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This paper describes the implementation of optimiza- 

tion techniques based on control theory for airfoil and 

wing design. The theory is applied to a system de- 

fined by the partial differential equations of the flow, 
with control by the boundary as a free surface. The 

Frechet derivative of the cost function is determined via 

the solution of an adjoint partial differential equation, 

and the boundary shape is then modified in a direction 

of descent. This process is repeated until an optimum 

solution is approached. Each design cycle requires the 

numerical solution of both the flow and the adjoint equa- 

tions, leading to  a computational cost roughly equal to  

the cost of two flow solutions. The cost is kept low 

by using multigrid techniques, which yield a sufficiently 
accurate solution in about 15 iterations. Satisfactory 

designs are usually obtained with 10-20 design cycles. 

1 The Design Problem as a Control Problem 

Aerodynamic design has traditionally been carried out 
on a cut and try basis, with the aerodynamic expertise 

of the designer guiding the selection of each shape mod- 

ification. Although considerable gains in aerodynamic 

performance have been achieved by this approach, con- 

tinued improvement will most probably be much more 

difficult to  attain. The subtlety and complexity of fluid 
flow is such that it is unlikely that repeated trials in an 

interactive analysis and design procedure can lead to a 

truly optimum design. Automatic design techniques are 

therefore needed in order to fully realize the potential 

improvements in aerodynamic efficiency. 
The simplest approach to optimization is to define 

the geometry through a set of design parameters, which 

may, for example, be the weights ai applied to a set of 

shape functions bi(x) so that the shape is represented as 

Then a cost function I is selected which might, for ex- 

ample, be the drag coefficient or the lift to drag ratio, 

and I is regarded as a function of the parameters ai. 

The sensitivities 5 may now be estimated by making 
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a small variation Sai in each design parameter in turn 

and recalculating the flow to obtain the change in I. 

The gradient vector may now be used to determine a 

direction of improvement. The simplest procedure is to 

make a step in the negative gradient direction by setting 

an+l = an - Ma, 
5 

so that to first order 

More sophisticated search procedures may be used such 

as quasi-Newton methods, which attempt to estimate 

the second derivative - of the cost function from 

changes in the gradient in successive optimization 
steps. These methods also generally introduce line sear- 

ches to find the minimum in the search direction which 

is defined at each step. The main disadvantage of this 

approach is the need for a number of flow calculations 

proportional to the number of design variables to esti- 

mate the gradient. The computational costs can thus 
become prohibitive as the number of design variables is 

increased. 
An alternative approach is to cast the design problem 

as a search for the shape that will generate the desired 
pressure distribution. This approach recognizes that the 

designer usually has an idea of the the kind of pressure 

distribution that will lead to the desired performance. 

Thus, it is useful to consider the inverse problem of cal- 

culating the shape that will lead to a given pressure 

distribution. The method has the advantage that only 

one flow solution is required to obtain the desired de- 

sign. Unfortunately, a physically realizable shape may 

not necessarily exist, unless the pressure distribution 

satisfies certain constraints. Thus the problem must be 

very carefully formulated. 

The problem of designing a two-dimensional profile 

to attain a desired pressure distribution was studied by 

Lighthill, who solved it for the case of incompressible 

flow with a conformal mapping of the profile to a unit 

circle [ll]. The speed over the profile is 



where 4 is the potential which is known for incompress- 

ible flow and h is the modulus of the mapping func- 

tion. The surface value of h can be obtained by setting 

q = qd, where qd is the desired speed, and since the 

mapping function is analytic, it is uniquely determined 
by the value of h on the boundary. A solution exists for 

a given speed q ,  at infinity only if 

+ d o =  2;lr q,, 

and there are additional constraints on q if the profile is 

required to be closed. 

The difficulty that the target pressure may be unattain- 

able may be circumvented by treating the inverse prob- 

lem as a special case of the optimization problem, with 

a cost function which measures the error in the solution 

of the inverse problem. For example, if pd is the desired 

surface pressure, one may take the cost function to be 

an integral over the the body surface of the square of 

the pressure error, 

or possibly a more general Sobolev norm of the pressure 

error. This has the advantage of converting a possi- 

bly ill posed problem into a well posed one. It has the 

disadvantage that it incurs the computational costs as- 

sociated with optimization procedures. 

For some time the present author has advocated the 

advantages of formulating both the inverse problem and 

more general aerodynamic problems within the frame- 

work of the mathematical theory for the control of sys- 

tems governed by partial differential equations [12]. A 
wing, for example, is a device to produce lift by con- 

trolling the flow, and its design can be regarded as a 

problem in the optimal control of the flow equations by 

variation of the shape of the boundary. If the boundary 

shape is regarded as arbitrary within some requirements 

of smoothness, then the full generality of shapes cannot 
be defined with a finite number of parameters, and one 

rnust use the concept of the Frechet derivative of the 

cost with respect to a function. Clearly, such a deriva- 

tive cannot be determined directly by finite differences 

of the design parameters because there are now an infi- 

nite number of these. Using techniques of control theory, 

however, the gradient can be determined indirectly by 

solving an adjoint equation which has coefficients de- 
fined by the solution of the flow equations. The cost 

of solving the adjoint equation is comparable to that 

of solving the flow equations. Thus the gradient can 

be determined with roughly the computational costs of 

two flow solutions, independently of the number of de- 

sign variables, which may be infinite if the boundary is 

regarded as a free surface. 

For flow about an airfoil or wing, the aerodynamic 

properties which define the cost function are functions of 

the flow-field variables (w) and the physical location of 

the boundary, which may be represented by the function 

F, say. Then 

I = I ( w , F ) ,  

and a change in 3 results in a change 

in the cost function. Using control theory, the governing 
equations of the flowfield are introduced as a constraint 

in such a way that the final expression for the gradient 

does not require reevaluation of the flowfield. In order 

to achieve this Sw must be eliminated from (1). Sup- 
pose that the governing equation R which expresses the 

dependence of w and F within the flowfield domain D 
can be written as 

Then Sw is determined from the equation 

Next, introducing a Lagrange Multiplier $, we have 

Choosing w to satisfy the adjoint equation 

the first term is eliminated, and we find that 

where 
d  rT G = - -  
d 3  wT [g] 

The advantage is that (5) is independent of Sw, with the 

result that the gradient of I with respect to an arbitrary 
number of design variables can be determined without 

the need for additional flow-field evaluations. In the case 

that (2) is a partial differential equation, the adjoint 

equation (4) is also a partial differential equation and 

appropriate boundary conditions must be determined. 

After making a step in the negative gradient direc- 

tion, the gradient can be recalculated and the process 

repeated to follow a path of steepest descent until a 

minimum is reached. In order to avoid violating con- 

straints, such as a minimum acceptable wing thickness, 

the gradient may be projected into the allowable sub- 
space within which the constraints are satisfied. In this 

way one can devise procedures which must necessarily 

converge at least to a local minimum, and which can 

be accelerated by the use of more sophisticated descent 

methods such as conjugate gradient or quasi-Newton al- 

gorithms. There is the possibility of more than one local 

minimum, but in any case the method will lead to an 

improvement over the original design. Furthermore, un- 

like the traditional inverse algorithms, any measure of 

performance can be used as the cost function. 



In reference [7] the author derived the adjoint equa- 

tions for transonic flows modelled by both the potential 

flow equation and the Euler equations. The theory was 

developed in terms of partial differential equations, lead- 

ing to an adjoint partial differential equation. In order 
to obtain numerical solutions both the flow and the ad- 

joint equations must be discretized. The control theory 

might be applied directly to the discrete flow equations 

which result from the numerical approximation of the 

flow equations by finite element, finite volume or finite 
difference procedures. This leads directly to a set of 

discrete adjoint equations with a matrix which is the 

transpose of the Jacobian matrix of the full set of dis- 

crete nonlinear flow equations. 

On a three-dimensional mesh with indices i, j, k the 

individual adjoint equations may be derived by collect- 

ing together all the terms multiplied by the variation 

6 w i , j , k  of the discrete flow variable W i , j , k .  The result- 

ing discrete adjoint equations represent a possible dis- 
cretization of the adjoint partial differential equation. If 

these equations are solved exactly they can provide an 

exact gradient of the inexact cost function which results 

from the discretization of the flow equations. On the 

other hand any consistent discretization of the adjoint 

partial differential equation will yield the exact gradient 

in the limit as the mesh is refined. The trade-off be- 

tween the complexity of the adjoint discretization, the 

accuracy of the resulting estimate of the gradient, and 

its impact on the computational cost to approach an 

optimum solution is a subject of ongoing research, as 

indeed also remains true for the discretization of the 
flow equations. 

The true optimum shape belongs to an infinitely di- 

mensional space of design parameters. One motiva- 

tion for developing the theory for the partial differen- 

tial equations of the flow is to provide an indication in 

principle of how such a solution could be approached if 
sufficient computational resources were available. An- 

other motivation is that it highlights the possibility of 

generating ill posed formulations of the problem. For 

example, if one attempts to calculate the sensitivity of 
the pressure at  a particular location to changes in the 

boundary shape, there is the possibility that a shape 

modification could cause a shock wave to pass over that 

location. Then the sensitivity could become unbounded. 

The movement of the shock, however, is continuous as 

the shape changes. Therefore a quantity such as the 

drag coefficient, which is determined by integrating the 

pressure over the surface, also depends continuously on 

the shape. The adjoint equation allows the sensitivity 

of the drag coefficient to be determined without the ex- 

plicit evaluation of pressure sensitivities which would be 

ill posed. 
The discrete adjoint equations, whether they are de- 

rived directly or by discretization of the adjoint partial 

differential equation, are linear. Therefore they could be 

solved by direct numerical inversion. In three-dimensional 

problems on a mesh with, say, n intervals in each coordi- 

nate direction, the number of unknowns is proportional 

to n3 and the bandwidth to n2. The complexity of di- 

rect inversion is proportional to the number of unknowns 

multiplied by the square of the bandwidth, resulting in a 

complexity proportional to n7. The cost of direct inver- 

sion can thus become prohibitive as the mesh is refined, 

and it becomes more efficient to use iterative solution 

methods. Moreover, because of the similarity of the ad- 

joint equations to the flow equations, the same iterative 

methods which have been proved to be efficient for the 

solution of the flow equations are efficient for the solu- 

tion of the adjoint equations. This approach to optimal 

aerodynamics design has proved effective in a variety 

of applications [8, 10, 151. The adjoint equations have 

also been used by Ta'asam, Kuruvila and Salas [16], who 

have implemented a one shot approach in which the con- 

straint represented by the flow equations is only required 
to be satisfied by the final converged solution, and com- 

putational costs are also reduced by applying multigrid 

techniques to the geometry modifications as well as the 

solution of the flow and adjoint equations. Pironneau 

has studied the use of control theory for optimal shape 

design of systems governed by elliptic equations [13], 
and more recently the Navier-Stokes equations, and also 

wave reflection problems. Adjoint methods have also 

been used by Baysal and Eleshaky [I]. 

The next section presents the formul&ion for the case 

of airfoils in transonic flow. The governing equation is 

taken to be the transonic potential flow equation, and 

the profile is generated by conformal mapping from a 

unit circle. Thus the control is taken to be the modulus 

of the mapping function on the boundary. This leads 

to a generalization of Lighthill's method both to com- 

pressible flow, and to design for more general criteria. 

Numerical results are presented in Section 3. The math- 

ematical development resembles, in certain respects, the 

method of calculating transonic potential flow developed 

by Bristeau, Pironneau, Glowinski, Periaux, Perrier and 

Poirier, who reformulated the solution of the flow equa- 
tions as a least squares problem in control theory [2]. 

The subsequent sections discuss the application of the 

method to automatic wing design with the flow modelled 

by the three-dimensional Euler equations. The compu- 

tational costs are low enough that it has proved possible 

to determine optimum wing designs in a few hours on 

workstations such as the IBM590 or the Silicon Graphics 

Power Indigo2. 

2 Airfoil Design for Potential Flow using Con- 

formal Mapping 

Consider the case of two-dimensional compressible in- 

viscid flow. In the absence of shock waves, an initially 
irrotational flow will remain irrotational, and we can 

assume that the velocity vector q is the gradient of a 
potential 4. In the presence of weak shock waves this 

remains a fairly good approximation. 

Let p, p ,  c ,  and M be the pressure, density, speed-of- 

sound, and Mach number q / c .  Then the potential flow 

equation is 

v* (pV4) = 0, (6) 



The design problem is now treated as a control prob- 

lem where the control function is the mapping modulus 

h, which is to be chosen to minimize I subject to the 

constraints defined by the flow equations (6-13). 

A modification Sh to the mapping modulus will result 

in variations 54, Su, Sv, and Sp to the potential, velocity 

components, and density. The resulting variation in the 

where, on C ,  q  = u.  Also, la :  z-Plane. lb: a-Plane. 

Figure 1: Conformal Mapping. 

while according to equation (7) 

2- - p" 3- - pv 
du c 2 '  dv c2 ' 

It follows thak 54 satisfies 

where the density is given by 

while 

where 

Here M ,  is the Mach number in the free stream, and 

the units have been chosen so that p and q  have a value 

of unity in the far field. 

Suppose that the domain D. exterior to the profile C 

in the z-plane is conformally mapped on to the domain 

exterior to a unit circle in the a-plane as sketched in Fig- 

ure 1. Let R and 0 be polar coordinates in the a-plane, 

and let r be the inverted radial coordinate 1. Also let h 
R. 

be the modulus of the derivative of the mapping function 

Then, if II, is any periodic differentiable function which 

vanishes in the far field, 

where d S  is the area element r d r  dB, and the right hand 

side has been integrated by parts. 

Now we can augment equation (14) by subtracting the 

constraint (16). The auxiliary function II, then plays the 
role of a Lagrange multiplier. Thus, 

Now the potential flow equation becomes 

where the density is given by equation (7), and the cir- 

cumferential and radial velocity components are 

Now suppose that II, satisfies the adjoint equation 

while 
2 

q2 = u 2 + .  . (12) 
with the boundary condition 

The condition of flow tangency leads to the Neumann 

boundary condition 

Then, integrating by parts, 

In the far field, the potential is given by an asymptotic 

estimate, leading to a Dirichlet boundary condition at 

r = 0 [3]. 
Suppose that it is desired to achieve a specified veloc- 

ity distribution qd on C .  Introduce the cost function 

and 



Here the first term represents the direct effect of the 

change in the metric, while the area integral represents 

a correction for the effect of compressibility. When the 

second term is deleted the method reduces to a variation 

of Lighthill's method [ l l ] .  
Equation (19) can be further simplified to represent 

SI  purely as a boundary integral because the mapping 

function is fully determined by the value of its modulus 

on the boundary. Set 

where only negative powers are retained, because oth- 

erwise (g) would become unbounded for large 0. The 

condition that 3 + 0 as 0 -+ oo implies 

Also, the change in z on integration around a circuit is 

dz 
log - = 3 + ip, 

d o  

so the profile will be closed only if 

where 

3 = log - = logh, 1::l In order to satisfy these constraints, we can project G 
onto the admissible subspace for FC by setting 

and 

Then the projected gradient 6 is orthogonal to G - G, 
and if we takc 

SFc = - A G ,  
Then F satisfies Laplace's equation 

it follows that to first order 

and if there is no stretching in the far field, 3 + 0. 
Also S F  satisfies the same conditions. Introduce another 

auxiliary function P which satisfies 

If the flow is subsonic, this procedure should converge 

toward the desired speed distribution since the solution 

will remain smooth, and no unbounded derivatives will 

appear. If, however, the flow is transonic, one must 
allow for the appearance of shock waves in the trial so- 

lutions, even if q d  is smooth. Then q  - q d  is not differ- 

entiable. This difficulty can be circumvented by a more 

sophisticated choice of the cost function. Consider the 

choice 

and 

P = 0 on C. 

Then, the area integral in equation (19) is 

and finally 

61 = L G 6 3 d 0 ,  

where FC is the boundary value of F, and 

where A1 and A 2  are parameters, and the periodic func- 
tion 2(B) satisfies the equation 

This suggests setting 

Then, 

so that if A is a sufficiently small positive quantity 

Arbitrary variations in F cannot, however, be admit- 

ted. The condition that 3 -+ 0 in the far field, and also Thus, 2 replaces q  - q d  in the previous formulas, and if 

one modifies the boundary condition (18) to the requirement that the profile should be closed, imply 

constraints which must be satisfied by F on the bound- 

ary C. Suppose that log (%) is expanded as a power 

series 

the formula for the gradient becomes 



instead of equation (21). Smoothing can also be intro- 

duced directly in the descent procedure by choosing SFc 

where p is a smoothing parameter. Then to first order 

The smoothed correction should now be projected onto 

the admissible subspace. 

The final design procedure is thus as follows. Choose 

an initial profile and corresponding mapping function F. 

Then: 

1. Solve the flow equations (6-13) for 4,  u ,  v ,  q ,  p. 

2. Solve the ordinary differential equation (25) for 2. 

3. Solve the adjoint equation (15 and 17) or $ subject 
to the boundary condition (26). 

4. Solve the auxiliary Poisson equation (20) for P. 

5. Evaluate by equation (27) 

6. Correct the boundary mapping function FC by SFc 

calculated from equation (28), projected onto the 

admissible subspace defined by (23). 

7. Return to step 1. 

3 Numerical Tests of Optimal Airfoil Design 

The practical realization of the design procedure de- 

pends on the availability of sufficiently fast and accurate 

numerical procedures for the implementation of the es- 

sential steps, in particular the solution of both the flow 

and the adjoint equations. If the numerical procedures 
are not accurate enough, the resulting errors in the gra- 

dient may impair or prevent the convergence of the de- 

scent procedure. If the procedures are too slow, the 
cumulative computing time may become excessive. In 

this case, it was possible to build the design procedure 

around the author's computer program FL036, which 
solves the transonic potential flow equation in conser- 

vation form in a domain mapped to the unit disk. The 

solution is obtained by a very rapid multigrid alternat- 

ing direction method. The original scheme is described 

in Reference [4]. The program has been much improved 

since it was originally developed, and well converged so- 

lutions of transonic flows on a mesh with 128 cells in 

the circumferential direction and 32 cells in the radial 

direction are typically obtained in 5-20 multigrid cycles. 

The scheme uses artificial dissipative terms to introduce 

upwind biasing which simulates the rotated difference 

scheme [3], while preserving the conservation form. The 

alternating direction method is a generalization of con- 

ventional alternating direction methods, in which the 

scalar parameters are replaced by upwind difference op- 

erators to produce a scheme which remains stable when 

the type changes from elliptic to hyperbolic as the flow 

becomes locally supersonic [4]. The conformal mapping 

is generated by a power series of the form of equation 

(22) with an additional term 

(1 - ;) log (1 - t) 
to allow for a wedge angle c at the trailing edge. The 

coefficients are determined by an iterative process with 

the aid of fast Fourier transforms [3]. 

The adjoint equation has a form very similar to the 

flow equation. While it is linear in its dependent vari- 

able, it also changes type from elliptic in subsonic zones 

of the flow to hyperbolic in supersonic zones of the flow. 

Thus, it was possible to adapt exactly the same algo- 

rithm to solve both the adjoint and the flow equations, 

but with reverss biasing of the difference operators in the 

downwind direction in the adjoint equation, correspond- 

ing to the reversed direction of the zone of dependence. 

The Poisson equation (20) is solved by the Buneman 

algorithm. 

The efficiency of the present approach, vyhich uses sep- 

arate discretizations of the flow and adjdint equations, 

depends on the fact that in the limit of zero mesh width 

the discrete adjoint solution converges to the true ad- 

joint solution. This allows the use of a rather simple 

discretization of the adjoint equation modeled after the 

discretization of the flow equation. Numerical experi- 

ments confirm that in practice separate discretizations 

of the flow and adjoint equations yields good conver- 

gence to an optimum solution. 

As an example of the application of the method, Fig- 

ure 3 presents a calculation in which an airfoil was re- 

designed to improve its transonic performance by reduc- 

ing the pressure drag induced by the appearance of a 

shock wave. The drag coefficient was therefore included 
in the cost function so that equation (24) is replaced by 

where X3 is a parameter which may be varied to alter 
the trade-off between drag reduction and deviation from 

the desired pressure distribution. Representing the drag 

the procedure of Section 2 may be used to determine the 

gradient by solving the adjoint equation with a modified 

boundary condition. A penalty on the desired pressure 

distribution is still needed to avoid a situation in which 

the optimum shape is a flat plate with no lift and no 

drag. 

It was also desired to preserve the subsonic charac- 

teristics of the airfoil. Therefore two design points were 

specified, Mach 0.20 and Mach 0.720, and in each case 

the lift coefficient was forced to be 0.6. The composite 

cost function was taken to be the sum of the values of 



the cost function at the two design points. The tran- 

sonic drag coefficient was reduced from 0.0191 to 0.0001 

in 8 design cycles. In order to  achieve this reduction the 

airfoil had to be modified so that its subsonic pressure 

distribution became more peaky at  the leading edge. 

This is consistent with the results of experimental re- 

search on transonic airfoils, in which it has generally 

been found necessary to have a peaky subsonic presure 

distribution in order to delay the onset of the transonic 

drag rise. It is also important to control the adverse 
pressure gradient on the rear upper surface, which can 

lead to premature separation of the viscous boundary 

layer. It can be seen that there is no steepening of this 

gradient due to the redesign. 

4 Three Dimensional Design using the Euler 

Equations 

In order to illustrate further the application of control 
theory to aerodynamic design problems the next sec- 

tions treat the case of three-dimensional wing design 

using the inviscid Euler equations as the mathematical 

model for compressible flow. In this case it proves con- 

venient to  denote the Cartesian coordinates and velocity 

components by 21, 2 2 ,  23 and u l ,  u2, us, and to use the 

convention that summation over i = 1 to 3 is implied by 

a repeated index i. The three-dimensional Euler equa- 

tions may be written as 

where 

and S i j  is the Kronecker delta function. Also, 

and 

p H = p E + p  

where y is the ratio of the specific heats. Consider a 

transformation to coordinates tl, (2,  J3 where 

Introduce contravariant velocity components as 

The Euler equations can now be written as 

with 

Assume now that the new computational coordinate sys- 

tem conforms to the wing in such a way that the wing 

surface Bw is represented by t2 = 0. Then the flow is 

determined as the steady state solution of equation (33) 

subject to the flow tangency condition 

At the far field boundary BF,  conditions are specified for 
incoming waves, as in the two-dimensional case, while 

outgoing waves are determined by the solution. 

The weak form of the Euler equations for steady flow 

can be written as 

where the test vector q5 is an arbitrary differentiable 

function and ni is the outward normal a t  the bound- 

ary. If a differentiable solution w is obtained to this 

equation, it can be integrated by parts to give 

and since this is true for any 4, the differential form can 

be recovered. If the solution is discontinuous (36) may 

be integrated by parts separately on either side of the 
discontinuity to recover the shock jump conditions. 

Suppose now that it is desired to control the surface 

pressure by varying the wing shape. It is convenient 

to retain a fixed computational domain. Variations in 

the shape then result in corresponding variations in the 

mapping derivatives defined by Ii'. Introduce the cost 

where pd is the desired pressure. The design problem 

is now treated as a control problem where the control 

function is the wing shape, which is to be chosen to 

minimize I subject to the constraints defined by the flow 
equations (33-34). A variation in the shape will cause a 

variation Sp in the pressure and consequently a variation 

in the cost function 

Since p depends on w through the equation of state 
(31-32), the variation Sp can be determined from the 

variation Sw . Define the Jacobian matrices 



The weak form of the equation for 6w in the steady state 
becomes 

2b: I, q-Plane. 

Figure 2: Sheared Parabolic Mapping: 

which should hold for any differential test function 4. 
This equation may be added to the variation in the cost 

function, which may now be written as 

A convenient way to treat a wing is to introduce sheared 

parabolic coordinates as shown in figure 2 through the 

transformation 

On the wing surface Bw, n l  = n3 = 0 and it follows 

from equation (35) that 

Here x = X I ,  y = 2 2 ,  z = 23 are the Cartesian coordi- 

nates, and E and 7 + S correspond to ptrabolic coordi- 
nates generated by the mapping . 

at a fixed span station C. xo (C) and yo (C) are the co- 

ordinates of a singular line which is swept to lie just 

inside the leading edge of a swept wing, while a (C) is a 

scale factor to allow for spanwise chord variations. The 

surface q = 0 is a shallow bump corresponding to the 

wing surface, with a height S (E, C) determined by the 

Since the weak equation for 6w should hold for an 

arbitrary choice of the test vector 4, we are free to choose 

4 to simplify the resulting expressions. Therefore we set 

4 = +, where the costate vector + is the solution of the 

adjoint equation 

where xg, (2) and y~~ (z) are coordinates of points 
lying on the wing surface. We now treat S ( t ,  (') as the 

control. 

In this case the transformation matrix [$] becomes 

At the outer boundary incoming characteristics for + 
correspond to outgoing characteristics for 6w . Conse- 

quently one can choose boundary conditions for + such 
that 

n i d T ~ i 6 ~  = 0. 

L O 0 Then if the coordinate transformation is such that 6 (JK-l)  

is negligible in the far field, the only remaining boundary x xv +xvSC 

term is Y e  Y v  + Y v S <  7 

0 0 1 

where 

I 
Thus by letting II, satisfy the boundary condition, x - xo 

i j = ( v + S ) ,  A=ace.- +xo,, B = a(- Y - YO +YO, - 

= ( p - p d )  on Bw, ( 4 2 )  
Now, 

we find finally that J = xty, - x,yt = a2  (t2 +ij2) 

and 



Then under a modification S S  

S X ,  = -a ( s s s ,  + ijas,) 

S x ,  = -aSS  

by, = a ( 6 s  + @ S t )  

Sy, = 0.  

Thus 
SJ  = 2a2ij6S 

and 

0 a S S  - a B S S  

-byC S x F  D 

0 0 SJ  

where 

Inserting these formulas in equation (43) we find that 
the volume integral in 6 1  is 

where S and S S  are independent of 7. Therefore, inte- 
grating over 7, the variation in the cost function can be 
reduced to  a surface integral of the form 

Here 

where 
J 

C =  2aijSc - A - B S S F + a i 2 .  

Also the shape change will be confined to a boundary 

region of the ( - C plane, so we can integrate by parts 

to obtain 

Thus to reduce I we can choose 

where X is sufficiently small and non-negative. 

In order to impose a thickness constraint we can define 

a baseline surface So (<, C) below which S (F,  C )  is not 

allowed to fall. Now if we take X = X (E, C )  as a non- 

negative function such that 

Then the constraint is satisfied, while 

As in the case of design using a potential flow model, it 

is crucially imgortant to introduce appropriate smooth- 

ing procedures. In order to avoid discontinuities in the 

adjoint boundary condition which would be caused by 

the appearance of shock waves, the cost function for the 

target pressure may be modified to the form 

Then 

and the smooth quantity 2 replaces p-pd in the adjoint 

boundary condition. 

Independent movement of the boundary mesh points 
could produce discontinuities in the designed shape. In 

order to prevent this the gradient may be also smoothed. 

Both explicit and implicit smoothing procedures are use- 

ful. Suppose that the movement of the surface mesh 

points were defined by local B-splines. In the case of 

a uniform one-dimensional mesh, a B-spline with a dis- 

placement d centered at the mesh point i would pro- 

duce displacements d/4 at  i + 1 and i - 1 and zero else- 

where, while preserving continuity of the first and sec- 

ond derivatives. Thus we can suppose that the discrete 

surface displacement has the form 

S S  = Bd, 

where B is a matrix with coefficients defined by the B- 
splines, and di is the displacement associated with the B- 

spline centered at i. Then, using the discrete formulas, 

to first order the change in the cost is 



Thus the gradient with respect to the B-spline coeffi- 
cients is obtained by multiplying by B ~ ,  and a descent 

step is defined by setting 

where X is sufficiently small and positive. The coeffi- 

cients of B can be renormalized to produce unit row 

sums. With a uniform mesh spacing in the computa- 

tional domain this formula is equivalent to the use of a 

gradient modified by two passes of the explicit smooth- 

ing procedure 

with a similar smoothing procedure in the k discretiza- 

t ion. 

Implicit smoothing may also be used. The smoothing 

equation 

approximates the differential equation 

If one sets 6s = -XG, then to first order the change in 
the cost is 

assuring an improvement if X is sufficiently small and 

positive, unless the process has already reached a sta- 
tionary point a t  which g = 0. 

5 Implementation for Swept Wings 

Since three dimensional calculations require substantial 

computational resources, it is extremely important for 

the practical implementation of the method to use fast 

solution algorithms for the flow and the adjoint equa- 

tions. In this case the author's FL087 computer pro- 

gram has been used as the basis of the design method. 

FL087 solves the three dimensional Euler equations with 
a cell-centered finite volume scheme, and uses resid- 

ual averaging and multigrid acceleration to obtain very 
rapid steady state solutions, usually in 25 to 50 multi- 

grid cycles [5, 61. Upwind biasing is used to produce 

nonoscillatory solutions, and assure the clean capture of 
shock waves. This is introduced through the addition 

of carefully controlled numerical diffusion terms, with 

a magnitude of order Ax3 in smooth parts of the flow. 

The adjoint equations are treated in the same way as 

the flow equations. The fluxes are first estimated by 

central differences, and then modified by downwind bi- 

asing through numerical diffusive terms which are sup- 

plied by the same subroutines that were used for the 

flow equations. 

The method has been tested for the optimization of 
several swept wings. In every case, the wing planform 

was fixed while the sections were free to be changed ar- 

bitrarily by the design method, with a restriction on 

the minimum thickness. The initial wing has a unit- 

semi-span, with 38 degrees leading edge sweep. It has a 
modified trapezoidal planform, with straight taper from 

a root chord of 0.38, and a curved trailing edge in the 

inboard region blending into straight taper outboard of 

the 30 percent span station to a tip chord of 0.10, with 

an aspect ratio of 9.0. The initial wing sections were 

based on a section specifically designed by the author's 

two dimensional design method [8] to give shock free 

flow at Mach 0.78 with a lift coefficient of 0.6. The 

pressure distribution is displayed in figure 4. This sec- 

tion, which has a thickness to chord ratio of 9.5 percent, 

was used at the tip. Similar sections with an increased 

thickness were used inboard. The variation of thickness 

was non-linear with a more rapid increase near the root, 

where the thickness to chord ratio of the basic section 

was multiplied by a factor of 1.47. The inb'oard sections 

were rotated upwards to give the initial wing 3.0 de- 
grees twist from root to tip. The two-dimensional pres- 

sure distribution of the basic wing section at its design 

point was introduced as a target pressure distribution 

uniformly across the span. This target is presumably not 

realizable, but serves to favor the establishment of rel- 

atively benign pressure distribution. The total inviscid 

drag coefficient, due to the combination of vortex and 

shock wave drag, was also included in the cost function. 

The calculations were performed with the lift coefficient 

forced to approach a fixed value by adjusting the angle 

of attack every fifth iteration of the flow solution. It was 

found that the computational costs can be reduced by 
using only 15 multigrid cycles in each flow solution, and 

in each adjoint solution. Although this is not enough for 

full convergence, it proves sufficient to provide a shape 

modification which leads to an improvement. 

Figures 5 and 6 show the result of a calculation at 

Mach number of 0.85, with the lift coefficient forced to 

approach a value of 0.5. This calculation was performed 

on a mesh with 192 intervals in the [ direction wrapping 

around the wing, 3'2 intervals in the normal q direction 
and 48 intervals in the spanwise (' direction, giving a 

total of 294912 cells. The wing was specified by 33 sec- 

tions, each with 128 points, giving a total of 4224 de- 
sign variables. The plots show the initial wing geometry 

and pressure distribution, and the modified geometry 

and pressure distribution after 40 design cycles. The to- 
tal inviscid drag coefficient was reduced from 0.0207 to 

0.0113. The initial design exhibits a very strong shock 

wave in the inboard region. It can be seen that this is 

completely eliminated, leaving a very weak shock wave 

in the outboard region. To verify the solution, the fi- 

nal geometry was analyzed with another method, using 

the computer program FL067. This program uses a 



cell-vertex formulation, and has recently been modified 
to  incorporate a local extremum diminishing algorithm 
with a very low level of numerical diffusion [9]. When 

run to full convergence it was found that a better es- 
timate of the drag coefficient of the redesigned wing is 
0.0094 at  Mach 0.85 with a lift coefficient of 0.5, giv- 
ing a lift to drag ratio of 53. The result is illustrated 

in Figure 7. A calculation at Mach 0.500 shows a drag 

coefficient of 0.0087 for a lift coefficient of 0.5. Since in 
this case the flow is entirely subsonic, this provides an 
estimate of the vortex drag for this planform and lift 

distribution, which is just what one obtains from the 
standard formula for induced drag, CD = c ~ ~ / ~ ~ A R ,  
with an aspect ratio AR = 9, and an efficiency factor 

E = 0.97. Thus the design method has reduced the shock 
wave drag coefficient to about 0.0007 at a lift coefficient 

of 0.5. 
Figures 8 and 9 show the result of another optimiza- 

tion starting from the same initial geometry, and at the 

same mach number of 0.850, but with the lift coefficient 
increased to 0.55. This produces stronger shock waves 
and is therefore a more severe test of the method. In 

this case the total inviscid drag coefficient was reduced 
from 0.0241 to 0.0136 in 48 design cycles. Again the 

performance of the final design was verified by a calcu- 
lation with FL067, using a high resolution LED algo- 
rithm, and when the result was fully converged the drag 
coefficient was found to be 0.0115. The result is illus- 

trated in figure 10. A subsonic calculation at  Mach .500 

shows a drag coefficient of 0.0108 for a lift coefficient of 
0.55. Thus in this case the shock wave drag coefficient 
is about 0.0007. 

For a representative transport aircraft the parasite 

drag coefficient of the wing due to skin friction is about 

0.0045. Also the fuselage drag coefficient is about 0.0050, 
the nacelle drag coefficient is about 0.0015, the empen- 

nage drag coefficient is about 0.0020, and excrescence 

drag coefficient is about 0.0010. This would give a total 
drag coefficient CD = 0.0255 for a lift coefficient of 0.55, 
corresponding to a lift to drag ratio L I D  = 21.6. This 
would be a substantial improvement over the values ob- 
tained by currently flying transport aircraft. 

As another test of the method an initial wing was 
defined with the same planform and sections derived 
from the RAE 5225 airfoil. This airfoil is unusually thick 
for a super-critical design, with a thickness to chord ratio 
of 14%. The initial section at the mid-span point was 
an unmodified RAE 5225 profile. To allow margin for 

the optimization procedure to reduce the thickness of 

the inboard sections, the root thickness was multiplied 
by a factor of 1.16, while the tip thickness was reduced 
by a factor of 0.90. The inboard sections of the wing 

were again rotated upwards to give the initial wing a 
twist of 3 degrees from root to tip. In this case the 

optimization reduced the drag coefficient from 0.0253 to 

0.0118 in 48 cycles. The results of the design calculation 

are shown in figures 11 and 12. It can be seen that 
the final wing still has fairly thick sections across the 
entire span. A fully converged calculation with FL067, 

using a high resolution LED algorithm, indicates that a 

6 Conclusion 

more accurate estimate of the drag coefficient of the final 
design is 0.0099 at a lift coefficient of 0.50. The results 
of this calculation is shown in figure 13. It may well pay 

to accept a shock drag penalty in the range of 0.0005 in 
order to increase the thickness of the wing section. This 
in turn could allow the use of a higher aspect ratio wing 

with the same structural weight, which might produce 
a larger saving in vortex drag than the penalty in shock 

drag. 
In all of these tests the optimization procedure gen- 

erated low drag wings in about 10 - 20 design cycles, 

with very weak shock waves. Additional cycles were 
needed to drive the solution towards a shock free flow 

over most of the wing. The final designs, which are 

almost shock free, consistently exhibit pressure distri- 
butions with fairly strong leading edge suction peaks 

followed by a steady and gradual recompression. When 

these flows were analyzed by FL067 to verify their prop- 

erties, it was-found that very complex wave patterns 
appear during the early evolution of the flow. These 
are finally eliminated as the flow reaches a steady state, 
but this process takes much longer than the evolution 
of the more usual type of flow with well established 

shock waves at the exit of the superso~ic zone. The 

drag penalty incurred by designs with flat-topped pres- 
sure distributions and weak shock waves is very small. 
These designs , which can be produced with a much 

smaller number of optimization cycles, might be pre- 
ferred in practice. The pressure distribution might then 

be tailored to move the suction peak downstream in or- 
der to delay the transition of the boundary layer to tur- 
bulent flow. In any case, one might wish to modify the 

inboard region of the existing designs to reduce the ad- 
verse pressure gradient at  the trailing edge, which might 

otherwise be strong enough to induce separation. 

In the period since this approach to optimal shape de- 

sign was first proposed by the author [7], the method 
has been verified by numerical implementation for both 
potential flow and flows modeled by the Euler equa- 
tions. It has been demonstrated that it can be suc- 
cessfully used with a finite volume formulation to per- 
form calculations with arbitrary numerically generated 

grids [14]. The first results which have been obtained 
for swept wings with the three-dimensional Euler equa- 

tions suggest that the method has now matured to the 
point where it can be a very useful tool for the design 

of new airplanes. Even in the case of three dimensional 
flows, the computational requirements are so moderate 

that the calculations can be performed with worksta- 

tions such as the IBM RISC 6000 series. A design cycle 
on a 192x32~48 mesh takes about 20 minutes on an IBM 

model 590 workstation, allowing overnight completion of 
a design calculation for a swept wing. 

The author is working with several collaborators both 
to improve the method and to extend it to a broader 
range of applications. In order to treat more complex ge- 
ometries the method must be modified to accommodate 



arbitrary meshes. In order to do this one can modify 

the initial mesh, which may be produced by a numerical 

grid generation procedure, by analytically defined grid 

perturbations which depend smoothly on modifications 

of the boundary shape. J .  Reuther has implemented this 

procedure, and preliminary results for wing-body combi- 

nations are presented in [15]. The method has also been 

recently used to assist the design of a wing for a business 

jet. In order to apply the method to flows modelled by 

the Navier-Stokes equations the adjoint equations must 
be augmented by additional terms which corresponds to 

the viscous stresses in the momentum equations and vis- 

cous dissipation in the energy equation. Computer pro- 

grams which implement these extensions for both two 
and three dimensional flows are currently being tested. 

In order to further reduce the computational cost the 

author has collaborated with J .  Alonso in the modifi- 

cation of the three dimensional Euler design code to 

run on parallel computers. Message passing is imple- 

mented with MPI. Preliminary timing results have been 

obtained for the IBM SP2. A design cycle on a mesh 

with 294912 cells requires about 63 seconds with 16 

processors, or 42 seconds with 32 processors. A com- 

plete swept wing design using 12 design cycles can then 

be completed in 15 minutes with 16 processors, or in 

10 minutes with 32 processors. The integrals needed 

to determine the gradient from the solution of the ad- 

joint equation are evaluated on a single processor. This 

becomes a significant fraction of the total time when 

the number of processors exceeds 32, and this part of 

the process will also need to be performed in parallel 
to approach more closely to a linear speedup with a 

large number of processors. Parallel implementation is 

likely to be particularly important for design using the 
Navier-Stokes equations, for which much finer meshes 

are needed to assure sufficient accuracy, with a corre- 

sponding increase in the computational cost. 
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3a: Cp after Zero Design Cycles. 

Design Mach 0.72, Cl = 0.5982. Cd = 0.0191. 

3b: Cp after Zero Design Cycles. 

Design Mach 0.2, Cl = 0.5998, Cd = -0.0001. 

3c: Cp after Eight Design Cycles. 

Design Mach 0.72, Cl = 0.5999, Cd = 0.0001. 

3d: Cp after Eight Design Cycles. 

Design Mach 0.2, Cl = 0.5998, Cd = -0.0001 

Figure 3: Optimization o f  an Airfoil at Two  Design Points. 



Figure 4: Initial Wing  Section and Target Pressure Distribution 



5a: Initial W i n g  

C, = 0.5001, Cd = 0.0207, a = -1.340' 

5b: 40 Design Iterations 
Cl = 0.5000, Cd = 0.0113. a = -.235O 

Figure 5: Lifting Design Case, M = 0.85, Fixed Lift  Mode .  
D r a g  Reduction 
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE 

6a: Initial Wing 6b: 40 Design Iterations 
Lifting Design Case, M = 0.85, Fixed Lift  Mode. Lifting Design Case, M = 0.85, Fixed Lift  Mode. 

CL = 0.5001, CD = 0.0207, a = -1.340' CL = 0.5000, CD = 0.0113, a = -0.235' 
Drag Reduction Drag Reduction 

Figure 6: Lifting Design Case, M = 0.85, Fixed Lift  Mode. 

Drag Reduction 
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7a: span station z = 0.00 
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7b: span station z = 0.312 

7c: span station z = 0.625 7d: span station z = 0.937 

Figure 7: FL067 check on redesigned wing. 

M = 0.85, CL = 0.4977, CD = 0.0094, a = -.240° 



8a: Initial Wing 

Cl = 0.5500, Cd = 0.0241, a = -0.954' 

8b: 48 Design Iterations 

Cl = 0.5500, Cd = 0.0136, a = 0.190' 

Figure 8: Lifting Design Case, M = 0.85, Fixed Lift Mode. 
Drag Reduction 



UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE 

9a: Initial Wing 9b: 10 Design Iterations 

Lifting Design Case, M = 0.85, Fixed Lift  Mode. Lifting Design Case, M = 0.85, Fixed Lift  Mode. 

CL = 0.5500, CD = 0.0241, a = -0.954' CL = 0.5500, CD = 0.0136, a = 0.190° 

Drag Reduction Drag Reduction 

Figure 9: Lifting Design Case, M = 0.85, Fixed Lift  Mode. 
Drag Reduction 
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10a: span station z = 0.00 lob :  span station z = 0.312 

10c: span station z = 0.625 10d: span station z = 0.937 

Figure 10: FL067 check on redesigned wing. 

M = 0.85, CL = 0.5491, CD = 0.0115, a = 0.190° 



l l a :  Initial Wing 

CI = 0.5001, Cd = 0.0253, a = 0.063' 
l l b :  48 Design Iterations 

Cl = 0.5000, Cd = 0.0118, a = 0.595' 

Figure 11: Lifting Design Case, M = 0.85, Fixed Lift Mode. 
Drag Reduction 



UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE 

12a: Initial Wing 
Lifting Design Case, M = 0.85, Fixed Lift  Mode. 

CL = 0.5001, CD = 0.0253, cr = 0.063' 
Drag Reduction 

12b: 48 Design Iterations 
Lifting Design Case, M = 0.85, Fixed Lift  Mode. 

CL = 0.5500, CD = 0.0118, cr = 0.595' 
Drag Reduction 

Figure 12: Lifting Design Case, M = 0.85, Fixed Lift  Mode 
Drag Reduction 



13a:  span station z = 0.00 13b: span station z = 0.312 

13c: span station z = 0.625 13d: span station z = 0.937 

Figure 13:  F L 0 6 7  check on redesigned wing. 

M = 0.85, CL = 0.4994, CD = 0.0099, a = 0.590'. 


