i

UNION
CARBIDE

K/OA-4445

THE OPTIMUM AXIAL FLOW TAPER IN
A COUNTERCURRENT GAS CENTRIFUGE

IR

E. Von Halle

Enrichment Planning Department
Operations Analysis and Planning Division

February 1, 1979

pmwaaibrﬁeUS.DEPARTMENTOFéNERGYumkr
U.S. GOVERNMENT Contract W-7405 eng 26

PISTRIBUTION O LHAS DOCUMEBNT 185 UNLAMITED




This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government or any agency
thereof, nor any of their employees, nor any of their contractors, sub-contractors,
or their employees, makes any warranty, express or implied, nor assumes any legal
liability or responsibility for any third party’s use or the results of such use of any
information, apparatus, product or process disclosed in this report, nor represents
that its use by such third party would not infringe privately owned rights.




DISCLAIMER

This report was prepared as an ac count of work s ponsored by an
agency of the United States Government. Neither the United States
Government nor any agen cy Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsib ility for the accuracy , completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infr inge privately
owned rights. Reference herein to  any specific commercial product,
process, or service by trade na me, trademark, manufacturer, or
otherwise does not necessarily cons titute or imply its endorsement,
recommendation, or favoring by the  United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



THE OPTIMUM AXIAL FLOW TAPER IN A
COUNTERCURRENT GAS CENTRIFUGE

ABSTRACT

The effect of an axially varying countercurrent circulation rate in a gas
centrifuge on the efficiency factors, ey, the ideality efficiency, and ec,
the circulation efficiency, is investigated and compared with the case in
which the countercurrent circulation rate is constant throughout the cen-

trifuge. The optimum variation of the centrifuge parameter m, which is a
measure of the countercurrent circulation rate, as a function of axial
position in the centrifuge is determined. It is shown that when the
countercurrent circulation rate has its optimum value at every axial posi-

tion in the centrifuge, the product of the efficiency factors, ey Xer, can

exceed 8l per cent, the nominal upper limit of the value of the product of

the efficiency factors for a constant countercurrent circulation rate, and
can be quite close to unity.

This is illustrated by numerical examples
based on a centrifuge previously described in the literature.
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INTRODUCTION

It has previously been shown that the separative work produced per unit
time by a countercurrent gas centrifuge used for isotope separation,
denoted by 68U, can be expressed by an equation of the form

6U = erxecxepxiUpax

where ey is the ideality efficiency, ec is the circulation efficiency,

er is the flow profile efficiency, and SUp,y is the maxiumum theoretical
separative capacity of the gas centrifuge. The basis for this formulation
of the separative work equation, along with the definition of &Upsx, can
be found in the appendices to this report. It has also previously been
shown that when the countercurrent flow profile and the countercurrent
circulation rate are axially invariant, that is, the same at all axial
positions throughout the centrifuge (the case which' has been called pure
axial flow by some and non-decaying axial flow by others), the circulation
efficiency is given by

and the ideality efficiency, ey, has a maximum value of about 81 per cent.
The definition of the centrifuge parameter m, which is a measure of the,
countercurrent circulation rate, can be found in Appendix I which contains
a review of the Onsager-Cohen formulation of the gradient equatlon for the
countercurrent gas centrifuge.

In this work the effect of an axially varying countercurrent circulation
rate in the gas centrifuge, that is, of an axially varying m-value, on the
efficiency factors ey and ec is investigated and the optimum relationship
for m as a function of axial position in the centrifuge is determined. It
is shown that when the countercurrent circulation rate has its optimum
value at every axial position in the centrifuge, the product of the effi-
ciency factors, e X ec, can exceed 81 per cent and can be quite close to
unity. This is illustrated by numerical examples based on centrifuges
whose physical characteristics are taken from the literature.

For completeness, the performance of centrifuges in which the magnitude

of the countercurrent circulation is axially invariant is reviewed and it
is shown how the value of m which maximizes the separative work produced
by the centrifuge per unit time can be determined. The details are worked
out for two cases: 1in the first case the quantity x(1-x) which appears in
the gradient equation is treated as if it were constant, in the second
case, called the dilute approximation, the quantity x(l-x) is replaced in
the gradient equation by x alone. 1In the first case the analysis is sim-
plified appreciably and some useful insight regarding centrifuge perform-
ance gained; the second case is of more practical interest in uranium
isotope separation problems.



THEORY DEVELOPMENT

When the product withdrawal rate, P, and the waste withdrawal rate, W, of
a countercurrent gas centrifuge are both small with respect to the magni-
tude of the countercurrent circulation rate, L, the separative performance
of the gas centrifuge is satisfactorily described by the standard Onsager-
Cohen formulation of the gradient equation. The gradient equation for the
enriching section of a gas centrifuge (that is, for that part of the cen-
trifuge which lies between the feed point and the product withdrawal point)
can therefore be written in the form '

2
m-+1 _ dx _ B _ Plyp - x)
5o Sog, = ¥x(1-x) mLg . (1)

The derivation of this equation is presented in Appendix I along with an
explanation of the notation used. Furthermore, when the product withdrawal
rate is small with respect to the magnitude of the countercurrent circula-
tion rate, the separative work produced per unit time by a cylindrical
volume element of the centrifuge of length dz and cross sectional area
equal to that of the centrifuge, located in the enriching section of the
centrifuge, is given by

_ _ _d_x "
d(éu) = Pl(yp x)dz v'"(x)dz , (2)

where v" (x) denotes the second derivative of the value function of the
concentration x.

Combining the two preceding equations by substituting the expression for
dx/dz obtained from equation (1) into equation (2), one obtains the follow-
ing expression for the separative work produced per unit time per unit
length of centrifuge in the enriching section

mpx (1-x) - mi_o—_?_{.)_

4 (8u)
(m2+1) Syo

" . 3
e v" (x) (3)

= 2P(yp — X)

The value of m which maximizes the separative work produced per unit time
per unit length of centrifuge may now be found by setting the derivative
of d(8U)/dz with respect to m equal to zero. This procedure leads to the
following expréssion for the optimum value of m in the enriching section
as a function of the local concentration x and hence as an implicit func-
tion of axial position in the centrifuge

2P (yp - x) '

fe - AP TR o) = 0 4
f Loyx (1-x) ! (4)
where M denotes the localvoptimum value of the centrifuge parameter m.
For convenience, let ¢r(x), a function of the local concentration in the
enriching section of the centrifuge and hence a function of axial position,
be defined by




P (yp - x)
Loyx(1-x)

1

¢E(X) (5)

It should be evident that ¢p(x) is equal to zero at the top of the enrich-
ing section where x is equal to yp and, assuming that the centrifuge param-
eters ¥ and Ly are constant, increases monotonically as the feed point,
that is, as the bottom of the enriching section is approached. Equation
(4) can now be rewritten in the form

2 _
MZ b 2¢EM—' 1 = 0 ’ or ¢E = M2Ml ’ (6)

from which, since by definition M must be greater than zero, it follows
that

M=¢E+/¢E2+1 . (7)

With the definition of the function ¢g given by equation (5), the gradient
equation, equation (1), can be rewritten in the form

dx _ 2yx(1-x) m- ¢

dz So m2 +1 (8)

which, when m has its optimum value at every axial position in the enrich-
ing section, reduces to

dx Px (1-x%)
-(E - SoM (9)
Thus, from the combination of equations (7) and (9) and the definition of
¢g(x), one can obtain expressions for x and ¢, and therefore for M, as a
function of the axial position in the enriching section of the centrifuge.
Similar equations valid for the stripping section of the centrifuge (that
is, for that part of the centrifuge which lies between the feed point and
the waste withdrawal point) can be obtained by replacing the gquantities P
and Pyp where they occur in the preceding equations by -W and -Wxy,
respectively. Thus the gradient equation for the stripping section of a
gas centrifuge, the counterpart of equation (1), is written

2
m-+1  dx _ W(x - xy)
TS0, = ¥x(1-x) T, - (10)

If one defines ¢g(x), a function of the local concentration in the strip-
ping section of the centrifuge and hence a function of axial position, by

- W(xX - xXp)
cbs (X) = Lod)x(l—x) ’ (ll)

it follows that edquations (6) through (9), with ¢ replaced by ¢g, are also
valid for the stripping section of the centrifuge.




When m has its optimum value at every axial position in the centrifuge,
the equation for the separative work produced per unit time per unit length
of centrifuge, equation (3), reduces to

2 _ 2
d(d@zU) - Mle Lzoswo X (1-x) 2" (x) ), (12)
or, more simply, to
au) _ M2-1 rgy?
al _ - T , (13)

since the guantity in brackets in equation (12) is by virtue of the defini-
tion of the value function equal to unity. Equation (13) can be compared
with

d(8u) _ 4¢(m-¢) Lgp?

dz m2+1 259 ' (14)

where ¢ is equal to ¢ in the enriching section and ¢ is equal to ¢g in the
stripping section, which gives the separative work produced per unit time
per unit length of centrifuge for the case in which m has any arbitrary
value whatever. Since the quantity, Lowz/(ZSO), is the maximum separative
work, adjusted for the countercurrent flow profile efficiency, that can be
produced per unit time per unit length of centrifuge (which is shown to be
true in Appendix II), the coefficiencts of this quantity in equations (13)
and (14) can be regarded as the local values of the product of the ideality
efficiency and the circulation efficiency, ey xec. From the integration
of these equations over the length of the centrifuge one can obtain the
overall effective or average values of the efficiency factors for the cen-
trifuge.

ILLUSTRATIVE APPLICATIONS
A. THE APPROXIMATION: x(1-x) = g

We consider here the case of a centrifuge in which the axial end-to-end
enrichment is sufficiently small that the quantity, x(1-x), can be treated
as a constant, and we denote this constant value of x(1-x) by g. This
approximation simplifies the analysis considerably and provides some
insight regarding the function M, its variation with axial position, and
its effect upon the efficiency factors of the centrifuge. In the next
section, Sec¢tion B, we consider the more realistic dilute approximation.

Under the assumption that the quantity, x(1-x), is equal to a constant, g,
the definition of the function ¢g(x), given by equation (5), can be
rewritten in the form
P P
(x) = === (yp-x) = 7 (yp-X) (A.1)
i Lobg P vg YP

where p = —




Differentiating ¢g(x) with respect to z, the axial coordinate, assuming
that the centrifuge parameters Ly and Y are independent of axial position,
one obtains

d¢E _ b dx
az = Vg az - (A.2)

The gradient equation for the case in which m has its optimum value at
every axial position, equation (9), can now also be rewritten in the form

dx _ Vg

az SoM ' (aA.3)

The combination of equations (A.2) and (A.3), accomplished by substituting
the above expression for dx/dz into equation (r.2), yvields

ME - _ _P_
dz SoM ) (n.4)

Changing the dependent variable in the above equation from ¢p to M by means
of equation (6) and changing the independent variable from z to s, where s,
which is defined in the enriching section by (Z-z)/Sg and in the stripping
section by z/Sg, is the axial distance from the end of the centrifuge to
the point under consideration measured in multiples of the minimum stage
length Sy, one obtains

au M

- ML A.5
ds P yzyt (a.5)
Integration of equation (A.5), assuming that the centrifuge parameters y,
Ly, and Sp, are constant throughout the centrifuge, yields

M2 + 24nM = 4ps + C , ' (A.6)

and evaluating the constant of integration, C, from the boundary condition
at the end of the centrifuge, M is equal to unity when s is equal to zero
(which follows from equation (7), since ¢p(x) is equal to zero at the end
of the centrifuge), one obtains the following expression for the optimum
value of m as a function of axial position

M2 + 24nM = 4ps+1 . (A.7)

As derived and written, with p equal to P/Ljg and s the distance from the
top of the enriching section to the point under consideration measured in
minimum stage lengths, equation (A.7) applies to the enriching section of
the centrifuge; however, with minor modification it can also be applied to
the stripping section of the centrifuge. It is necessary only to replace
p by w, where w is defined as the waste withdrawal rate W divided by Lg,
and to interpret s as the distance from the bottom of the stripping sec-
tion to the point under consideration measured in minimum stage lengths.
The optimum value of m as a function of axial position in the stripping
section is therefore given by




M2 + 22nM = dus+1 , (A.8)
where w is equal to W/Lj.

The optimum value of m is shown as a function of axial position in either
the enriching section or the stripping section in Figure A.1; it increases
monotonically from its minimum value of unity at either end of the centri-
fuge as the distance from the end of the centrifuge increases until the
feed point of the centrifuge is reached. It follows from equation (A.7)
for the enriching section and its counterpart, equation (A.8), for the
stripping section, that for M to be continuous at the feed point of the
centrifuge, pSy must equal wSg, where Sg is the length of the enriching
section and Sg is the length of the stripping section, both expressed as
multiples of the minimum stage length, Sg. It can also be shown from the
foregoing equations that when M is continuous at the feed point of the cen-
trifuge, the feed concentration, xp, matches the concentration in the cen-
trifuge at the feed point and no mixing losses are incurred.

The rate of separative work production per unit length of centrifuge when
m has its optimum value at every axial position, given by equation (13),
can be written with s as the independent variable in the following form
for the enriching section

a(su) _  M?>-1 Lgv?
as M2 2 (A.9)

Changing the independent variable from s to M by means of equation (A.5),
one obtains

d(su) _ (M2 -1) (M2 +1) nou?
am - M3 4p

(A.10)

Integration from the bottom of the enriching section, that is, from the

feed point, where the optimum value of m will be denoted by Mg, to the top
of the enriching section where the optimum value of m is equal to unity,

under the assumption that the centrifuge parameters, ¥, Lg, and Sy, are
axially invariant (that is, assuming that the countercurrent flow profile
is independent of axial position), yields

Mz - 1)2 ngv?

. (3.11)
i
2MF 4p

§U(enricher) =

Dividing this result by the maximum rate of separative work production of
the enriching section adjusted for the countercurrent flow profile effi-
ciency, that is, dividing by the quantity LOwZSE/2, one obtains the follow-
ing expression for the product of the ideality efficiency and the circula-
tion for the enriching section of the centrifuge »

2 2 :
1 (Mg - 1)
er xec = pr M%. L. (a.12)
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Combining this result and equation (A.7), the above expression for the
product of the efficiency factors can be written as a function solely of
the value of M at the centrifuge feed point as follows

2 2
er xeq = (M - 1) . (A.13)

MZ (M2 + 2 £n Mg - 1)

When M is continuous at the feed point of the centrifuge, this equation is
also applicable to the stripping section of the centrifuge. The value of
the product of the ideality efficiency and the circulation efficiency,

ey X ex, for both the enriching section and the stripping section is shown
as a function of the length of the enriching section, pSgy, or of the strip-
ping section, wSg, in Figure A.2 for the case in which m has its optimum
value everywhere in the centrifuge. It can be seen that for values of pSg
or wSg greater than about 5.5 the value of the product of the efficiency
factors, ey xec, exceeds 0.815, the upper limit of the value of this prod-
uct for the case in which m is constant throughout the centrifuge, and for
large values of pSy or wSg the value of the product of the efficiency fac-
tors approaches unity.

In general, small departures from the optimum circulation rate should not
affect the performance of the centrifuge appreciably. Let us test the
validity of this statement by considering the case of a centrifuge in which
the axial variation of m is given by

‘m(s) = 2Vps (A.14)
in the enriching section and by
m(s) = 2Vws’ (A.15)

in the stripping section. Equations (A.14) and (A.l5) are reasonably good
approximations of equations (A.7) and (A.8), respectively, over the whole
range of the arguments, ps and ws, and are somewhat simpler in form. A
comparison of the value of m as a function of axial position given by equa-
tion (A.14) or (A.15) with the value of M given by equation (A.7) or (A.8)
is presented in Figure A.3. -

The value of the product of the efficiency factors, er X ec, for a centri-
fuge in which the variation of m with axial position is given by equations
(A.14) and (A.15) can be evaluated as follows. The gradient equation for
the enriching section for any arbitrary value of m, given by equation (8),
can now be written in the form

dx _ 2yg m-dp
+1

. A.l6
dz So v ( )

E

Replacing dx/dz in the above equation by its equivalent given by equation
(A.2), and changing the independent variable from z to s, one obtains
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dor _ _ 2p m-¢p

dz Som+1 ' (A.17)
and

Vg _ m-¢p

as = P npir1 (2.18)

The independent variable can now be changed from s to m by means of equa-
tion (A.14) with the result

d¢g m m?
XL - e
dm m2 + 1 %8 m2+1 (2.19)

The integrating factor for this first order linear differential equation
is vym2+1 ; its solution can therefore be written

_me 1 T
el = 5 2m%+l£n {mF+ITH%,+l}, (A.20)

where the subscript F denotes the value of the variable at the bottom of
the enriching section, that is, at the feed point. :

From the combination of equation (A.17) and equation (14), which gives the
separative work produced per unit time per unit length by a centrifuge in
which m has any arbitrary value, one obtains

au) _ _ Lov?
T S 9k (A.21)

and integration over the length of the enriching section, assuming that
the centrifuge parameters are constant, yields

2
(Gp)p {LowZSE )

SU(enricher) = . (r.22)

‘Since the term in brackets in the above equation is just the maximum
separative work adjusted for the countercurrent flow profile efficiency
produced per unit time by the enriching section, it follows that the prod-
uct of the efficiency factors for the enriching section is given by

2
(b)) F 1 o 1 5 2
erXec = = —————-——Ul.(mF+Vm +1)} (A.23)
PSE pSg 2 2‘/sz+1 F

which can be written in the eguivalent form.

er xec = {1 - ——l-————fn(mp+ Vmg;+l)} . ' (A.24)
mpVmg + 1
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When m is continuous at the feed point of the centrifuge, equation (A.24)
is valid also for the stripping section of the centrifuge. The product of
the efficiency factors, éI><eC, calculated from the above relationship is
shown as a function of the length of the enriching or stripping sections,
that is, as a function of pSg or wSg, in Figure A.4, where it is compared
with the maximum value of the product of these efficiency factors obtained
for the case in which m has its optimum value at every axial position in
the centrifuge. It can be seen that, over the range of values of pSy or
wSg of interest, the value of the product of the efficiency factors
obtained when m(s) is prescribed by equation (A.14) or (A.15) is lower
than the maximum value of the product of the efficiency factors obtained
when m(s) is prescribed by equation (A.7) or (A.8) by only a few tenths of
one per cent. Thus it can be concluded that a very good approximation of
the optimum flow taper in a countercurrent gas centrifuge is one in which
the magnitude of the countercurrent circulation rate is directly propor-
tional to the square root of the distance from the point under considera-
tion to the end of the centrifuge and in which the constant of proportion-
ality is 2/PL(/Sy for the enriching section and 2/WL;/Sg for the stripping
section.

For completeness and for purposes of comparison, it is appropriate to
review here the calculation of the values of the efficiency factors of the
centrifuge for the case of a centrifuge in which the parameter m is con-
stant. When m is constant, equation (A.18) can be integrated directly over
the length of the enriching section, from the top of the enriching section
where s and ¢g are both equal to zero to the bottom of the enriching sec-
tion where s is equal to Sg and 9g is equal to (9g)p, with the result

2pSE
m2 + l»)

(b)p = m(l-e . : (A.25)
Substituting this expression for (¢p)g into equation (A.22), one finds that
the separative work produced per unit time by an enriching section opera-
ting with a constant (that is, axially invariant) m is given by

2pSE]2

2 - 2 : 2
SU(enricher) = élg'[l-e me+1 ‘{EQ%TEE} . (p.26)

Clearly, the rate of separative work production by the enriching section
will be at its maximum value for specified values of the quantities v and
Sg when (¢g) ¢ has its maximum value. It follows from equation (A.25) that
(¢g)Fp will be at its maximum value whén m satisfies the equation (obtained
by setting the derivative of (¢E)F'with respect to m equal to zero)

2
0 _-20+ 2 -1, (A.27)
© 0 PSE .

2pSE

where Q = 211
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Similar equations with p replaced by w and Sy replaced by Sg apply for the’
stripping section of the centrifuge. The optimum value of m for the case
in which m is constant, calculated by means of the preceding equation, is
shown as a function of the length of the enriching or stripping section,
that is, as a function of the quantity pSg or wSg in Figure A.5. It may
be noted that, as the value of pSp becomes large, the value of Q in equa-
tion (A.27) approaches a limiting value of 1.2564; therefore, for large
values of pSg, the optimum value of the parameter m is given approximately
by 1.262/pSg -

The value of the product of the efficiency factors, er xec, for this case
is obtained by dividing the expression for the separative work produced
per unit time, given for the enriching section by equation (A.26), by the
maximum rate of separative work production adjusted for the countercurrent
flow profile efficiency and, for the enriching section, is given by

é _ 2pSE2
m m2 +1
e Xxec = p_SE {l—e . (A.28)

An equation valid for the stripping section is obtained by replacing the
quantity pSg by wSg. The value of this product of the efficiency factors
is shown as a function of the length of the enriching or stripping section,
that is, as a function of the quantity pSg or wSg, in Figure A.6 for the
case in which the parameter m is constant and has its optimum value. It
can be seen from a comparison of this curve with the curve of Figure A.2
which gives the product of the efficiency factors for the case in which m
has its optimum value at every axial pesition in the centrifuge that, in
general, an appreciable improvement in the efficiency of a centrifuge can
be obtained, with respect to the case in which m is constant, by properly
adjusting the local values of the magnitude of the countercurrent circula-
tion rate. ' '

For the case in which m is constant it is a simple matter to resolve the
product of the centrifuge efficiency factors, ey X ec, into its components:
the circulation efficiency, ec, is given by the standard expression

and the value of ey can be obtained by dividing the product of the effi-
ciency factors by ec. These components of the efficiency for the case in
which m is constant are also shown in Figure A.6. It can be observed that
the ideality'efficiéncy, er, is already quite close to its maximum value
of 0.8145 when pSg or wSg is equal to 10 and increases only very slightly
as pPSE or wSg is increased.
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Numerical Examples

The centrifuge dimensions and operating characteristics used by May1 in

his paper, Separation Parameters of Gas Centrifuges, are used here to
illustrate the application of the preceding equations. The values of the
centrifuge parameters, Y, Lg, and Sy, presented in Table A.l are calculated
from the model of the internal flow in a gas centrifuge developed by
‘Parker? and Lotz3, and summarized in a recent vaper by the author. They
agree quite closely with the values of the centrifuge parameters presented
by May calculated with a somewhat different model for the internal flow.

TABLE A.1l
CHARACTERISTICS OF THE CENTRIFUGE MODEL

Centrifuge Length (cm) 335.3
Centrifuge Radius (cm) 9.144
Operating Temperature (K) 300.0
pD, UFg (g/cm/sec) 2.257 x 107"
Peripheral Speed (m/s) 400.0 500.0 700.0
a2 = MvZ/(2RT) 11.29 17.64 34.57
2
2
SU(max) = EZEE_A&!_ (SWU/yr) 23.47 57.30 220.11
2 2RT
] 0.02091 0.02093 0.02093
Ld (g UFg/s) 0.03107 0.04007 0.05752
So (cm) 3.818 ‘ 2.960 2.062
LoW?Z/(2Sp)  (SWU/yr) 12.72 21.19 43.67
ef, Flow Profile Efficiency 0.542 0.370 0.198

Taking the feed rate to the centrifuge to be the 1000 kg UFg/yr used by
May, and assuming that the centrifuge cut, P/F, is equal to 0.5 so that

the centrifuge product and waste withdrawal rates are equal, and assuming
that the feed is introduced at the mid-point of the centrifuge so that one-
half of the centrifuge serves as the enriching section and one-half as the
stripping section, one can evaluate the performance of the centrifuge based
on the preceding equations with the results presented in Table A.2.
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TABLE A.2

CALCULATED PERFORMANCE OF THE CENTRIFUGE MODEL

Assumption: x(1-Xx) =g¢g

Product Rate (g.UFg/s) 0.01585

Waste Rate (g UFg/s) 0.01585 -

Enricher Length (cm) 167.65

Stripper Length (cm) 167.65
Peripheral Speed (m/s) 400.0 500.0 700.0
p = w : 0.5103 0.3957 0.2756
SE = Sg 43.92 56.64 81.30
pPSg = WwSg 22.41 22.41 22.41
Constant m
m(optimum) 6.001 6.001 6.001
L (optimum} (g UFg/s) 0.1865 0.2405 0.3452
e X ec 0.7921 0.7921 0.7921
§U  (SWU/yr) 10.08 16.79 34.59
Variable m
Mg 9.284 9.284 9.284
Lr (gUFg/s) 0.2884 0.3720 0.5340
er X ec 0.9393 0.9393 0.9393
§u  (SwWu/yr) 11.95 19.91 41.02

It is evident from the results of theése calculations that both the optimum
value of the centrifuge parameter m and the associated maximum value of the
product of the centrifuge efficiency factors, e Xec, are independent of
the peripheral speed of the centrifuge. .It can also be seen that the per-
formance of the centrifuge, that is, the rate of production of separative
work, is greater by about 18.5 per cent for this centrifuge when operated
with the optimum countercurrent circulation rate at every axial position
than when operated with the best constant countercurrent circulation rate.
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B. THE DILUTE APPROXIMATION: x(l-x) = x

Consider now the case of a centrifuge processing a gas mixture in which

the concentration of the desired component is sufficiently small that the
‘quantity (1-x) is essentially equal to unity. Since the mole fraction of
the U-235 isotope in naturally .occurring uranium fed to an isotope separa-
tion cascade is only 0.0072, the dilute approximation is a case of real
practical interest. The results of the analysis for this case, however,
cannot be expressed in quite so simple a form as was possible for the
approximation used in Part A since in this case, as will be seen, they
_depend on two groups of centrifuge parameters instead of on only the single
quantity, pSE for the enriching section, or wSg for the stripping section.

Under the assumption that the quantity, x(1-x), can be replaced, wherever
it occurs in the equations, by x without introducing any measureable error,
“the definition of the function ¢g(x), given by equation (5), can be
rewritten in the form

Z(I2 )

= B(IP_

og (%)

P

Lo

1]

where p

Differentiating ¢r(x) with respect to z, the axial coordinate, assuming
that the centrifuge parameters, Lg and ¥, are independent of axial position,
one obtains

]

dér
dz

='§_§' (B.2)

:‘3‘!%

The gradiént equation for the case in which m has its optimum value at
every axial position in the centrifuge, equation (9), can now also be
rewritten in the follow1ng form

dx _ ¥x
dZ—SoM. (B.3)

The combination of'équations (B.2) and (B.3), accomplished by substituting
the above expression for dx/dz into equation (B.2), yields

dég _ _ P _Yp
dz SgM x  ° (B.4)

Expressing the quantity Yp/x in terms of ¢r by means of the relationship
" of equation (B.l) and changing the independent variable from z to s, where
s, which is defined as in the preceding section by (Z-z)/Sy in the enrich-
ing section and by 2/Sp in the stripping section, is the distance along
the z-axis from the end of the centrifuge to the point under consideration
measured in multiples of the minimum stage length Sp, assuming that the
centrifuge parameter Sy is also independent of axial position, the pre-
ceding equation can be written
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g _ Py YRy _ B
1 M(1+ p) M(1+r¢E), (B.5)

where r =

o e

Changing the dependent variable in the above equation from ¢g to M by means
of equation (6), one obtains the simple first order differential equation

am I'Mz +2M - r
A .6
as - PTTMZTaa (B.6)
which can be solved by quadrature with the following result
M-1 lznrM2+2M—r+V1+r2£n{1+rM—‘/1+r2,1+r+¢l+r2}_ps (B.7)
- - 5 5 _ =] -
o r 2 r 1+r-Y1+r2 1+xM+/1+¢2

where use has been made of the boundary condition at the top of the enrich-
ing section that M is equal to unity when s is equal to zero. As derived
and written, with p equal to P/Lp and s the distance from the top of the
enriching section to the point under consideration, equation (B.7) applies
to the enriching section of a centrifuge. The optimum value of m, calcu-
lated as a function of axial position in the enriching section, that is,
as a function of the quantity ps, for various values of the parameter r,
by means of equation (B.7), is shown in Figure B.l. It may be noted that
when r is equal to zero, equation (B.7) reduces to equation (A.7); thus
the curve in Figure B.l for r equal to zero is identical to the curve pre-
sented in Figure A.1l.

In the dilute approximation the equations for the stripping section differ
somewhat in form from those for the enriching section. The definition of
the function ¢g(x) for the stripping section is given by

e Moy oW
bsx) = (1 -5 v (B.8)

where w =

W
Lo

Differentiating ¢g(x) with respect to z, the axial coordinate, one obtains

dds _ w xy dx
dz Y x2 dz '’ ' (B.9)

which, when combined with the gradient equation, equation (B.3), vields

dég _ wxy
dz ~ sogM x (8.10)
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Expressing the quantity xy/x in terms of ¢S by means of the relationship
of equation (B.8) and changing the independent variable from z to s, the
preceding equation can be written

dbg _ wi _Ubgy _ W | |
o M(l =) = qpl1+rég) (B.11)

where r =

=¥
w

Thus, by defining r in the stripping section as the negative of the ratio

of Y to w, one can obtain equations for the stripping section which are

similar in appearance to those for the enriching section. Changing the

dependent variable in the above equation from ¢g5 to M by means of equation

(6), one obtains

2
% - w—r—M—MZ———fMl o, (B.12) .
which can be solved as before, making use of the boundary condition at the
bottom of the stripping section that M is equal to unity when s is equal to
zero, with the result that M in the stripping section is given as a func-
tion of axial position by an equation of the same form as equation (B.7),
but with the quantity ps on the right hand side of the equation replaced
by ws. The optimum value of m as a function of axial position in the
stripping section, that is, as a function of the quantity ws, for various
values of the parameter r is also shown in Figure B.l. Positive values of
the parameter r correspond to enriching sections, negative values of the
parameter r correspond to stripping sections. It follows from the results
of the calculations presented in Figure B.l that in order for M to be con-
tinuous at the feed point of the centrifuge, the quantity wSg must be
greater than pSg.

The rate at which separative work is produced per unit length of centrifuge

when m has its optimum value at every axial position, given by equation
(13), can be written with s as the independent variable in the following
form for the enriching section

a(6v) M2 -1 Lgy?
& T Bers (B.13)

Changing the independenﬁ Vdriable from s to M by means of equation (B.6),
one obtains

asu) . (M2-1) (M2+1) Lgy?

am T T MZ(zMZ+2M-1) 2p (B.14)

Integration from the bottom of the enriching section, that is, from the
feed point, where the optimum value of m is denoted by MF' to the top of
the enriching section, where M is equal to unity, yields the following
expression for the separative work produced per unit time by the enriching
section
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rMF% +2Mp - r } LQ({IZ

ZMF 2p (B.15)

oner) - L 12
8U (enricher) = " {MF-M; rﬂn

Dividing this result by the maximum rate of separative work production of
the enriching section adjusted for the countercurrent flow profile effi-
ciency, that is, dividing by the quantity Lowst/Z, one obtains the follow-
ing expression for the product of the ideality and circulation efficiency
factors for the enriching section of the centrifuge

) .
11 1 2, rMp+2Mp-r
e Xec = pSE T {MF - r/CVl ZMF } . (B.16)

The product of the ideality and circulation efficiency factors for the
stripping section of the centrifuge is given by an equation of the same
form as equation (B.16), but with the quantity pSy replaced by wSg and in
which the permissible values of r are equal to or less than zero. The

. values of the product of the ideality efficiency and the circulation effi-
ciency, er Xec, for both the enriching section and the stripping section
are shown as a function of the length of the enriching section, pSg, or of
the stripping section, wSg, for various values of the parameter r in Figure
B.2. It may be noted that when r is equal'to zero, equation (B.16) reduces
to equation (A.12); thus the curve in Figure B.2 for r equal to zero is
identical to the curve presented in Figure A.2. One would expect, based on
the results of the calculations presented in Figure A.2, that the centri-
fuge efficiency calculated assuming the dilute approximation would not
differ appreciably from the efficiency calculated assuming that the quantity
x(1-x) is constant.

For purposes of comparison we will now consider the calculation of the
values of the efficiency factors of the centrifuge for the case of a cen-
trifuge in which the parameter m is constant. The gradient equation for
the enriching section for any arbitrary value of m, given by equation (8),
can be written in the form

dx . 2yx m-9g
dz =~ Sg m2+1 (8.17)
when the dilute approximation is applicable.. Replacing dx/dz in the above
equation by its equivalent given by equation (B.2), one obtains

déy 2p Yp m-¢g
dz Sg x mé+1 (B.18)

Expressing the quantity ¥p/X in terms of ¢ by means of the relationship of
"equation (B.1l), and changing the independent variable from z to s, the pre-
ceding equation can be written

d¢E
ds

m- 9

i1l . (B.19)

= 2(p +Yog)

which, when m is constant, can be integrated directly over the length of
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the enriching section, from the top of the enriching section where s and
¢g are both equal to zero to the bottom of the enriching section whére s is
equal to Sg and ¢g is equal to ($g)F, with the result

1o (L+rmo

(¢E)F = m (B.20)

l-+rme_(l*-rm)Q

where ©Q = é%%?%— and r is equal to y/p. -

From the combination of equation (B.18) and equation (14), which gives the
separative work produced per unit time per unit length by a centrifuge in
which m has any arbitrary value, one obtains

au) _ 2 Lov? _ 9 .
dég P 2 Ll+rég ' : (B.21)

and integration over the length of the enriching section yields

: 2 (9 1 Loy?s
8U(enricher) = o {—E—E- ;-Z-KVL[1+J_:(¢E)F]H—O-%———E} - (B.22)

Since the final term in brackets in the above equation is just the maximum
separative work adjusted for the countercurrent flow profile efficiency
produced per unit time by the enriching section, the product of the ideality
and circulation efficiency factors for the enriching section for the case
in which m is constant is given by

2 [ (¢r)F 1
eI XeC = iS‘S—E {-—r— - ;‘2‘/8”. [1+r(¢E)F]} . (B.23)

" It follows that the rate of production of separative work by the enriching
section, and also the efficiency of the enriching section, will be at a
maximum for a given value of the parameter r and of the quantity pSp when
the quantity (¢E)F has its maximum value. And it follows from equation
(B.20) that (¢g)F will be at its maximum value when m satisfies the equa-
tion (obtained by setting the derivative of (¢g)p with respect to m equal
to zero) .

e(l-+rm)Q

-1+ m(l+rm)Q{r—M}

PSE =0 . (B.24)

{e(l +rm)Q + rm}z

Similar equations with p replaced by w, Sgp replaced by Sg, and in which r

is equal to the negative of the ratio of ¥ to w are valid for the stripping
section of the centrifuge. The optimum values of m for the case in which

m is constant, calculated by means of the preceding equation, are shown as

a function of the length of the enriching or stripping section, that is, as
a function of pSg or wSg, for various values of the parameter r in Figure
B.3. The values of the product of the ideality efficiency and the circulation
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efficiency, er Xec, for both the enriching section and the stripping section,
for the case in which m is constant and has its optimum value, are shown as
a function of the length of the enriching or stripping section, for various
values of the parameter r, in Figure B.4. As in the preceding case, posi-
tive values of che parameter r correspond to enriching sections, negative
values of the parameter r correspond to stripping sections. BAgain, when r

is equal to zero, the curves are identical to those in the corresponding

case of Part A.

Numerical Examples

The same examples which were considered in Part A of this papér will now be
re—examined under the assumption that the dilute approximation is valid.
The centrifuge dimensions, operating characteristics, and the values of the
centrifuge parameters, ¥, Lg, and Sp, are those given in Table A.1l.

Under the simplifying assumption applied in Part A, optimum centrifuge per-
formance coincided with symmetrical centrifuge operation, that is, optimum
centrifuge performance occurred when the enrichment provided by the enrich-
ing section and the stripping section were equal; when the dilute approxi-
mation applies, this situation does not occur. Since symmetrical centrifuge
operation is desirable for centrifuges which are to be incorporated into
separation cascades, this requirement, which can be expressed by the con-
straint that the ratio Yp/xF equal the ratio xp/xy, is imposed in the -
examples. It is also required that there be no mixing of unequal concen-
trations at the feed point of the centrifuge; satisfying this condition
requires that (¢g)p be equal to (¢g)F. It is also required that the cen-
trifuge parameter m be continuous at the feed point of the centrifuge. For
the case of a centrifuge operating with a constant m-value, these con-
straints make it impossible for both the enriching section and the stripping
section to operate with their optimum values of the parameter m given in
Figure B.3: the value of the parameter m which is optimum for the cascade
can be regarded as the result of a compromise between the optimum value for
the enriching section and for the stripping section. The results of the
calculations of centrifuge performance under the above mentioned constraints
~are summarized in Table B.1.

The most obvious fact arising from the comparison of the results presented
in Table A.2 and Table B.l is that, although the ratios p/w and Sg/Sg are
appreciably different depending upon whether the assumption x(1-x) =g or
the dilute approximation is used, the values of the parameter m, the cen-
trifuge efficiencies, and the separative work .output of the centrifuge are
essentially unchanged. Again it can be seen that, for the centrifuge model
under consideration, the performance of the centrifuge is about 18.5 per
cent higher when operated with the optimum countercurrent circulation rate
at every axial position in the centrifuge than when operated with the best
constant countercurrent circulation rate.
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TABLE B.1
CALCULATED PERFORMANCE OF THE CENTRIFUGE MODEL

Assumption: Dilute Approximation

Feed Rate (g UFg/s) - 0.03171

Centrifuge Length (cm) 335.3
Peripheral Speed (m/s) 400.0 500.0
pH+w ‘ , 1.0206 0.7913
Sg + Sg. 87.830 113.278

Constant m

P - 0.4663 0.3517
w v ’ | 0.5543 0.4397
Sk : 43.168 55.396
Ss - 44.662 57.882
PSE 20.130 19.482
wSg - 24.757 25.448
m(optimum) | 5.995 5.991
L{optimum) (g UFg/s) 0.1863 . 0.2401
YP/XF = XF/Xy 1.1887 1.2501
e1 X ec 0.7919 0.7917
§U (SWU/yr) 10.07 16.78

Variable m

b 0.4624 0.3478
w | 0.5582 0.4435
Sp 42.713 54.638
Sg - | 45.117 58.640
pSg 19.751 19.003
sSg  25.185 26.010
Mg | 9.269 9.260
Lp (gUFg/s) ' ‘ : 0.2880 0.3710
Yp/Xp = Xp/Xy 1.2072 1.2753
er X ec 0.9391 0.9389

SU  (SWU/yr) ' 11.95 19.90
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APPENDIX I

THE ONSAGER-COHEN FORMULATION
OF THE GRADIENT EQUATION

The equation of continuity for the process gas in a countercurrent gas
centrifuge at steady state, taking both the axial and the radial convective
transpdrt into account, can be written

N

g%(rcu) + é%(gw) = .0 . ' (i.l)

The equation of continuity for the desired component of the binary isotopic
gas mixture which is the process gas in the countercurrent gas centrifuge
at steady state, taking both the axial and the radial convective transport
and the axial and the radial diffusive transport into account, can be
written

=

g%(rcu£-+rJr) + é%(cwﬁ%—Jz) = 0 . (I1.2)

In these equations
r is the radial coordinate ofvlength in the centrifuge,

is the axial coordinate of length in the centrifuge,

is the molar density of the process gas,

is the gas velocity in the radial direction,

is the gas velocity in the axial direction,

is the mole fraction of the desired component in the process gas,
Jy is the diffusive flux of the desired component in the radial

direction, and

Jp is the diffusive flux of the desired component in the axial direc-

™WE 0N

tion.

The diffusive flux terms. are given by the eXpressions

oy = ~ep(M22Mby2rg(1-€) + 25, ana (1.3)
Jz = ;CD%‘E ' ' ' : (I.4)

in which'D is the mutual diffusion coefficient for the two components of
‘the process gas mixture, . . :

M; is the molecular weight of the desired component,

M2 is the molecular weight of the other component,

R is the gas constant (8.3143 x107 erg/°K/mole),

T is the absdlute temperature of the‘process gas, and

w is the angular velocity of the process gas which will be assumed to
be constant and equal to §I, the angular velocity of the centrifuge.
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Since the radial trahsport of both the process gas and the desired compo-
‘nent must vanish at the rotor wall, that is where r is equal to a where a
is the radius of the centrifuge, integration of equation (I.1l) with respect
to r yields

.3 . |
rcu = r ——(cw)dr (I.5)
L. dz

and the integration of equation (I.2) with respect to r yields

‘rcuf + rJy = f gi-cwg-sz)dr’ . (I.6)
r .

Replacing the quantity rcu in the above equation by its equivalent given by
equation (I.5), replacing Jy and Jy by means of the expressions given by
equations (I.3) and (I.4), and solving the resulting equation for the par-
tial derivative of & with respect to r, one obtains

a

88 _ 1 (7 (ot - ) ar - (e M’
= b & r az(cwE cDaZ)dr + £~ . (cw)ar” - RT

rg (l_g)l (I-7)

Q
o
[

where AM is equal to Mz -M;. This form of the equation of continuity is
particularly convenient for use in the formulation of the gradient equation.

. Consider now the net axial transport of the desired component in a counter-
current gas centrifuge. The net axial transport of the desired component,
T, can be obtained by integrating the expression for the molar flux of the
desired component in the axial direction over the cross sectional area of
the centrifuge and can be written

a a 3¢
fo 27Trcw£§r - fo 2TrrcD§—z—dr ' (1.8)

where a is the radius of the centrifuge rotor. The first integral on the
right hand side of this equation represents the net axial transport of the
desired component due to axial convection; the second integral represents
the net axial transport of the desired component due to axial diffusion.
At steady state, T anywhere in the enriching section of a centrifuge is
equal to Px, where P is the product withdrawal rate and Xp is the mole
fraction of the desired component in the product stream, and T anywhere in
the stripping section of the centrifuge is equal to -Wxy where W is the
waste or tails withdrawal rate and xy is the mole fraction of the desired
component in the waste or tails stream.

It is now convenient to define a function G(r,z), sometimes called the
stream function, which is equal to the next axial transport of process gas
in the centrifuge between a cylinder of radius r and the rotor wall. This
function is given by

a

Glr,z) = f 27r “ewdr” . (£.9)
r
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It follows from this definition of the G-function that

G(0,z) =T, Gla,z) = 0, and %%—= -2Trew ,

where T is the net axial transport of process gas in the centrifuge. At
steady state, T anywhere in the enriching section of a centrifuge is equal
to P, the product withdrawal rate, and T anywhere in the stripping section
of the centrifuge is equal to -W, where W is the waste or tails withdrawal
rate. By virtue of the above definition of the G-function, equation (I.8)
for the net axial transport of the desired component can be rewritten in
the form .

a a ag
= —f gdr - fo 2mreD 5> dr v (1.10)

and, provided that both G(r,z) and &(r,z) are continuous functions of r,
the first integral on the right hand side of the equation can be integrated
by parts with the result

d a d
T = - TE(O,z2) 4—f G gdr - & 2WrcD§%dr . (I.11)
Substitution of the expression for the partial derivative of § with respect
to r given by equation (I.7) into the above equation for the net axial
transport of the desired component yields the gradient equation for the
countercurrent gas centrifuge in the following form

/\M a a d
T = T(0,z) - f GMT e eyar + f S ~ar [ x5 -(cw)ar
Y
a : a a
3 . G » 9 4.0y .
- fo rch? f r az(cwg)dr + fo ———rchr fr r 5 (cDaZ)dr
2 . » ,
- f 2TrrcDa—g-dr . : : ' o » (1.12)
0 : az . :

Assuming that the cD product which-is independent of the pressure can be
treated as being independent of the radial variable r, that is, assuming
that the gas in the centrifuge is éssentially isothermal, the preceding
equation can be rearranged and written in the following form:
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a a : : a a - a -
1 G . . 9f . . 0§ _ G .3%¢ .
> fo rdr .fr 2mr oW =~ dr” + 2TcD -fo o dr fo Rdr fr r e dr
a a -
1 G .. 3(cw) . . 3(cw) .
* 51 Io - dr{ fr 2mr’E == dr g f 2mr " —5—=dr }
= - AMw fo Gr E 1-g)ar - {T-T&E(0,2)} . , (I.13)

Tne standard Onsager-Cohen form of the gradient equation is obtained’
directly from equation (I.13) by the application of the following three
simplifying assumptions. These assumptions, because of their importance
in the Onsager-Cohen formulation of the gradient equation, could be called
the Onsager-Cohen assumptions. '

1. It is assumed that the radial concentration gradient of the
desired component is sufficiently small that the concentration of the
desired component, &, and its derivatives with respect to z can be treated -
as being essentially independent of the radial variable r. This assumption:
permits the removal of the concentration terms from inside the integrals
of equation (I.13) and reduces the partial differential equation to an
ordinary differential. Letting x(z) represent the radially averaged value
of £(r,z), the mole fraction of the desired component, the application of
this assumption permits one to rewrite equation (I.13) in the simpler form

2 22 2 2
1 G X -r d'x
~—dr - + T == - = .
2meD Yy T dr dz a CD f - dr az?
2 a
. M
= - AR$ f Grdr * x(1-x) - (T-Tx) . (1.14)
0

2. It is assumed that the term in equation (I.13) or (I.14) contain-
ing the second derivative of the concentration of the desired component
with respect to z is sufficiently small that it may be neglected. The
application of this assumption reduces the gradient equation from a second
order differential equation to one of first order. The gradient equation
can now be written in the form

{

a a :
ZWCD f —-dr + Ta CD}——— = {- Ejia-L)Grdr}x(l—x)\- (T-Tx) , (I.15)

where .V, equal to wa, is the peripheral speed of the centrifuge rotor.
3. It is assumed that the net axial transport of process gas, T, in

the centrifuge is sufficiently small compared with the countercurrent cir-
culation rate, that is, compared with either the total process gas upflow
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or total process gas downflow rate in the centrifuge, that terms of the
order of T/L, where

1 .2
= 3 & 21r|cwl|ar , (T.16)

can be neglected with respect to unity. This assumption allows both the
qguantity L and the G-function to be treated as being independent of the net

axial transport of process gas in the centrifuge.

It is convenient to define a set of centrifuge separation parameters based
on the standard Onsager-Cohen form of the gradient equation. Let each term
of equation (I.1l5) be divided by the quantity, L, with the result

1 fa_(_;i§3+ﬂa2cD g_x___ f rdr } - T-Tx
2TeD Yy L «r L dz 2RT L !

(X.17)

which can be considered to be the standard form of the Onsager-Cohen gfa—
dient equation. By adopting the following definitions for the centrifuge
separation parameters

LS. (the convective contribution to the stage length)

a .2
1 G dr
~ 2mceD fo Lr ' (1.18)
Sd/L (the diffusive contribution to the stage length)
: 2
- ﬂaLcD ’ , (1.19)
and ¥ (the stage separation constant of a theoretical stage)
w2 2 oe
= - & , : .20
aZRT [y T v _ _ (T.20)
the Onsager-Cohen gradient equation can be written in the form
{LSc Sd }dx = vx(1-x) - I;izﬁ -y _ . (I.21)

T dz

where S, Sg; and Y are independent of the magnitude of the countercurrent

‘circulation, that is},independEnt of L. The term in brackets in equation

(I.21) can be regarded as the length of a theoretical stage in the centri-
fuge. By adoptlng the following deflnltlons for three additional centri-
fuge separation parameters :

Lo (the value of L which minimizes the stage length) = vSg/Se , (I1.22)

Sp (the minimum value of the stage length) = 2vVS.Sg . (T.23)
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and m (the ratio of the actual circulation rate, L, to Lg) = L/Lp , (I.245

the Onsager-Cohen gradient equation can be written in the alternative form

L2 _
(mtlgpdx | Ux(1-x) - T-rx ~ (1.25)

2m dz mLg

It may be .noted that the value of L which minimizes the stage length also
has the effect of maximizing the axial enrichment at total reflux, that is,

when T is equal to zero.

"

o
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APPENDIX II

THE SEPARATIVE WORK PRODUCED BY A CENTRIFUGE

The separative work produced per unit time by an incremental length, dz,
of a countercurrent isotope separation element, such as a countercurrent
gas centrifuge, is obtained from

dx .,
az = (T..Tx)az-v (x) , (1IT1.1)

where v"(x) is the second derivative of the value function and is equal to
[x2(1-x)2]-1. Substituting for (T -Tx) in the above equation using the
Onsager-Cohen formulation of the gradient equation, equation (I.25), one
obtains ’

d (AU)
dz

) :
+1 d ax
= {mLOw(l—x) - = 5 LoSo _d}z{}_dz v'(x) . (I1.2)

It can be seen from this equation that the separative work produced by the
incremental length, dz, of the centrifuge will be a maximum when

dx mpx (1 - x)
= % T el I1.3
dz (m% +1)Sy ( )
The maximum separative work output of the incremental length, dz, of the
centrifuge is therefore given by

d(u) _ _m®  Lgp?
dz m?2 +1 2Sg

(II.4)

A lower separative work output than that given by the above equation,
attributable to the fact that dx/dz differs from its optimal value given
by equation (II.3), is said to result from a departure from ideality and
is taken into account by an ideality efficiency factor, ey. The term
mz/(l-fmz) which depends on the countercurrent circulation rate and
approaches unity as thé countercurrent circulation becomes large is called
-the circulation efficiency, er. ‘The quantity L0w2/2so which depends on the
‘shape of the countercurrent axial velocity profile can be regarded as the
maximum separative work, taking into account the gas flow pattern in the
centrifuge, which could be produced per unit length of centrifuge. Thus
the ratis of this tefm‘tQ the maximum theoretical separative capacity of
the gas centrifuge is called the flow profile efficiency, ep. The maximum
theoretical separative capacity of a countercurrent gas centrifuge is
given by the well-known relationship

2
AMy2

2RT

_ TZcD
(theoretical max) 2

. (I1.5)
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L4

When the shape of the axial velocity profile is invariant, that is, when
Lo, ¥, and Sy are constant over the length of the centrifuge, equation (II.4)
can be integrated with respect to z and the result expressed in the form

AU = e xepXepxAU (I1.6)

(theoretical max)

Here ey and ec represent the values of the ideality efficiency and the
circulation efficiency, respectively, averaged over the length of the
centrifuge. ‘ '

<}

e
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