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1 Introduction

The ultimate success of an aircraft design depends

on the resolution of complex multi-disciplinary

trade-o�s between factors such as aerodynamic e�-

ciency, structural weight, stability and control, and

the volume required to contain fuel and payload. A

design is �nalized only after numerous iterations,

cycling between the disciplines. The development

of accurate and e�cient methods for aerodynamic

shape optimization represents a worthwhile interme-

diate step towards the eventual goal of full multi-

disciplinary optimal design.

Early investigations into aerodynamic optimiza-

tion relied on direct evaluation of the in
uence of

each design variable. This dependence was esti-

mated by separately varying each design parameter

and recalculating the 
ow. The computational cost

of this method is proportional to the number of de-

sign variables and consequently becomes prohibitive

as the number of design parameters is increased.

An alternative approach to design relies on the

fact that experienced designers generally have an in-

tuitive feel for the type of pressure distribution that
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will provide the desired aerodynamic performance.

The resulting inverse problem amounts to determi-

nation of the shape corresponding to a speci�ed pres-

sure distribution. This approach has the advantage

that only one 
ow solution is required to obtain the

desired design. However, the problem must be for-

mulated carefully to ensure that the target pressure

distribution corresponds to a physically realizable

shape.

The problems of optimal and inverse design can

both be systematically treated within the mathe-

matical theory for the control of systems governed

by partial di�erential equations [1] by regarding the

design problem as a control problem in which the

control is the shape of the boundary. The inverse

problem then becomes a special case of the opti-

mal design problem in which the shape changes are

driven by the discrepancy between the current and

target pressure distributions.

The control theory approach to optimal aerody-

namic design, in which shape changes are based on

gradient information obtained by solution of an ad-

joint problem, was �rst applied to transonic 
ow by

Jameson [2, 3]. He formulated the method for in-

viscid compressible 
ows with shocks governed by

both the potential equation and the Euler equations

[2, 4, 5]. With this approach, the cost of a design

cycle is independent of the number of design vari-
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ables and the method has been employed for wing

design in the context of complex aircraft con�gura-

tions [6, 7], using a grid perturbation technique to

accomodate the geometry modi�cations.

Ta'asan, Kuruvila and Salas have proposed a one

shot approach in which the constraint represented by

the 
ow equations need only be satis�ed by the �nal

converged design solution [8]. Pironneau has also

studied the use of control theory for optimum shape

design of systems governed by elliptic equations [9],

and adjoint methods have also been used by Baysal

and Eleshaky [10].

The objective of the present work is the extension

of adjoint methods for optimal aerodynamic design

to 
ows governed by the compressible Navier{Stokes

equations. While inviscid formulations have proven

useful for the design of transonic wings at cruise con-

ditions, the inclusion of boundary layer displacement

e�ects with viscous design provides increased realism

and alleviates shocks that would otherwise form in

the viscous solution over the �nal inviscid design.

Accurate resolution of viscous e�ects such as sepa-

ration and shock/boundary layer interaction is also

essential for optimal design encompassing o�-design

conditions and high-lift con�gurations.

The computational costs of viscous design are at

least an order of magnitude greater than for design

using the Euler equations because a) the number of

mesh points must be increased by a factor of two or

more to resolve the boundary layer, b) there is the

additional cost of computing the viscous terms and

a turbulence model, and c) Navier{Stokes calcula-

tions generally converge much more slowly than Eu-

ler solutions due to sti�ness arising from the highly

stretched boundary layer cells. The computational

feasability of viscous design therefore hinges on the

development of a rapidly convergent Navier{Stokes


ow solver. Pierce and Giles have developed a pre-

conditioned multigrid method that dramatically im-

proves convergence of viscous calculations by ensur-

ing that all error modes inside the stretched bound-

ary layer cells are either damped or expelled [11, 12].

The same acceleration techniques are applicable to

the adjoint calculation, so that a substantial reduc-

tion in the cost of each design cycle is achievable.

2 General Formulation of the

Adjoint Approach to Opti-

mal Design

Before embarking on a detailed derivation of the

adjoint formulation for optimal design using the

Navier{Stokes equations, it is helpful to summarize

the general abstract description of the adjoint ap-

proach which has been thoroughly documented in

references [2, 3].

The progress of the design procedure is measured

in terms of a cost function I , which could be, for

example the drag coe�cient or the lift to drag ratio.

For 
ow about an airfoil or wing, the aerodynamic

properties which de�ne the cost function are func-

tions of the 
ow-�eld variables (w) and the physical

location of the boundary, which may be represented

by the function F , say. Then

I = I (w;F) ;

and a change in F results in a change

�I =

�
@IT

@w

�
I

�w +

�
@IT

@F

�
II

�F ; (1)

in the cost function. Here, the subscripts I and II

are used to distinguish the contributions to the vari-

ation �w in the 
ow solution from the change associ-

ated directly with the modi�cation �F in the shape.

This notation is introduced to assist in grouping the

plethora of terms that arise during the derivation of

the full Navier{Stokes adjoint operator so that it re-

mains feasible to recognize the basic structure of the

approach as it is sketched in the present section.

Using control theory, the governing equations of

the 
ow �eld are introduced as a constraint in such

a way that the �nal expression for the gradient does

not require multiple 
ow solutions. This corresponds

to eliminating �w from (1).

Suppose that the governing equation R which ex-

presses the dependence of w and F within the 
ow-

�eld domain D can be written as

R (w;F) = 0: (2)

Then �w is determined from the equation

�R =

�
@R

@w

�
I

�w +

�
@R

@F

�
II

�F = 0: (3)

Next, introducing a Lagrange Multiplier  , we have

�I =
@IT

@w
�w +

@IT

@F
�F (4)

�  
T

�h
@R

@w

i
�w +

h
@R

@F

i
�F

�
(5)

=

�
@IT

@w
�  

T

h
@R

@w

i�
I

�w (6)

+

�
@IT

@F
�  

T

h
@R

@F

i�
II

�F : (7)
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Choosing  to satisfy the adjoint equation

�
@R

@w

�T
 =

@I

@w
(8)

the �rst term is eliminated, and we �nd that

�I = G�F ; (9)

where

G =
@IT

@F
�  T

�
@R

@F

�
:

The advantage is that (9) is independent of �w, with

the result that the gradient of I with respect to an

arbitrary number of design variables can be deter-

mined without the need for additional 
ow-�eld eval-

uations. In the case that (2) is a partial di�erential

equation, the adjoint equation (8) is also a partial

di�erential equation and determination of the appro-

priate boundary conditions requires careful mathe-

matical treatment.

The computational cost of a single design cycle is

roughly equivalent to the cost of two 
ow solutions

since the the adjoint problem has similar complexity.

When the number of design variables becomes large,

the computational e�ciency of the control theory

approach over traditional approach, which requires

direct evaluation of the gradients by indidually vary-

ing each design variable and recomputing the 
ow

�eld, becomes compelling.

Once equation (3) is established, an improvement

can be made with a shape change

�F = ��G

where � is positive, and small enough that the �rst

variation is an accurate estimate of �I . Then

�I = ��GTG < 0

After making such a modi�cation, the gradient can

be recalculated and the process repeated to follow a

path of steepest descent until a minimum is reached.

In order to avoid violating constraints, such as a min-

imum acceptable wing thickness, the gradient may

be projected into an allowable subspace within which

the constraints are satis�ed. In this way, procedures

can be devised which must necessarily converge at

least to a local minimum.

3 The Navier{Stokes Equa-

tions

For the derivations that follow, it is convenient to

adopt a Cartesian coordinate system de�ned by

(x1,x2,x3) and to adopt the convention of indicial

notation where a repeated index \i" implies summa-

tion over i = 1 to 3. The three-dimensional Navier-

Stokes equations then take the form

@w

@t
+
@fi

@xi
=
@fvi

@xi
in D; (10)

where the state vector w, inviscid 
ux vector f and

viscous 
ux vector fv are described respectively by

w =

8>>>><
>>>>:

�

�u1
�u2
�u3
�E

9>>>>=
>>>>;
; (11)

fi =

8>>>><
>>>>:

�ui
�uiu1 + p�i1
�uiu2 + p�i2
�uiu3 + p�i3

�uiH

9>>>>=
>>>>;
; (12)

fvi =

8>>>><
>>>>:

0

�ij�j1
�ij�j2
�ij�j3

uj�ij + k @T
@xi

9>>>>=
>>>>;
: (13)

In these de�nitions, � is the density, u1; u2; u3 are

the Cartesian velocity components, E is the total

energy and �ij is the Kronecker delta function. The

pressure is determined by the equation of state

p = (
 � 1) �

�
E �

1

2
(uiui)

�
;

and the stagnation enthalpy is given by

H = E +
p

�
;

where 
 is the ratio of the speci�c heats. The viscous

stresses may be written as

�ij = �

�
@ui

@xj
+
@uj

@xi

�
+ ��ij

@uk

@xk
;

where � and � are the �rst and second coe�cients of

viscosity and the coe�cient of thermal conductivity

and the temperature are de�ned by

k =

�

Pr
; T =

p

(
 � 1)�
: (14)

For discussion of real applications using a struc-

tured mesh discretization, it is also useful to consider
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a transformation to the computational coordinates

(�1,�2,�3) de�ned by the metrics

Kij =

�
@xi

@�j

�
; J = det (K) ; K�1ij =

�
@�i

@xj

�
:

The Navier-Stokes equations can then be written in

computational space as

@ (Jw)

@t
+
@ (Fi � Fvi)

@�i
= 0 in D; (15)

where the inviscid and viscous 
ux contributions are

now de�ned with respect to the compuational cell

faces by Fi = Sijfj and Fvi = Sijfvj , and the quan-

tity Sij = JK�1ij is used to represent the projection

of the �i cell face along the xj axis. In obtaining

equation (15) we have made use of the property that

@Sij

@�i
= 0 (16)

which represents the fact that the sum of the face

areas ever a closed volume is zero, as can be readily

veri�ed by a direct examination of the metric terms.

General Formulation of the Op-

timal Design Problem for the

Navier{Stokes Equations

Aerodynamic optimization is based on determina-

tion of the e�ect of shape modi�cations of the

boundary on some performance measure which de-

pends on the 
ow. For convenience, the coordinates

�i describing the �xed computational domain are

chosen so that each boundary conforms to a con-

stant value of one of these coordinates. Variations

in the shape then result in corresponding variations

in the mapping derivatives de�ned by Kij .

Suppose that the performance is measured by a

cost function

I =

Z
B

M (w; S) dB� +

Z
D

P (w; S) dD�;

containing both boundary and �eld contributions

where dB� and dD� are the surface and volume ele-

ments in the computational domain. In general, M

and P will depend on both the 
ow variables w and

the metrics S de�ning the computational space.

The design problem is now treated as a control

problem where the wing shape represents the con-

trol function which is chosen to minimize I subject

to the constraints de�ned by the 
ow equations (15).

A shape change produces a variation in the 
ow so-

lution �w and the metrics �S which in turn produce

a variation in the cost function

�I =

Z
B

�M(w; S) dB� +

Z
D

�P(w; S) dD� ; (17)

with

�M = [Mw]I �w + �MII ;

�P = [Pw]I �w + �PII ; (18)

where we continue to use the subscripts I and II

to distinguish between the contributions associated

with the variation of the 
ow solution �w and those

associated with the metric variations �S. Thus

[Mw]I and [Pw]I represent @M
@w

and @P
@w

with the

metrics �xed, while �MII and �PII represent the

contribution of the metric variations �S to �M and

�P .

In the steady state, the constraint equation (15)

speci�es the variation of the state vector �w by

@

@�i
� (Fi � Fvi) = 0: (19)

Here �Fi and �Fvi can also be split into contributions

associated with �w and �S using the notation

�Fi = [Fiw]I �w + �FiII

�Fvi = [Fviw]I �w + �FviII : (20)

The inviscid contributions are easily evaluated as

[Fiw]I = Sij
@fi

@w
; �FviII = �Sijfj :

The details of the viscous contributions are compli-

cated by the additional level of derivatives in the

stress and heat 
ux terms and will be derived in

Section 5. Multiplying by a co-state vector  , which

will play an analagous role to the Lagrange multi-

plier introduced in equation (7), and integrating over

the domain produces

Z
D

 T
@

@�i
� (Fi � Fvi) = 0: (21)

If  is di�erentiable this may be integrated by parts

to give

Z
B

ni 
T � (Fi � Fvi) dB� (22)

�

Z
D

@ T

@�i
� (Fi � Fvi) dD� = 0: (23)

Since the left hand expression equals zero, it may be

subtracted from the variation in the cost function
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(17) to give

�I =

Z
B

�
�M� ni 

T � (Fi � Fvi)
�
dB�

+

Z
D

�
�P +

@ T

@�i
� (Fi � Fvi)

�
dD� : (24)

Now, since  is an arbitrary di�erentiable function,

it may be chosen in such a way that �I no longer de-

pends explicitly on the variation of the state vector

�w. The gradient of the cost function can then be

evaluated directly from the metric variations with-

out having to recompute the variation �w resulting

from the perturbation of each design variable.

Comparing equations (18) and (20), the variation

�w may be eliminated from (24) by equating all �eld

terms with subscript \I" to produce a di�erential

adjoint system governing  

@ T

@�i

�
Fjw � Fvjw

�
I
+ Pw = 0 in D: (25)

The corresponding adjoint boundary condition is

produced by equating the subscript \I" boundary

terms in equation (24) to produce

ni 
T
�
Fjw � Fvjw

�
I
=Mw on B: (26)

The remaining terms from equation (24) then yield

a simpli�ed expression for the variation of the cost

function which de�nes the gradient

�I =

Z
B

�
�MII � ni 

T (Fi � Fvi)
	
dB�

+

Z
D

f�PII + [�Fi � �Fvi] IIg dD�; (27)

The details of the formula for the gradient depend

on the way in which the boundary shape is parame-

terized as a function of the design variables and the

way in which the mesh is deformed as the bound-

ary is modi�ed. Using the relationship between the

mesh deformation and the surface modi�cation, the

�eld integral is reduced to a surface integral by in-

tegrating along the coordinate lines emanating from

the surface. Thus the expression for �I is �nally

reduced to the form of equation (9)

�I =

Z
B

G�S dB�

where S represents the design variables, and G is

the gradient, which is a function de�ned over the

boundary surface.

The boundary conditions satis�ed by the 
ow

equations restrict the form of the left hand side of

the adjoint boundary condition (26). Consequently,

the boundary contribution to the cost function M

cannot be speci�ed arbitrarily. Instead, it must be

chosen from the class of functions which allow can-

cellation of all terms containing �w in the bound-

ary integral of equation (24). On the other hand,

there is no such restriction on the speci�cation of

the �eld contribution to the cost function P , since

these terms may always be absorbed into the adjoint

�eld equation (25) as source terms.

It is convenient to develop the inviscid and vis-

cous contributions to the adjoint equation sepa-

rately. Also, for simplicity, it will be assumed that

the portion of the boundary that undergoes shape

modi�cations is restricted to the coordinate surface

�2 = 0. Then equations (24) and (26) may be sim-

pli�ed by incorporating the conditions

n1 = n3 = 0; n2 = 1; dB� = d�1d�3;

so that only the variations �F2 and �Fv2 need to be

considered at the wall boundary.

4 Derivation of the Inviscid

Adjoint Terms

The inviscid contributions have been previously de-

rived in [4, 13] but are included here for complete-

ness. Taking the transpose of equation (25), the

inviscid adjoint equation may be written as

CT
i

@ 

@�i
= 0 in D; (28)

where the inviscid Jacobian matrices in the trans-

formed space are given by

Ci = Sij
@fj

@w
:

The transformed velocity components have the form

Ui = Sijuj ;

and the condition that there is no 
ow through the

wall boundary at �2 = 0 is equivalent to

U2 = 0;

so that

�U2 = 0

when the boundary shape is modi�ed. Consequently

the variation of the inviscid 
ux at the boundary

reduces to
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�F2 = �p

8>>>>>>>>><
>>>>>>>>>:

0

S2j

S22

S23

0

9>>>>>>>>>=
>>>>>>>>>;

+ p

8>>>>>>>>><
>>>>>>>>>:

0

�S2j

�S22

�S23

0

9>>>>>>>>>=
>>>>>>>>>;

: (29)

Since �F2 depends only on the pressure, it is now

clear that the performance measure on the boundary

M(w; S) may only be a function of the pressure and

metric terms. Otherwise, complete cancellation of

the terms containing �w in the boundary integral

would be impossible. One may, for example, include

arbitrary measures of the forces amd moments in the

cost function, since these are functions of the surface

pressure.

In order to design a shape which will lead to a

desired pressure distribution a natural choice is to

set

I =
1

2

Z
B

(p� pd)
2
dS

where pd is the desired surface pressure, and the

integral is evaluated over the actual surface area.

In the computational domain this is transformed to

I =
1

2

Z Z
Bw

(p� pd)
2
jS2j d�1d�3;

where the quantity

jS2j =
p
S2jS2j

denotes the face area corresponding to a unit el-

ement of face area in the computational domain.

Now, to cancel the dependence of the boundary in-

tegral on �p, the adjoint boundary condition reduces

to

 jnj = p� pd (30)

where nj are the components of the surface normal

nj =
S2j

jS2j
:

This amounts to a transpiration boundary condition

on the co-state variables corresponding to the mo-

mentum components. Note that it imposes no re-

striction on the tangential component of  at the

boundary.

In the presence of shock waves, neither p nor pd are

necessarily continuous at the surface. The bound-

ary condition is then in con
ict with the assump-

tion that  is di�erentiable. This di�culty can be

circumvented by the use of a smoothed boundary

condition [13].

5 Derivation of the Viscous

Adjoint Terms

In computational coordinates the viscous terms in

the Navier{Stokes equations have the form

@Fvi

@�i
=

@

@�i

�
Sijfvj

�
:

Computing the variation �w resulting from a shape

modi�cation of the boundary, introducing a co-state

vector  and integrating by parts following the steps

outlined by equations (19) to (23) producesZ
B

 T
�
�S2jfvj + S2j�fvj

�
dB�

�

Z
D

@ T

@�i

�
�Sijfvj + Sij�fvj

�
dD� ;

where the wall is de�ned by the coordinate surface

�2 = 0 so that n1 = n3 = 0, and n2 = 1. Further-

more, it is assumed that the boundary contributions

at the far �eld may either be neglected or else elim-

inated by a proper choice of boundary conditions as

previously shown for the inviscid case [4, 13].

Transformation to Primitive Variables

The derivation of the viscous adjoint terms is sim-

pli�ed by transforming to the primitive variables

~wT = (�; u; v; w; p)T :

because the viscous stresses depend on the veloc-

ity derivatives @ui
@xj

, while the heat 
uxes can be ex-

pressed as

k
@

@xi

�
p

�

�
:

The relationship between the conservative and prim-

itive variations are de�ned by the expressions

�w =M� ~w; � ~w =M�1�w

which make use of the transformation matricesM =
@w
@ ~w

and M�1 = @ ~w
@w

. These matrices are provided in

tranposed form for future convenience

MT =

2
66664

1 u1 u2 u3
uiui
2

0 � 0 0 �u1
0 0 � 0 �u2
0 0 0 � �u3
0 0 0 0 1


�1

3
77775

M�1T =

2
666664

1 �u1
�

�u2
�

�u3
�

(
�1)uiui
2

0 1
�

0 0 �(
 � 1)u1

0 0 1
�

0 �(
 � 1)u2

0 0 0 1
�

�(
 � 1)u3
0 0 0 0 
 � 1

3
777775
:
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The conservative and primitive adjoint operators L

and ~L corresponding to the variations �w and � ~w

are then related by

Z
D

�wTL dD� =

Z
D

� ~wT ~L dD�;

with
~L =MTL;

so that after determining the primitive adjoint op-

erator by direct evaluation of the viscous portion of

(25), the conservative operator may be obtained by

the tranformation L =M�1T ~L. There is no contri-

bution from the continuity equation so the deriva-

tion proceeds by �rst examining the adjoint opera-

tors arising from the momentum equations.

Contributions from the Momentum

Equations

In order to make use of the summation convention,

it is convenient to set  j+1 = �j for j = 1; 2; 3. Then

the contribution from the momentum equations is

Z
B

�k (�S2j�kj + S2j��kj) dB�

�

Z
D

@�k

@�i
(�Sij�kj + Sij��kj) dD� : (31)

The velocity derivatives in the viscous stresses can

be expressed as

@ui

@xj
=
@ui

@�l

@�l

@xj
=
Slj

J

@ui

@�l

with corresponding variations

�
@ui

@xj
=

�
@ui

@�l

�
I

�

�
Slj

J

�
+

�
Slj

J

�
II

@

@�l
�ui:

The variation in the stresses are then

��kj =
n
�
h
Slj
J

@
@�l
�uk +

Slk
J

@
@�l
�uj

i

+ �
h
�jk

Slm
J

@
@�l
�um

io
I

+
n
�
h
�
�
Slj
J

�
@uk
@�l

+ �
�
Slk
J

� @uj
@�l

i

+ �
h
�jk�

�
Slm
J

�
@um
@�l

io
II
:

The metric variations with subscript II that arise in

this expression are among those whose absence was

alluded to with regard to equation (20). Since these

terms have no dependence on variations in the 
ow

�eld �w, they do not contribute to the viscous ad-

joint operator, but instead yield an additional metric

variation term in the �eld contribution to the varia-

tion of the cost function in equation (27). Therefore,

only those terms with subscript I need be considered

further in deriving the viscous adjoint operator. The

�eld contributions that contain �ui in equation (31)

appear as

�

Z
D

@�k

@�i
Sij

�
�

�
Slj

J

@

@�l
�uk +

Slk

J

@

@�l
�uj

�

+��jk
Slm

J

@

@�l
�um

�
dD�:

This may be integrated by parts to yieldZ
D

�uk
@

@�l

�
SljSij

�

J

@�k

@�i

�
dD�

+

Z
D

�uj
@

@�l

�
SlkSij

�

J

@�k

@�i

�
dD�

+

Z
D

�um
@

@�l

�
SlmSik

��jk

J

@�k

@�i

�
dD� ;

where the boundary integral has been eliminated by

noting that �ui = 0. By exchanging indices, the �eld

integrals may be combined to produceZ
D

�uk
@

@�l
Slj

�
�

�
Sij

J

@�k

@�j
+
Sik

J

@�j

@�k

�

+ ��jk
Sim

J

@�m

@�m

�
dD�;

which is further simpli�ed by transforming the inner

derivatives back to Cartesian coordinatesZ
D

�uk
@

@�l
Slj

�
�

�
@�k

@xj
+
@�j

@xk

�
+ ��jk

@�m

@xm

�
dD�:

(32)

The boundary contributions that contain �ui in

equation (31) may be simpli�ed using the fact that

@

@�l
�ui = 0 if l = 1; 3

on the boundary B so that they becomeZ
B

�kS2j

�
�

�
S2j

J

@

@�2
�uk +

S2k

J

@

@�2
�uj

�

+ ��jk
S2m

J

@

@�2
�um

�
dSx: (33)

Together, (32) and (33) comprise the �eld and

boundary contributions of the momentum equations

to the viscous adjoint operator in primitive variables.

Contributions from the Energy Equa-

tion

In order to derive the contribution of the energy

equation to the viscous adjoint terms it is convenient

7



to set

 5 = �; Qj = ui�ij +
k


 � 1

@

@xj

�
p

�

�
;

where the temperature has been written in terms of

pressure and density using (14). The contribution

from the energy equation can then be written as

Z
B

� (�S2jQj + S2j�Qj) dB�

�

Z
D

@�

@�i
(�SijQj + Sij�Qj) dD� : (34)

The �eld contributions that contain �ui,�p, and

�� in equation (34) appear as

�

Z
D

@�

@�i
Sij�QjdD� =

�

Z
D

@�

@�i
Sij f�uk�kj + uk��kj

+
k


 � 1

Slj

J

@

@�l

�
�p

�
�
p

�

��

�

��
dD� : (35)

The term involving ��kj may be integrated by parts

to produce

Z
D

�uk
@

@�l
Slj

�
�

�
uk

@�

@xj
+ uj

@�

@xk

�

+�Sikum
@�

@xm

�
dD� (36)

where the conditions ui = �ui = 0 are used to elim-

inate the boundary integral on B. Notice that the

other term in (35) that involves �uk need not be

integrated by parts and is merely carried on as

�

Z
D

�uk�kjSij
@�

@�i
dD� (37)

The terms in expression (35) that involve �p and

�� may also be integrated by parts to produce both

a �eld and a boundary integral. The �eld integral

becomesZ
D

�
�p

�
�
p

�

��

�

�
@

@�l

�
SljSij

k

(
 � 1)J

@�

@�i

�
dD�

which may be simpli�ed by transforming the inner

derivative to Cartesian coordinatesZ
D

�
�p

�
�
p

�

��

�

�
@

@�l

�
Slj

k


 � 1

@�

@xj

�
dD� : (38)

The boundary integral becomes

Z
B

k


 � 1

�
�p

�
�
p

�

��

�

�
S2jSij

J

@�

@�i
dB� (39)

which can also be simpli�ed by transforming the in-

ner derivative to Cartesian coordinates

Z
B

k


 � 1

�
�p

�
�
p

�

��

�

�
S2j

J

@�

@xj
dB�; (40)

and identifying the normal derivative at the wall

@

@n
= S2j

@

@xj
(41)

and the variation in temperature

�T =
k


 � 1

�
�p

�
�
p

�

��

�

�

to produce the boundary contribution

Z
B

k�T
@�

@n
dB�: (42)

This term vanishes if T is constant on the wall but

persists if the wall is adiabatic.

There is also a boundary contribution left over

from the �rst integration by parts (34) which has

the form Z
B

�� (S2jQj) dB� (43)

where

Qj = k
@T

@xj

since ui = 0. Notice that for future convenience in

discussing the adjoint boundary conditions resulting

from the energy equation, both the �w and �S terms

corresponding to subscript classes I and II are con-

sidered simultaneously. If the wall is adiabatic

@T

@n
= 0

so that using (41)

� (S2jQj) = 0

and both the �w and �S boundary contributions van-

ish.

On the other hand, if T is constant then it is more

convenient to expand (43) into

Z
B

� (�S2jQj + S2j�Qj) dB�

where, since @T
@�l

= 0 for l = 1; 3,

�Qj = k�
@T

@xj
= k�

�
Slj

J

@T

@�l

�
= k�

�
S2j

J

@T

@�2

�

8



so that the boundary integral (43) becomes

Z
B

�

�
S2j

J

@

@�2
�T + k

�
�

�
S2j +

S2j

J

�
@T

@�l

��
dB� (44)

Therefore, for constant T , the �rst term correspond-

ing to variations in the 
ow �eld contributes to the

adjoint boundary operator and the second set of

terms corresponding to metric variations contribute

to the cost function gradient.

All together, the contributions from the energy

equation to the viscous adjoint operator are the

three �eld terms (36), (37) and (38), and either of

two boundary contributions, depending on whether

the wall is adiabatic (42) or has constant tempara-

ture (42).

6 The Viscous Adjoint Field

Operator

Collecting together the contributions from the mo-

mentum and energy equations, the viscous adjoint

operator in primitive variables can be expressed as

(~L )1 = �
p

(
 � 1)�2
@

@�l

�
Sljk

@�

@xj

�

(~L�)i =
@

@�l

�
Slj

�
�

�
@�i

@xj
+
@�j

@xi

�
+ ��ij

@�k

@xk

��

+
@

@�l

�
Slj

�
�

�
@�

@xj
+
@�

@xi

�
+ ��ij

@�

@xk

��

� �ijSlj
@�

@xl

(~L�) =
�

(
 � 1)

@

@�l

�
Sljk

@�

@xj

�
;

so that the conservative viscous adjoint operator

may be obtained by the transformation

L =M�1T ~L:

7 Viscous Adjoint Boundary

Conditions

As previously noted, the boundary conditions sat-

is�ed by the 
ow equations restrict the form of the

performance measure that may be chosen for the

cost function. There must be a direct correspon-

dance between the 
ow variables for which variations

appear in the expression for the cost function gradi-

ent and those variables for which variations appear

in the boundary terms arising during the derivation

of the adjoint �eld equations. Otherwise it would be

impossible to eliminate the dependence of �I on �w

through proper speci�cation of the adjoint bound-

ary condition. As in the derivation of the �eld equa-

tions, it proves convenient to consider the contribu-

tions from the momentum equations and the energy

equation separately.

Boundary Conditions Arising from the

Momentum Equations

The boundary term that arises from the momentum

equations including both the �w and �S components

(31) takes the form

Z
B

�k� (S2j�kj) dB�:

Replacing the metric term with the corresponding

local face area S2 and unit normal nj de�ned by

jS2j =
p
S2jS2j ; nj =

S2j

jS2j

then leads to Z
B

�k� (jS2jnj�kj) dB�:

De�ning the components of the surface stress as

�k = nj�kj

and the physical surface element

dS = jS2j dB�;

the integral may then be split into two components

Z
B

�k�k j�S2j dB� +

Z
B

�k jS2j ��kdS; () (45)

where only the second term contains variations in

the 
ow variables and must consequently cancel the

�w terms arising in the cost function. The �rst term

will appear in the expression for the cost function

gradient.

A general form of the cost function that allows

cancellation with terms containing ��k has the form

I =

Z
B

N (�)dS; (46)

corresponding to a variation

�I =

Z
B

@N

@�k
��kdS;

9



for which cancellation is achieved by the adjoint

boundary condition

�k =
@N

@�k
:

Natural choices for N arise from force optimization

and

as measures of the deviation of the surface stresses

from desired target values.

For viscous force optimization, the cost function

should measure friction drag. The friction force in

the xi direction is

CDfi =

Z
B

�ijdSj =

Z
B

S2j�ijdB�

so that the force in a direction with cosines ni has

the form

Cnf =

Z
B

niS2j�ijdB�:

Expressed in terms of the surface stress �i this cor-

responds to

Cnf =

Z
B

ni�idS;

so that basing the cost function (46) on this quantity

gives

N = ni�i:

Cancellation with the 
ow variation terms in equa-

tion (45) there for mandates an adjoint boundary

condition

�k = nk:

Note that this choice of boundary condition also

eliminates the �rst term in equation (45) so that

it need not be included in the gradient calculation.

In the inverse design case, where the cost function

is intended to measure the deviation of the surface

stresses from some desired target values, a suitable

de�nition is

N (�) =
1

2
alk (�l � �dl) (�k � �dk)

where �d is the desired surface stress. For cancella-

tion

�k��k = alk (�l � �dl) ��k

This is satis�ed by the boundary condition

�k = alk (�l � �dl) (47)

Assuming arbitrary variations in ��k this condition

is also necessary.

In order to control the surface pressure and normal

stress one can measure the di�erence

nj f�kj + �kj (p� pd)g

where pd is the desired pressure. The normal com-

ponent is then

�n = nknj�kj + p� pd;

so that the measure becomes

N (�) =
1

2
�2n

=
1

2
nlnmnknj f�lm + �lm (p� pd)g

� f�kj + �kj (p� pd)g :

This corresponds to setting

alk = mlnk

in equation (47). De�ning the viscous normal stress

as

�vn = nknj�kj ;

the measure can be expanded as

N (�) =
1

2
nlnmnknj�lm�kj

=
1

2
�2vn + �vn (p� pd) +

1

2
(p� pd)

2

For cancellation of the boundary terms

�k (nj��kj + nk�p)

=
�
nlnm�lm + n2l (p� pd)

	
nk (nj��kj)

leading to the boundary condition

�k = nk (�vn + p� pd) :

In the case of high Reynolds number this is well ap-

proximated by the equations

�k = nk (p� pd) ; (48)

which should be compared with the single scalar

equation derived for the inviscid boundary condition

(30). In the case of an inviscid 
ow, choosing

N (�) =
1

2
(p� pd)

2

requires

�knk�p = (p� pd)n
2
k�p = (p� pd) �p

which is satis�ed by equation (48), but which repre-

sents an overspeci�cation of the boundary condition

since only the single condition (30) need be speci�ed

to ensure cancellation.
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Boundary Conditions Arising

from the Energy Equation

The boundary terms arising from the energy equa-

tion depends on the choice of temperature boundary

condition at the wall. For the adiabatic case, the

boundary contribution is (42)

Z
B

k�T
@�

@n
dB�:

while for the constant temperature case the bound-

ary term is (44)

Z
B

�

�
S2j

J

@

@�2
�T + k

�
�

�
S2j +

S2j

J

�
@T

@�l

��
dB�:

One possibility is to introduce a contribution into

the cost function which is dependent T or @T
@n

so that

the appropriate cancellation would occur. However,

since there is little physical intuition to guide the

choice of such a cost function for aerodynamic de-

sign, an alternative solution is the set

� = 0

in the constant temperature case or

@�

@n
= 0

in the adiabatic case. Note that in the constant

temperature case, this choice of � on the boundary

would also eliminate the boundary metric variation

terms in (43).

Implementation of Navier{Stokes De-

sign

The design procedures can be summarized as fol-

lows:

1. Solve the 
ow equations for �, u, v, p.

2. Smooth the cost function, if necessary.

3. Solve the adjoint equations for  subject to ap-

propriate boundary conditions.

4. Evaluate G .

5. Project G into an allowable subspace that sat-

is�es any geometric constraints.

6. Update the shape based on the direction of

steepest descent.

7. Return to 1.

Practical implementation of the viscous design

method relies heavily upon fast and accurate solvers

for both the state (w) and co-state ( ) systems.

This work employs a well-validated Navier{Stokes

solver developed by two of the authors [14]. The


ow and adjoint equations are discretized using a

semi-discrete �nite volume scheme based on Jame-

son's high resolution SLIP construction [15, 16, 17]

and multi-stage Runge-Kutta time-stepping [18].

The preconditioned multigrid method developed by

Pierce and Giles is used to accelerate the conver-

gence of both 
ow and adjoint solvers [11, 12].

Results

Preconditioned Inverse Design

The �rst demonstration is an application of the pre-

conditioning technique for inverse design with the

Euler equations. The ONERA M6 (Fig. 2) wing is

recovered for a lifting case starting from a wing with

a NACA0012 section (Fig. 1) and using the ON-

ERA M6 pressure distributions computed at � = 3:0

and M = 0:84 as the target (Fig. 3). Thus, a sym-

metric wing section is to be recovered from an asym-

metric pressure distribution. The calculations were

performed on a 192�32�48 C-H mesh with 294,912

cells. Each design cycle required 3 multigrid cycles

for the 
ow solver using characteristic-based ma-

trix dissipation with a matrix preconditioner and 12

multigrid cycles for the adjoint solver using scalar

dissipation and a variable local time step (scalar

preconditioner). Compared to a test in which the

3 multigrid cycles using the matrix preconditioner

were replaced by 15 multigrid cycles using a stan-

dard scalar preconditioner, and 15 cycles were used

in adjoint solver, each design cycle required about

3/8 as much computer time, while the number of

design cycles required to reach the same level of er-

ror also fell from 100 to about 50. Use of the ma-

trix preconditioner therefore reduced the total CPU

time on an IBM 590 workstation from 97,683 sec

(�27 hours) to 18,222 sec (�5 hours) for roughly

equivalent accuracy.

Viscous Design

Due to the high computational costs of viscous de-

sign, a two-stage design strategy is adopted. In the

�rst stage, a design calculation is performed with the

Euler equations on a 192�32�48 mesh to minimize

the drag at a given lift coe�cient by modifying the

wing sections for a �xed planform. This results in a

shock free wing at the design point.

11



In the second stage, the pressure distribution of

the Euler solution is used as the target pressure dis-

tribution for inverse design with the Navier-Stokes

equations on a 192�64�48 mesh with 32 intervales

normal to the wing concentrated inside the bound-

ary layer region. Comparatively small modifactions

are required in the second stage, so that it can be

accomplished with a small number of design cycles.

To test this strategy, an isolated wing representa-

tive of commercial aircraft in current use was used

as the initial geometry. The design point was taken

as a lift coe�cient of 0.55 at a Mach number of 0.83.

The initial wing exhibits a moderately strong shock

across most of the upper surface, as can be seen in

Fig. 4. In the �rst stage using the Euler equations,

60 design cycles were required to produce the shock

free wing shown in Fig. 5, with an indicated drag

reduction of 15 counts from 0.0196 to 0.0181. Vis-

cous analysis with the Reynold's averaged Navier{

Stokes equations and a Baldwin-Lomax turbulence

model at a Reynolds number of 12 million indicates

that this wing still contains a weak shock due to

the displacement e�ects of the boundary layer, as

can be seen in Fig. 6. In the second stage of the

design, 10 cycles using the Navier{Stokes equations

were needed to recover the shock free wing shown in

Fig. 7.

Conclusions

We have developed a three-dimensional control the-

ory based design method for the Navier Stokes equa-

tions and successfully applied to the design of wings

in transonic 
ow. The method represents an exten-

sion of our previous work on the design with the po-

tential 
ow and Euler equations. The new method

combines the versatility of numerical optimization

methods with the e�ciency of inverse design. The

geometry is modi�ed by a grid perturbation tech-

nique which is applicable to arbitrary con�gurations.

The combination of computational e�ciency with

geometric 
exibility provide a powerful tool , with

the �nal goal being to create practical aerodynamic

shape design methods for complete aircraft con�gu-

rations.
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1a: Initial Wing. 1b: Cp on Upper Surface.

Figure 1: Inviscid Solution for Initial Wing (NACA 0012).M = :84; Cl = :3000; Cd = :0205; � = 2:935�.
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2a: Redesigned Onera M6 Wing. 2b: Cp on Upper Surface.

Figure 2: Solution for Redesigned Onera M6 Wing.M = :84; Cl = :2967; Cd = :0141; � = 2:935�
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3a: span station z = 0:297
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3b: span station z = 0:484
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3c: span station z = 0:672
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3d: span station z = 0:859

Figure 3: Target and Computed Pressure Distributions of Redesigned Onera M6 Wing.

M = 0:84, CL = 0:2967, CD = 0:0141, � = 2:935�.
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4a: Initial Wing. 4b: Cp on Upper Surface.

Figure 4: Inviscid Solution for Initial Wing.M = :83; Cl = :5498; Cd = :0196; � = 2:410�.
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5a:

Wing After Inviscid Design. 5b: Cp on Upper Surface.

Figure 5: Stage 1: Inviscid Design. 60 Design Cycles in Drag Reduction Mode with Fixed Lift.

M = :83; Cl = :5500; Cd = :0181; � = 1:959�:
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6a: Wing After Inviscid Design. 6b: Cp on Upper Surface.

Figure 6: Viscous Solution for Inviscid Design.M = 0:83; Cl = :5506; Cd = :0199; � = 2:317�.
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7a: Wing After Viscous Design. 7b: Cp on Upper Surface.

Figure 7: Stage 2: Viscous Re-design of Inviscid Design. 10 Design Cycles in Drag Reduction Mode with

Fixed Lift.

M = 0:83; Cl = :5508; Cd = :0194; � = 2:355�:
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