Figure 8 and Figure 9 show the screenshots of
the two versions (web-based and stand-alone) of the OptimShare live tool.

(a) View of a dataset on
the server

(b) Details of an privacy-
preserving algorithm

(c) Detail of a perturba-
tion task

(d) Published dataset to
data users

Fig. 8: Screenshots of the server-based OptimShare and the web server for Data Users.
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(a) A loaded
dataset in the
Stand-alone ver-
sion

(b) Applying a
privacy-preserving
algorithm on the
dataset

(c) Intermediate
figures

(d) Extended configu-
rations

(e) A perturbed
dataset

Fig. 9: Screenshots of the OptimShare stand-alone version.
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