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Abstract. In the United States, most airports do not place any limitations on airline 

schedules. At a few major airports, the current scheduling restrictions (mostly 

administrative measures) have not been sufficiently strict to avoid consistent delays and 

have raised debates about both the efficiency and the fairness of the allocations. With a 

forecast 1.1 billion yearly air travelers within the U.S. by 2015, airport expansion and 

technology enhancement alone are not enough to cope with the competition-driven 

scheduling practices of the airline industry. The policy legacy needs to change to be 

consistent with airport capacities. 

 

Our research studies how flight schedules might change if airlines had to restrict their 

schedules to be consistent with runway capacity. To obtain these schedules, we take a 

novel modeling approach. We model a profit-seeking, single benevolent airline, and 

develop an airline economic model to simulate its scheduling decisions. This airline is 

benevolent in the sense that it considers historic pricing at LaGuardia and the associated 

price-elasticity and attempts to service this population while simultaneously remaining 

profitable. We explicitly incorporate the relationship between supply and demand 

through price elasticity, which is estimated by extensive data mining of publicly available 

databases.  

 

Our case study demonstrates that at Instrument Meterological Conditions
1
 (IMC) runway 

rates, the market can find profitable flight schedules that reduce substantially the average 

flight delay while accommodating the current passenger demand at prices consistent with 

the current competitive market. The IMC rate provides a predictable on-time performance 

for the identified schedules in all weather conditions. In addition, the reduction of flights 

through consolidation of low load-factor flights and through aircraft up-gauging alleviate 

much of the current traffic pressure on high-demand airports. (276 words) 

 

1. Introduction 
 

Within the next ten years, FAA Aerospace Forecasts Fiscal Years 2006-2017 [1] predict 

that there will be as many as 1.1 billion air travelers per year in the U.S. Airports rather 

than en-route airspace have been identified as the chokepoints creating the major portion 

of the congestion in the system. An analysis of airport and metropolitan area future 

                                                 
1
 IMC generally means that visibility is impaired and runway capacity must be decreased accordingly. 
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demand and operational capacity [2] reveals that 15 airports will need additional capacity 

by 2013, and eight more will face capacity limitations by 2020. 

 

LaGuardia (LGA) airport has a long history of severe congestion. Beginning in 1968, the 

FAA instituted a High-Density-Rule (HDR) that, for the first time, limited the number of 

takeoffs/landings by hour or half hour during certain hours of the day. There are only four 

airports that have such a rule; all other airlines can schedule flights whenever they desire 

but must ensure that they have the requisite ground facilities (gates, baggage handling, 

ticket counters, etc) to handle their customers. In late 2000, the FAA provided an 

additional 300 slots (a 30% increase in daily operations) into LGA to new entrant carriers 

or to airlines that fly 70-seat or less aircraft to small or non-hub airports (see Figure 1). 

These new slots were labeled “slot exemptions” because they ignored the prior restriction 

on the total number of slots available at LGA. The result was a significant increase in 

delays.  To overcome this delay problem, a lottery (often called the “slottery”) was 

introduced to reduce the total number of these new slots as a temporary congestion 

measure to help control the delays. The events of September 11, 2001, and the economic 

slowdown in mid 2002 reduced demand and congestion, and diverted attention from 

airport congestion to airport safety. Currently, the growth in air traffic has put substantial 

pressure on the airport’s infrastructure, which has limited possibilities for expansion. 

Average arrival delay per flight reached 28 minutes in July 2000 and 31 min in July 

2005. 

 

 
Figure 1. Flight delays at LGA (2000-2005) 

 

At LaGuardia airport, the average number of passenger seats per aircraft in recent years 

has decreased from 129 seats to 96 seats, see Figure 2. The current scheme of weight-

based landing fees and stated customer preference for increased flight frequency produce 

incentives for airlines to schedule higher frequencies of smaller aircraft to assure their 



 3 

continued presence at LaGuardia, even when such slots are not profitable. The provisions 

associated with the slot exemptions further exacerbated this problem at LGA. Since a 

small aircraft occupies the same slot as a large one, the throughput per hour of passengers 

must decline as smaller aircraft are employed. Queues build when airlines continue to add 

flights to the overall schedule without the addition of new technology or runways. And, 

by the end of the day, passengers are experiencing long delays and cancelled flights. 

System wise, regional jets now represent 37 percent of the commercial traffic at the 

nation’s 35 busiest airports, up from 30 percent in 2000 [3]. Actual data for LGA, shows 

that 50-seat or less aircraft make up 46% of the total flights. On the other hand, while 

having no expansion possibility, LGA has seen the number of operations increase and is 

now approaching the peak number of scheduled flights experienced in 2000. We can 

expect that during the summer of 2007 the airport will experience similar delays that will 

propogate throughout the entire network.  . 

 

 
 

Figure 2. Number of operations, passengers handled and  

average aircraft seat capacity of at LGA  

 

Other research has shown that delays generated at major airports like LGA, ORD, EWR 

propagate system wide and that the airlines are not able to absorb these delays in their 

schedules.  There is no technology that can fix delays that are the result of systemic over-

scheduling.  Even if the Next Generation of Air Traffic Control System (NGATS) 

proposals are deployed, increasing network capacity by reducing aircraft separation 

standards, the delays will not be reduced because the airlines will respond by increasing 

their schedules to these high-demand airports. The ability to over-schedule must be 

brought into alignment with runway capacity.  
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2. Market-based proposals 
 

Conventional economic wisdom suggests that market-based mechanisms such as 

congestion pricing and auctions are efficient in allocating scarce resources to the users 

who value them the most. Both options derive higher fees for peak periods than for off-

peak periods, preventing low-value flights from being scheduled in peak periods. In 

addition, increasing per-flight cost is expected to encourage airlines to up-gauge, and 

therefore increase passenger throughput.  

 

Congestion pricing consists of charging a flat landing fee based upon demand at a 

particular time of day. Congestion pricing, as applied to runway allocation would result 

in the price of an arrival varying by time of day, day of week, and dynamically changing 

as the demand for operations reacts to these fees. Congestion pricing of transport 

networks has been common in road traffic. Examples include traditional methods using 

toll booths such as turnpikes and toll roads, as well as more modern dynamic schemes 

employing electronic toll collection such as the London congestion charge [4], the 

Trondheim toll scheme in Norway [5], Singapore’s Electronic Road Pricing [6], Highway 

407 bypass of Toronto, Ontario, and High-occupancy toll lanes (SR-91, Interstate 15) in 

California. 

 

Congestion pricing of airport runway access can be considered as a “reactive” measure in 

the sense that prices are adjusted in response to observed delay levels. A price regulator 

would set time-based prices for slots and airlines would set their demands accordingly. 

Comments of The US Department of Justice on congestion pricing [7] pointed out that “a 

drawback to congestion pricing is the regulator’s lack of knowledge about what price to 

set. A regulator may not have good enough information to allow it to set the right price 

without frequent experimentation”. When set incorrectly, one might experience either 

over-scheduling (and the resulting delays) or under-scheduling (and the resulting under 

use) of runways. The airlines may find congestion pricing difficult to manage since it 

results in both cost uncertainties, and the need to dynamically allocate gates and other 

ground facilities. Daniel [8], Pels [9], Fan [10], and Schank [11] study the role of 

congestion pricing of runway slots.  

 

An alternative to congestion pricing is the allocation of slots by auction where the buyer 

of the slot has complete use of the slot for many years. The buyer has, in essence, leased 

the right to a given takeoff or landing and can use or re-sell that right for any portion of 

the lease period. The regulator determines the runway capacity and the airlines then “bid” 

for the given right for the period specified. Thus, the auction determines the value of each 

slot “proactively”. Auctions have been successfully used for single item sales, corporate 

procurement, and more complex applications such as telecommunications spectrum 

allocation with large numbers of interrelated regional licenses [12]. The use of auctions 

by the Federal Government to allocate scarce resources demonstrates the feasibility of 

using auctions for complex allocation problems similar to landing-slot allocation. 

Proposals to allocate airport time slots using market-driven mechanisms such as auctions 

date back to 1979 with the work of Grether, Issac, and Plot [13] and Rassenti, Smith and 

Bulfin [14]. European researchers, DotEcon Ltd [15] and National Economic Research 
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Associates (NERA) [16], conducted macro-economic analysis to conclude that proper 

implementation of auctions will result in higher passenger volumes, higher load factors, 

reallocation of flights to off-peak times or to less congested airports, and lower fares on 

average. These two works are highly qualitative with illustrative calculations of aggregate 

statistics. Ball et al. [17] put forward the need for three types of market mechanisms: an 

auction of long-term leases of arrival and/or departure slots, a secondary market that 

supports inter-airline exchange of long-term leases and a near-real-time market that 

allows for the exchange of slots on a particular day of operation. 

 

A series of government-industry strategic simulations or games designed and conducted 

by member universities of the National Center of Excellence for Aviation Operations 

Research (NEXTOR) were used to explain to the airline industry and government 

stakeholders how regulation and market-based allocation mechanisms might be used for 

runway slot allocation [18]. By simulating real life scenarios, the games allowed 

interested parties to experience how congestion management and auctions would impact 

schedules and delays. The results of theses strategic games indicated that the solutions 

regulators suggested had little impact on delays and congestion. Airlines believed that 

they were faced with a problem similar to the “Prisoner’s Dilemma” whereby if they 

reduced their flights, they may never be able to recover them. On the other hand, when 

congestion pricing and auctions were simulated in the same setting, each of these 

alternatives successfully managed delays because the newly imposed economic costs 

forced the airlines to reduce the number of departures and landings in their schedule and 

service passengers with up-gauged aircraft.  

 

3. Research Problem and Methodology 

 
We hypothesized that the current congestion situation is caused, in large part, by the 

existing rules and policies. Specifically, we questioned whether the current grand 

fathering of slot coupled with an 80% use-it-or-lose-it requirement, and slot exemptions 

lead to inefficient use of airport capacity at slot controlled airports. We note that such 

inefficiency affects both airlines and airports. Faced with projected traffic growth, we 

wish to determine if alternative rules might (a) better control delays, (b) maintain the 

profitability of the airline industry, and (c) accommodate current demand at the current 

competitive prices. We use LaGuardia as our first example because of its importance to 

the entire network.  

 

In this paper, we explore if there are flight schedules that simultaneously are profitable to 

the airline industry, accommodate the existing demand at current prices, and reduce 

congestion. We analyze the schedules we obtained in terms of flight delay, enplanement 

opportunities, demand profile, average fare, markets served, and aircraft size. 

 

3.1. Data mining to illustrate inefficient use of runway capacity due to current slot 

allocation scheme.  
 

The monthly T-100 Segment Table, compiled by the Bureau of Transportation Statistics 

(BTS) [19], reports domestic and international operational data by U.S. and foreign air 
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carriers. Figure 3 collects six months of data for LGA. The bottom x-axis provides the 

average aircraft size while the left y-axis provides the average load factor. Similarly, the 

top x-axis and the right y-axis provide the cumulative percentages of the data.   

 

Splitting the charts into four quadrants along the average aircraft size (98 seats) and 

below 60% load factors allows us to better understand the observations. The bottom two 

quadrants are low load-factor flights that are likely unprofitable to the airlines. The left 

two quadrants relate to low seat capacity flights. Interests of airlines and airports coincide 

in the upper right quadrant, where the private profitability goal aligns with the public goal 

of having high enplanement opportunities. The bottom left quadrant is inefficient for both 

airlines and airports (low load factors coupled with small planes).   

 Although the majority of flights lie in the upper right hand quadrant, we note that 

removing the flights in the bottom left quadrant from the system could eliminate all of 

the delay at LGA. In addition, these flights are not profitable for the airlines. The 

question then becomes, can one find a schedule that services most (or all) of the current 

passengers at the times desired at current prices and with aircraft that make these flights 

profitable? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. LGA’s load factors and aircraft size 

Lower left quadrant shows low load factors and small aircraft 

 

 

 

3.2. Scheduling models. As stated in the introduction, we take the somewhat unorthodox 

approach of modeling LaGuardia from the perspective of a benevolent monopoly airline.  

We are looking to find a schedule that perfectly uses the runway capacity, offers 

departures and arrivals to LaGuardia consistent with current demand patterns and at 

current competitive prices. Thus, this airline is looking to serve the region rather than use 
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any of its monopolistic power to force a rise in the current prices. To determine such 

schedules, we use the same algorithms as are used by airlines to determine schedules, and 

determine the appropriate fleet sizing for that schedule. Using available ticket prices, we 

estimate demand and supply curves for each market served and we use simulation to 

determine the delays incurred with any derived schedule.    

 

Flight schedules are determined through the interaction of two processes or models: (i) 

airlines seek profit-maximizing schedules and (ii) airports maximize enplanement 

opportunities subject to capacity constraints. The former is called the “sub-problem”, and 

the latter is referred to as the “master problem”. In the sub-problems, airlines are modeled 

aggregately as a single benevolent airline seeking flight schedules for individual markets. 

The aggregate airline is benevolent in the sense that it reacts to actual price elasticities of 

demand estimated in a competitive market. Unlike existing airline flight scheduling 

models that use fare as a parameter, our airline model explicitly accounts for the 

interaction of demand and supply through price. The airport model in the master problem 

solves a set packing problem to select the most efficient market schedules. The solution 

methodology for solving the overall problem is a Dantzig-Wolfe decomposition, where 

the columns within the master-problem are schedules that are gradually generated based 

on an announced price vector. As new schedules are presented, the master problem is 

solved, thereby generating a new price vector. The process continues until an equilibrium 

is reached, i.e. no new schedules are found that can improve the profitability of the 

master problem.  We note that our methodology applies to airports that have mostly local 

traffic [20].  

 

3.2.1 Interaction between demand and supply through price 

 

In microeconomics, demand and supply interact through price following the generic 

relationship depicted in Figure 4. The law of demand states that other things remaining 

equal, the higher the price of a good, the smaller the quantity demanded. This clearly 

reflects the observations that overcapacity in certain competitive markets have driven 

airlines to reduce ticket prices to unsustainable levels. 

 

 
Figure 4. Nonlinear relationship of demand vs. price and the effect on revenues 
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A certain fleet mix configuration or ratio corresponds to a supply curve where the 

movement along the supply curve translates to changes in frequency. Having larger 

aircraft in the mix shifts the supply curve rightward. Price as a regulator establishes 

market equilibriums at the intersection points of the demand and supply curves. S1, S2, 

and S3 in Figure 4 intersect the demand curve D at quantities equal to 500, 1000, and 

1300 respectively, where the resulting revenues of S1 and S3 are sub-optimal compared 

to the revenue of S2.  

 

Given a market, for all time windows of a particular length, e.g. 15-min, we estimate the 

convex nonlinear demand curves and the corresponding concave nonlinear revenue 

functions, where the maximum y-value is the optimal revenue associated with an optimal 

x-value of supply for a time window. Demand curves of peak periods shift rightward and 

those of off-peak periods shift leftward. Similarly, revenue curves of peak periods lie on 

top of those of off-peak periods.  

 

We use nesting revenue functions to model time window interdependency, which 

manifests through demand spill and recapture among time windows. We first estimate 

revenues independently for each 15-min time window. We next estimate revenues of time 

windows of larger granularity, ex. hourly or by time of day (morning, afternoon, 

evening). It can be reasonably assumed that the sum of demands/revenues of all adjacent 

15-min time windows are expected to be constrained by the aggregate, or nested, revenue 

function of the compounding period, as illustrated by Figure 5. Note that in Figure 5, 

some 15-min time windows have the same estimates of revenue functions and therefore 

are superimposed on top of each other. 

 

 

 
Figure 5: Nesting revenue functions 

 

3.2.2 Airline scheduling model 

 

For each market, we build complete schedules for all applicable fleets. At each airport, 

time of day is partitioned into time windows represented by nodes. Flight arcs are 

determined by the time needed to fly a particular aircraft type. Similar to Lohatepanont  

[21], any outgoing arc from a given node is considered to happen after all incoming arcs 

at that node. There are arcs that allow planes to remain at the airport from one time period 
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to the next and there are additional directed ground arcs from the last time window of one 

day to the first time window of the following day that represent the aircraft that overnight 

at a given airport.  

 

 
Figure 6: Timeline network example for a city pair having the same time zone. 

 

Assuming concave revenue functions, we define: 

 

Sets: 

 

T time windows 

A
G
 ground arcs 

A
F
 flight arcs 

K  fleet types operable for a particular market 

Q(i)  segment indexes for linear approximation of the revenue function of  time 

window iT 

 

Parameters: 

 

S
k
  seating capacity of fleet type kK  

C
k
ij direct operating cost for one flight of fleet type k K for (i, j)A

F
 

Aiq  linear segment quantities for the revenue function of iT, qQ(i) 

Riq  linear segment revenues for the revenue function of iT, qQ(i) 

l  average load factor 

 

Variables: 

 

x
k
ij number of flights of fleet type kK for (i, j)A

FA
G
 

iq  linear segment variables for the revenue function of iT, qQ(i) 

 

Subproblem formulation: 
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For any time window i, (j,i)A
F
 kKC

k
jix

k
j in the objective function (1) is the total 

operating cost of arrivals at i. The resulting total capacity kK(j,i)A
F
S

k
x

k
ji multiplied by 

the average factor estimates the number of revenue passengers arriving at i. This value is 

then linearly approximated in (3) as a convex combination of segment endpoints (Aiq,Riq) 

with qQ(i) using non-negative real variables iq. Therefore, qQ(i) Riqiq is the 

piecewise linear approximation of the revenue function of time window i. Subtracting the 

sum of all the cost terms over all flights from the sum of all the revenue terms over all 

time windows yields the total profit that (1) seeks to maximize. (2) enforces flow balance 

at each node i in the timeline network, i.e. for each fleet, the number of incoming aircraft 

is equal to the number of outgoing aircraft of that type.  

 

qQ(i) Aiqiq is the estimate of realized arrival demand at time window i. We note that i 

can have other substitutable time windows that are all included in a coarser compounding 

time window p, i.e. iE(p). Similarly, (4) approximates the aggregate arrival demand of p 

into a convex combination of segment endpoints (Apr,Rpr) with rQ(p) using non-

negative real variables pr. (5) states that the sum of revenues of substitutable time 

windows in p, iE(p) qQ(i) Riqiq, is constrained by the revenue of the compounding 

time window p, rQ(p)Rprpr. (6) and (7) are the sets of convex constraints for iq and pr, 

respectively. 

 

The solution of a subproblem creates two schedule vectors: the arrival vector {aj} where 

aj = kK(i,j) A
F
x

k
ij, and the departure vector {dj}, where dj = kK(j,i) A

F
 x

k
ji, jT.   

These vectors are columns that are added to the master problem.  The master problem is 

then re-solved yielding a new price-vector that is provided to the sub-problem.   
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3.2.3 Airport slot allocation problem 

The master problem at a capacitated airport collects the schedules of individual markets 

and solves a set packing problem with side constraints to maximize public goals. 

Let: 

 

Sets: 

S  schedule vector indexes 

T  time window indexes 

M  market indexes 

S(m)  column indexes of market m’s schedule vectors, mM 

 

Parameters: 

a
|T|x|S|

  matrix of arrivals by time window: aij is the number of arrival flights at time 

window i in schedule j 

d
|T|x|S|

  matrix of departures by time window: dij is the number of departure flights at time 

window i in schedule j 

Zj  coefficient of the schedule vector jS, determined by the public goal to optimize 

Ci  arrival/departure rates of time window iT 

Gi  ground capacities in time window iT 

 

Variables: 

yj  binary variable, equal to 1 if schedule vector yj is in the optimal solution 

 

Formulation of the master problem: 

 

 

 

 

( )

| |

max (8)

subject to:

9

10

1 (11)

j j

j S

ij j i

j S

ij j i

j S

j

j S m

Z y

a y C i T

d y C i T

y m M

y B 









  

  

  











 

 
The sets of constraints (9) and (10) reflect airport operational rate constraints. As each 

market can have many alternative schedules from which at most one schedule can be in 

the solution, each market has a special-ordered set constraint (11). The objective function 

maximizes public goals such as: 

- Profit, where Zj is the profit of schedule j, given by: 

 

 
( ) ( . ) F

k k

iq iq ji ji

i T q Q i k Kj i A

R C x
  

     
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- Seat throughput, where Zj is the total seat of schedule j, given by: 

 
( , ,)

k k

ji

k K j i A

S x
 

   

 

4. Results and discussion 
 

4.1. Parameters and baseline statistics. Our study considered a wide range of scenarios 

but only one scenario will be discussed in this paper. The scenario we report is one where 

we first determined the profit-maximizing schedule. We then add a constraint to the 

model that requires that any schedule be within 90% of the profit-maximizing schedule 

and now maximize available seats subject to the model constraints. The full range of 

scenarios and results can be found in [20]. We have chosen the scenario discussed 

because it presents a compromise between the two objectives (a) maximizing profit and 

(b) maximizing throughput.  

 

The data used for this modeling effort include only daily nonstop domestic markets. The 

following parameters are assumed for all the scenarios in [20]: 

• Data sampling period: Q2, 2005 

• 67 nonstop domestic markets that have daily schedules to/from LGA 

• 45 minutes of minimum turn-around time for all fleets 

• 80% load factor 

• Fuel cost: $2/gallon 

• Existing fleets 

• Time windows from 6:00am-12:00pm, 12:01pm-17:00pm, 17:01pm-24:00pm 

are substitutable. However, finer grouping of substitutable time windows can be 

done to reflect better demand characteristics by time of day for individual 

markets. 

 

For the sampling period of Q2 2005, ASPM reports traffic data of 275 airports that had 

nonstop domestic and international flights to/from LGA, and revenue data of 92 domestic 

markets. We only focus on the 67 domestic markets that have at least one nonstop flight 

each day during the sampling period, thereby ignoring the 208 other airports that do not 

have daily flights to LGA..  These 67 domestic markets provide 92.6% of the total 

passengers and 94% actual operations at LGA. Statistics with respect to these 67 markets 

are collected in Table 1, to be compared our simulated results. The overall statistics are 

also provided for reference purpose. 

 
Metrics Study Overall 
Nonstop Markets 67 275 
Average Daily Nonstop Flights 1,024 1,104 
Seats 98,686 101,072 
Passengers 72,845 78,675 
Average aircraft size 95 seats/AC 95 seats/AC 
Average fare $139 $133 
Average flight delay 18.7 min 18.6 min 
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Table 1. Daily average statistics for all flights at LGA, and for the 67 markets used in 

this study (Source: ASPM Q2, 2005) 

 

4.2 Results for Airlines Operating at 90% of Maximum Profit.  
 

Figure 4 shows the intermediate seat-maximizing solutions within 90% of optimal profit 

that (i) are close enough to the baseline to provide a feasible transition solution, and (ii) 

are reasonably close to the optimal profit curve.  

 

 
 

Figure 4. Simulated percentage change in various statistics 

 

At the Instrument Flight Rules
2
 (IFR) rate of 8 arrivals (departures) per runway per 15 

minutes, the seat throughputs are slightly higher (1% increase) than the actual average 

number of passengers passing through LGA per day during the sampling period. 

Excluding the three unprofitable markets, the remaining markets remain in this schedule 

at the IMC rate.   All metrics move in the expected direction when runway capacity is 

further restricted:  reduced operations throughput results in increasing aircraft size and 

average fare while cutting delay. 

 

We review our findings that help answer the research problems stated previously.  

 

Inefficiency due to current slot allocation rules. Actual data for LGA, shows that 50-

seat or less aircraft make up 46% of the total flights. Also, 36.2% of the flights into LGA 

have load factors of 60% or less. The main causes for this allocation are: (i) High-

                                                 
2
 IFR rules are more stringent than VFR (Visual Flight Rules) and are in force whenever the Instrument Meteorological Conditions 

(IMC) specified by the FAA are in effect.  
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Density-Rule allocations to incumbent airlines who must “use-it-or-lose it” (ii) slot 

exemptions granted 70-seat or less aircraft, and (iii) weight-based landing fees. 

 

Operational metrics. Table 2 outlines the projected market response with assumptions 

of 90% lower bounds on airline optimal profit. Our model predicts positive changes in 

passengers serviced, aircraft size, and negative changes in flight delay, average fare, and 

number of flights. The number of markets profitable on a daily schedule stays 

approximately the same.  

 

Metrics Baseline Flight Schedule at 90% Maximum Profit 

Number of Markets 67 64    (-4%) 

Number of Flights 1024 808   (-21%) 

Number of Seats 96,997 98,100   (+1%) 

Average Aircraft Size 95 seats/AC 121seats/AC   (+27%) 

Average Fare $139 $134 

Average Flight Delay 19 minutes 5 minutes   (-72%) 

 

Table 2.  Projected effects on daily operations at LGA that result from a market-based 

slot allocation at 8 ops/runway/15 min. 

 

We cannot predict the slot allocation that would result from either auctions or congestion 

pricing.  Past practices of the airlines present ample evidence that airlines are quite cost-

sensitive. When forced to compete and pay for the right to depart and land at a congested 

airport, they are likely to do the economically efficient thing: use this resource for its best 

possible purpose. Thus, airlines are likely to continue to service profitable markets and to 

do so with larger airplanes.  

 

Unprofitable daily markets. This study found only three markets that are not profitable 

to operate on a daily basis.  They are Lebanon-Hanover, NH (LEB), Roanoke Municipal, 

VA (ROA), and Knoxville, TN (TYS). Under a congestion pricing or auction framework, 

these markets may have reduced service to La Guardia or have their service moved to a 

location in the New York area that is not under these market-clearing incentives.  

 

Frequency and delay distribution by time of day. Figure 5 plots the number of flights 

(arrivals and departures) by their scheduled 15-min time windows and our estimates of 

flight delay. Note that the output schedule includes only nonstop domestic flights that are 

profitable on a daily basis. These flights come from 64 airports. Other demands not 

accounted for include international flights, non-daily and non-scheduled flights that can 

come from 275 airports having nonstop service to LGA. We stack the other flights on top 

of the output schedule to approximate the total final demand of this scenario. Time series 

of average total of actual demand is also plotted for comparison purpose. 

 

We notice that for the 90% scenario, there is a reduction in the schedule during the off-

peak time windows, while the frequency profile approximates relatively well the morning 

and late evening traffic and results in less delay for arrivals and departures in early 

evening.  
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Figure 5. 90% compromise scenario: frequency and delay profiles 

 

5. Conclusion 

 
As airport traffic grows, the need to efficiently use airport facilities becomes essential. 

Current data shows a large presence of small aircraft and a high number of low load-

factor flights at LGA. A small aircraft occupies the same slot as that of a large one. Thus, 

when smaller aircraft are substituted for larger aircraft, passenger throughput declines. 

Thus, when regulators provided slot exemptions to 70-seat or less aircraft, the airlines 

were forced to compete for the same passenger base but with many more scheduling 

opportunities.  These airlines chose to remain in these markets by decreasing the aircraft 

size used for each flight. Such over-scheduling resulted in less profitability for all of the 

airlines serving these markets (as evidenced by low load factors) and simultaneously, 

resulted in the overloading of the runways. The fact that runway fees are weight-based 

further encouraged the use of smaller aircraft. Thus, a collection of regulations, fees and 

administrative policies have forced delays at LaGuardia, propagated delays throughout 

the network and reduced the overall profitability of the industry. The quandary for the 

regulator is how to pull back on the current allocation in a manner that is fair and 

encourages the best use of airport assets.  
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Congestion pricing and auctions have emerged as efficient market-based mechanisms for 

other applications and we believe they can be employed to better allocate runway slots to 

those who value them the most. Congestion prices result in cost uncertainties for the 

airline and may be difficult to set properly, but are capable of reacting quickly to changes 

in demand. Alternatively, auctions allow the airlines to compete for the long-term use of 

slots, thereby allowing better long-term planning but do not accommodate quick reactions 

to demand changes. A secondary market for both the selling and exchanging of slots 

might offset this shortcoming.  

 

In this work, we used an approach that avoids the difficulties of trying to predict the 

outcomes of either congestion pricing or auctions. We used analytical models consistent 

with those used by carriers to demonstrate the existence of profitable airline schedules 

that reduce congestion and accommodate current passenger throughput levels. Two main 

features characterize the methodology: (a) we model a single benevolent airline instead of 

individual airlines, and (b) we explicitly account for the inherent demand-supply relation 

through price. In [20], we analyze multiple scenarios that relax our single benevolent 

concept. In this paper, we have highlighted one of the most likely scenarios. The results 

show that at IMC rate, airlines profit-maximizing responses can be expected to find 

scheduling solutions that offer 70% decrease in flight delays, 20% reduction in the 

number of flights with almost no loss of the markets served or of passenger throughput. 

This analytic approach should be applicable to other airports or groups of airports facing 

serious congestion problems. We intend to extend this work to the model a region that 

has at least three major airports, one of which is a hub airport.   
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