APPENDICES

Appendix 1: the proof of Equation (6)

For 1<j<m, 1<i<n, and 1<I|<k, we have
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Similarly, from Equation (3), note that
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By wusing the best asymptotic normality (BAN) property, we

A~N(A,17(A)), wherethe elements 1; in 1(A) are as follows:
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By the saddlepoint approximation (Jgrgensen 1997), it can be shown that
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Therefore,
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By the delta’s method, we have
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Appendix 2: the proof of Result 2
When {x}, are prefixed, the Lagrange function of the constrained-optimization

problem stated in Equations (7-8) with k=3 can be expressed as follows:

3

D opzix 5 5

M (Py Pos Pas 77, 1y, g 1) = —— +n(2pi—1j—2¢ipp (A1)
ZZEZ&(XV - Xu)2 P, P, = =

u<v

where zI:\ftTe‘b(d‘z)X'/z,l:1,2,3, and (7, ¢, @,, @) are called KKT
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Then, the KKT conditions are:
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Eight combinations satisfying Equation (A6) is also known as the complementary
slackness conditions. These combinations can be further classified into four

groups as shown in Table Al.

Table Al: The groups of conditions

Group 2 ?, ?s P, P, Ps
Group 1 0 0 0 * * *
0 0 >0 * * 0
Group 2 0 >0 0 * 0 *
>0 0 0 0 * *
0 >0 >0 * 0 0
Group 3 >0 0 >0 0 * 0
>0 >0 0 0 0 *
Group 4 >0 >0 >0 0 0 0

(the symbol * denotes a non-zero value.)

Among these combinations, if all ¢, are non-zeros, then p, =0, Vi=12,3

3
which contradicts to Zpi =1. Similarly, if only one of the values of ¢. is
i=1

equal to 0, then p,=1 and p; =0, Vj=i. Thissituation reduces the problem to

a single-level problem, which is not an ADT. Therefore, all the combinations for
{p.¥., in Groups 3 and 4 are infeasible. Hence, only the combinations in Group 1

and Group 2 are needed to be considered.

In Group 1, note that if ¢ =0,i=1,2,3, then from Equation (A2), we have
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Hence, the solutions {p,}’, for the above simultaneous equations together with
Equation (A3) are:
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Under the condition X, <X, <X,, we have p,p,<0 and p,p,<0. Obviously,

it will contradict to p, >0, 1=123. Therefore, it is impossible to have a

non-trivial optimum allocation under k =3.

In Group 2, note that it implies that the test units only need to allocate to any two
out of three stress levels. This is exactly the same as the optimum allocation for
k =2. Therefore, the optimum allocation may belong to one of the following

three possible allocations:
(P, P,0), (p;,0,p3), or (0, p;, p;)-

For the case of (p,p,,0), substitute (p.,p,)=((1+n,)™" r(1+r,)™) and

(@,9,)=(0,0) into the constraints stated in Equation (A5), and then solve ¢,

as follows:

2
2,2, X, X
Q3 = (ﬁj (_912 +0;5t+ 923) x (_912 — O3~ 923)-

Note that —(g,, + 0,5+ 0,;) <0. Therefore, to ensure ¢, >0, the condition that



O3 + 95 <0y, is required. Similarly, g, +9,;>0, and g,+0d,; >0,, arethe

conditions for (p;,0,p,), while g, +g,;<g, is the condition for

(0, p, p;)- Hence, we complete the proof of Result 2.

Appendix 3: the proof of Result 3

—b(d-2)x,/2 d-2)%,/2 d-2)x/2

When d<2 and t <t,<t;, then e <e™ <e™ . Hence,
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This implies that ¢,,—0,, is always less than g,;. From Result 2, it is
impossible to have the setting of (p;, p,,0) for d <2. Similarly, when d > 2,

it is impossible to have the setting of (0, p,, ps).

Appendix 4: the proof of Result 4

For the case (i) of Result 4, since x,=1 and p,=1-p,, the optimum

solutions of x, and p, can be obtained by the following equations:
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From Equation (A7), we have p; =(1+r,,)™", where



hy = X (/) expfb(d —2) LX) / 2.

Setting o =b(d —2)/2 and substituting p, into Equation (A8), then we have
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From Equation (A9), then we have either
e = _(1+ a(L— X)Wt /., (A10)

or

e @D = o'/t X, (Al1)

By setting u=1-x, y:—m, and B=ay (#0), then Equation (A10)
can be rewritten as

e™ =y + fu. (A12)
By the Lambert W function, the solution for u in Equation (Al2) can be

expressed as follows:
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Similarly, another solution for x; can be obtained from Equation (A11):
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Note that only x; in Equations (A13) is the optimum solution due to the fact that



when evaluating the Hessian matrix of G(x_,p,) at (x.,p.)=(x,p,), the

determinant of the Hessian matrix is
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Therefore, the optimum lowest stress is x; = 0.

The case (ii) of Result 4 can be proved similarly.



