
APPENDICES 

Appendix 1: the proof of Equation (6) 

   For 1 ,j m   1 ,li n   and 1 ,l k   we have 
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Similarly, from Equation (3), note that 
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By using the best asymptotic normality (BAN) property, we have 
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Λ Λ Λ  where the elements ijI  in ( )I Λ  are as follows: 
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By the saddlepoint approximation (Jørgensen 1997), it can be shown that 
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By the delta’s method, we have 
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Appendix 2: the proof of Result 2 

When 1{ }k

l lx   are prefixed, the Lagrange function of the constrained-optimization 

problem stated in Equations (7-8) with k=3 can be expressed as follows: 
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where 
 2 2*= , 1,2,3,lb d x
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  and 1 2 3( ,  ,  ,  )     are called KKT 

multipliers. Let 
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Then, the KKT conditions are: 
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0, 1,2,3,ip i                           (A4) 

0, 1,2,3,i i                            (A5) 

and 

0,  1,2,3.i ip i                           (A6) 



Eight combinations satisfying Equation (A6) is also known as the complementary 

slackness conditions. These combinations can be further classified into four 

groups as shown in Table A1. 

 

Table A1: The groups of conditions 

Group  1  2  3  1p  2p  3p  

Group 1 0 0 0 * * * 

Group 2 

0 0 >0 * * 0 

0 >0 0 * 0 * 

>0 0 0 0 * * 

Group 3 

0 >0 >0 * 0 0 

>0 0 >0 0 * 0 

>0 >0 0 0 0 * 

Group 4 >0 >0 >0 0 0 0 

 (the symbol * denotes a non-zero value.) 

 

Among these combinations, if all i  are non-zeros, then 0,  1,2,3,ip i    

which contradicts to 
3

1

1.i

i

p


  Similarly, if only one of the values of i  is 

equal to 0, then 1ip   and 0,  .jp j i    This situation reduces the problem to 

a single-level problem, which is not an ADT. Therefore, all the combinations for 

3

1{ }i ip   in Groups 3 and 4 are infeasible. Hence, only the combinations in Group 1 

and Group 2 are needed to be considered. 

In Group 1, note that if 0, 1,2,3,i i    then from Equation (A2), we have
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Hence, the solutions 3

1{ }l lp   for the above simultaneous equations together with 

Equation (A3) are: 
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Under the condition 1 2 3,x x x   we have 1 2 0p p   and 2 3 0.p p   Obviously, 

it will contradict to 0,  1,2,3.ip i   Therefore, it is impossible to have a 

non-trivial optimum allocation under 3.k   

In Group 2, note that it implies that the test units only need to allocate to any two 

out of three stress levels. This is exactly the same as the optimum allocation for 

2.k   Therefore, the optimum allocation may belong to one of the following 

three possible allocations:  
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1 2( , ) (0,0)    into the constraints stated in Equation (A5), and then solve 3  

as follows: 
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Note that 12 13 23( ) 0.g g g     Therefore, to ensure 3 0,   the condition that 



13 32 12g g g   is required. Similarly, 21 13 23g g g   and 13 32 12g g g   are the 

conditions for * *

1 3( ,0, ),p p  while 21 13 23g g g   is the condition for  

* *

2 3(0, , ).p p  Hence, we complete the proof of Result 2. 

 

Appendix 3: the proof of Result 3 

When 2d   and * * *

1 2 3 ,t t t   then 
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This implies that 12 23g g  is always less than 13.g  From Result 2, it is 

impossible to have the setting of * *

1 2( , ,0)p p  for 2.d   Similarly, when 2,d   

it is impossible to have the setting of * *

2 3(0, , ).p p   

 

Appendix 4: the proof of Result 4 

For the case (i) of Result 4, since 1Hx   and 1 ,H Lp p   the optimum 

solutions of *

Lx  and *

Lp  can be obtained by the following equations: 
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From Equation (A7), we have * 1(1 ) ,L LHp r    where 
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From Equation (A9), then we have either 

*(1 ) ** *(1 (1 )) ,Lx

L H Le tx t                   (A10) 

or 
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By setting *1 ,Lu x   
* * ,H Lt t    and ( 0),    then Equation (A10) 

can be rewritten as  

           .ue u                           (A12) 

By the Lambert W function, the solution for u  in Equation (A12) can be 

expressed as follows: 
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Similarly, another solution for *

Lx  can be obtained from Equation (A11): 
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Note that only 
*

Lx  in Equations (A13) is the optimum solution due to the fact that 



when evaluating the Hessian matrix of ( , )L LG x p  at * *( , ) ( ),,L L LLx p x p  the 

determinant of the Hessian matrix is  
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Therefore, the optimum lowest stress is * 0.Lx   

The case (ii) of Result 4 can be proved similarly. 

 


