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Abs t r ac t .  Rosenblatt and Parzen proposed a well-known estimator fn for an 
unknown density function f ,  and later Schuster suggested a modification fn to 
rectify certain drawbacks of fn. This paper gives the asymptotically optimum 
bandwidth and kernel for f~ under the standard measure of IMSE when f is 
discontinuous at one or both endpoints of its support. We also consider an 
alternative definition of the IMSE under which the optimum bandwidths and 
kernels for f~ and f~ are derived. The latter supplement van Eeden's results. 

Key words and phrases: Estimation of discontinuous densities, alternative no- 
tions of IMSE, modified kernel density estimates, optimal bandwidths, optimal 
kernels. 

1. Introduction 

Let X 1 , . . . ,  Xn be independent and identically distr ibuted random variables 
having a common density function f C $" with known support  [a,/~], [a, c~) or 
(-c~,/~]. Consider the problem of est imating f(x) at a given point x using the 
sample ( X I , . . . , X n ) .  A common estimator, proposed by Rosenblatt  (1956) and 
Parzen (1962), is given by 

n 

(1.1) f~(x) -- (nb~) -1 E w(b~l[x - Xi]). 
i : l  

In (1.1), b~ is a predetermined bandwidth satisfying 

(1.2) b n ~ 0  and nbn ~ oC as n---* oc 

and w E 14; is a suitably chosen kernel, where the class 14; is defined by (all 
integrals without  limits are over ~) 

(1.3) 
w > 0 ,  / w ( z ) d z =  l, / z 2 w ( z ) d z  

/ w2(z)dz < ~ ,  / ]z[w2(z)dz < oo. 

< (:XD, 
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564 B. K. GHOSH AND WEI-MIN HUANG 

The class W defined by (1.3) is slightly more general than what one usually en- 
counters in the literature; w need not be bounded or symmetric (e.g., w(z) = 
(16)-1z -1/a for 0 < z < 16 and w(z) = 4-tlzl  -U4 for - 1  _< z _< 0 is permissible 
in the developments below). The varying nature of the family 5 r will be described 
in the third paragraph. The properties of fn are generally quite difficult to inves- 
tigate for arbitrary n. Consequently, the decision on the best choice of the pair 
(b~, w) is usually made from the asymptotic behavior of fn. We stipulate that 
the best choice of (bn, w) should, for large n, minimize the integrated mean square 
error (IMSE), which is defined by 

(1.4) R~(f,  bn, w) = / E[f~(x) - f(x)12dx 

= f[Ef (x)- f(x)]2dx + / [ V a r  f,~(x)ldx. 

Suppose one can show that, for each f C b r and large n, R~ in (1.4) reduces 
to 

(1.5) 
(nbn)-ld(f, w) + b B(f, w) 

1) + o(b ) 
= w) + w) 

-t-o(rt-lbn 1) + o(b  ) 

for w c Wo 

for w E W -  Wo, 

where A > 0, B > 0, A t > 0, B ~ > 0, 6 > 6 ~ > 0, and Wo is nonempty. Then, for 
each fixed w e Wo and n > 1, the choice (see Parzen (1962), Lemma 4a) 

(1.6) bn(f, w) = [A(f, w) /SB( f ,  w)] 1/(6+1)n--1/(~q-1) 

minimizes the dominant part of (1.5) with respect to bn under w E 14;o. In fact, 
for large n, 

minRn(f ,  bn, w) -- Rn( f  , bn(f, w), w) + o(n-5/(5+1)), 
bn 

where 

(1.7) R~(f ,b~( f ,w) ,w)  
= (5 + 1)[5-~A(f, w)~B(f,  w)]l/(~+l)n -~/(~+1) + o(n-6/(~+1)). 

It is easily verified from (1.5) and (1.7) that, for sufficiently large n, (1.7) is less 
than Rn( f  , bn, w') for each w E 14;o and w I E W - W o  so that the class W - W o  can 
be ignored for asymptotic purposes. We call bn(f, w) in (1.6) the (asymptotically) 
optimum bandwidth for f~ under w E Wo (note that  (1.6) need not be the optimum 
bandwidth under w E W - 142o). Moreover, if there exists a w* E Wo which 
minimizes the leading term in Rn(f ,  bn(f, w), w) or, equivalently, the functional 
A ( f  , w)~ B ( f  , w) then we call w* and b~(f , w* ) the (asymptotically) optimum kernel 
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and bandwidth for fn under )4; (w* may not minimize A(f ,  w)~B(f, w) in W but  
clearly Rn(f,b~,w')/R,~(f,  bn(f,w*),w*) ~ oc for any w' • 14 ; -  14;o). 

Consider now three families of densities, 
5r( -oc,  oo) : f is continuous and bounded in R, f > O, f f (x)dx = 1, f "  is 
continuous and square-integrable; 
~(a ,  oc) : f is continuous and bounded on In, co), f >_ 0 on (a, oc), f = 0 on 
( -oc ,  a), f (a)  > O, f f (x)dx = 1, f '  is continuous and square-integrable on 

jz(a, t3) : f is continuous on [a, t3], f (a)  > O, f03) > O, f > 0 on (~,/~) and 
zero elsewhere, f f (x)dx  = 1, f '  is bounded on [a, t3]. 

Observe that  we are demanding from ~'(a, oo) that  f is right-continuous at ct and 
the right-derivative f ' (a)  exists. It is, of course, understood that  5r(-oo,  oo) and 
~'(a,  oc) can contain densities with finite support  [a, t3], which implies f (a)  = 0 = 
f(/3) in the former and f (a)  > 0 = f03) in the latter. The family ~'(a,  oc) has 
a dual ~ ' ( -oc ,  f}) and the results for the latter follow from those of ~ ( a ,  oc) by 
taking X~ = -X i .  The bulk of the literature on kernel density estimation involves 
f ( - o c ,  oc). On the other hand, the families ~ ( a ,  oc), 9r( -oc,  fl) and 9r(a,/~) arise 
in practice when the observed data  follow the uniform, U-shaped, J-shaped and 
certain Pearsonian distributions as well as singly and doubly truncated versions of 
all continuous densities (see Johnson and Kotz (1970)). In fact, one would seldom 
expect an f with a finite or semi-infinite support  to belong in ~ ' ( -oc ,  oc). 

If f • f ( - o c ,  oc), considerations of the second paragraph lead to the fol- 
lowing conclusions under assumptions (1.2) and (1.3) (see Epanechnikov (1969), 
aosenblat t  (1971) and Silverman (1986)). Let 

(1.8) ~ = f zw(z)dz, r2~ = f (z - ~w)2w(z)dz 

and define Wo as the subclass of 14; having ~ = 0. Then the opt imum bandwidth 
for fn under w C 14;o is 

(1.9) 

(1.10) Rn(f,  bn(f ,w),w) 

and the kernel minimizing the leading term in (1.10), subject to Tw = T, is 

{ 3(4rv/5)-1(1 - z2/5r 2) for Iz I < rv/-g 
(1.11) wo(z) = 0 for Izl >  4g. 

Thus, if our criterion is to minimize Rn for large n, w o and b,~(f, Wo) are the 
opt imum kernel and bandwidth for fn when f E 5r(-oc,  co). Similarly, if f E 
~-(a, fl) or 9r(a, oc), then van Eeden (1985) shows that  the opt imum kernel and 
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bandwidth for fn are, respectively, 

(1.12) 

(1.13) 

and 

w ~ ( z )  = (~x/5)-lexp[-V21zl/z] for - c~ < z < c~, 

bn(f, w~) : Vr2[T{f2(a) ÷ f2(/3)}l/2]-ln-1/2, 

(1.14) 
1 

R,~(f, b,~(f, w~), w~) : ~ [fZ(a) + f2(/3)]l/2n-1/2 + o(n-1/2), 

where T is an arbitrary positive number (one takes f(fl) = 0 above when f E 
~'(a, oc)). van Eeden actually assumes symmetry and boundedness for w but  her 
proof can easily be extended to Wo (see Cline and Hart (1990)). It is customary 
to take T ---- 1 in w o and w~ because any scale change in w can be absorbed in b~. 

The purpose of the present paper is to explore two new aspects of estimation 
for the families $ '(a,  oo) and ~(a, /3) .  First, it is e~i ly  shown by Parzen's (1962) 
method that,  if Xo is an arbitrary point of discontinuity in f ,  then (1.2) implies 
that  with probability one we have 

(1.15) fn(Xo) ~ f(Xo) + [f(Xo) - f(Xo)][1 - W(0)] + [f(x +) - f(xo)]W(O), 

where W(z)  = fzo~ w(x)dx. It follows from (1.15) that  fn under any w e I/V 
cannot be uniformly consistent for f E 9r(a,/3) while the only uniformly consistent 
fn for f E ~'(a,  c~) are those which use a w with support  in •- .  In particular, the 
lack of uniform consistency renders (1.12) and (1.13) unsatisfactory. In Sections 
2 and 3, we investigate Schuster's (1985) estimator ]~ to remedy the situation. 
Our main result (Theorem 2.1) obtains the opt imum kernel and bandwidth for ]n. 
Apart from being uniformly consistent, the IMSE of ]n is of order n -3/4, which 
tends to zero faster than (1.14). Second, in Section 4, we introduce an alternative 
de f in i t ion /~  for the IMSE of f~, which is sometimes more meaningful than R~. It 
is shown (Theorems 4.1 and 4.2) tha t /~n  leads to opt imum kernel and bandwidth 
for f~ that  are different from (1.12)-(1.13) for families Jr(a, c~) and ~(a, /3)  but 
the same as (1.9)-(1.11) for the family J r ( -oc ,  c~). 

2, A modified estimator and the main result 

Schuster (1985) proposed a simple modification ]~ of f~. For f E 5r(a, co), 
define 

{ f , ( x )  + f n ( 2 a -  x), x >_ a 
(2.1) J~(x) = O, elsewhere. 

For f E Jr(a, f3), define 

fn(x) + fn(2a - x) + fn(2/3 - x), a < x < t3 
(2.2) f n ( x ) =  O, elsewhere. 

The idea of the reflection principle (i.e., folding fn at a in (2.1) or at both a and 
/3 in (2.2)) involved in fn seems to have been well known to time series analysts, 
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but  Schuster (1985) and Silverman ((1986), Section 2.10) provide formal, albeit 
intuitive, justifications for using .fn in the present context. Schuster proves the 
uniform consistency of ]n when f • f ( a ,  co) or 9V(c~, fl) and w is symmetric; 
one can show more generally that  the uniform consistency holds if and only if w 
satisfies f o  w(z)dz = 1/2 (w need not be symmetric or nonnegative). 

Define the IMSE . f~(f ,b~,w) of ]n as the right-hand side of (1.4) with f~ 
replaced by fn. Our main result is 

THEOREM 2.1. Assume that (1.2) and (1.3) hold. If f • ,~(a, fl) and f '  is 
continuous on [a, fl] with either f ' (a) ¢ 0 or f'(fl) ¢ O, then the optimum kernel 

^ 

and bandwidth for fn in (2.2) are, respectively, 

(2.3) 

(2.4) 

l m [ ( C  - 1)emlzl{cos(mz) - s in(mlzl )}  

w (z) = 2 +cc-mN{cos(mz)+sin(mlzl)}] 
0 

b,~(f, w~) = 21/4m[f'(a) 2 + f'(fl)2]-l/4n-1/4, 

for Izl _< 1r/(2m) 
for Izl > 

where 
C = (1 - e-'~) -1, m = 21/~--1(e ~/2 - e-~r/2) -1/2 

and T is an arbitrary positive number. If f • ~(o~, oe) and f '(o 0 7~ O, then (2.3) 
and (2.4) are the optimum kernel and bandwidth for ]n in (2.1) with f'(fl) in 
(2.4) replaced by zero. Moreover, in either case Rn(f,b,~(f,w~),w~) is given by 
the right-hand side of (2.27) with L(w) given by (2.28). 

We make a few remarks before proving the theorem. One consequence of 
Theorem 2.1 is that  Rn(f,  bn(f, w~), w~) = 0(n-3/4), which formally shows why 
fn should be a better estimate than fn. In Section 3, we investigate more precisely 
the efficiency of ]n based on (2.3) and (2.4). For the case of f • 9r(a, c~), Cline 
and Hart (1990) derive expressions for Rn (take their xo as our a), but  not for the 
opt imum w, under various conditions on f and w. However, their expression for 
/ ~  is incorrect (e.g., their (4.6)), they use stronger conditions (e.g., f [zl3w(z)dz < 
oe), and there are certain gaps in their proof (e.g;, they treated i 5 as a constant). 
Cline and Hart (1990) do not a t tempt  to derive Rn when f • 5r(a, fl). 

The kernel w~ appears somewhat unusual but the uniform and Epanechnikov 
kernels can, in fact, be thought of as first and second order approximations to w~. 
This follows from the power series expansion of (2.3), 

w (z) = m ( C -  (1 -  m2z2) + O([z[ 3) for I=1-< 

Finally, note that  (2.1) and (2.2) require the actual values of a and fl, which 
must  come either from a knowledge of the population that  is being sampled or 
from some adaptive estimation method (e.g., start with & = min[X1, . . . ,Xn]  
and /~ = max[X1, . . . ,Xn] ) ;  in the adaptive case the resulting IMSE must  be 
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reanalyzed, which is not done in this paper. On the other hand, the occurrence 
of if(a) and if(/3) in bn(f, w~) seems to be less restrictive than the occurrence of 
f f"(x)2dx in bn(f,w~). 

The proof of Theorem 2.1 requires two lemmas. 

LEMMA 2.1. /f  f E ~-(a,/3) or ~-(a, ~ ) ,  (1.2) and (1.3) hold, f '  is continu- 
ous in the support [a, /3] of f and w is symmetric about zero, then (defining W as 
in (1.15)) 

(2.5) Rn(f, bn,w) 

= (nbn) - 1 / w 2 ( z ) d z  

+ 4ba{f,(a)2 + f,(~)2} fja [1 - W(z)]dz dy 

+ O(n-lb~ 1/2) + o(b3n). 

PROOF. We will drop the subscript from bn and prove the result (2.5) for 
the case/3 = co. The proof for the case/3 < cc is analogous but more tedious. By 
definition 

(2.6) /~n(f, bn, w) = [Eft(x)  - f(x)12dx + [Var ]~(x)ldx. 
Gt 

For the first integral, note that the Taylor expansion of (2.1) yields, for all x >_ a, 

+ (2a - 2x - bz)w(z)f'(x + 02{2a - 2, - bz})dz, 

where 0 < 01,02 < 1. Using the symmetry of w twice one gets 

L (2.8) fE]n(x) - f(x)]2dx 
o~ 

= ~ b z w ( z ) f ' ( x -  01bz)dz 

f_(x-~)/b ] 2 + (bz + 2x - 2a)w(z)f '(x + 02{2a - 2x - bz})dz dx 

= b 3 ~ ( z ) f ' ( ~  + by + Olbz)dz 

+ f _ (z - 2y )w(z )S ' (~  + by - 20~by + O~bz)dz dy. 
ay 
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By the right-continuity of ff  at a (see Rosenblatt (1971), p. 1819 or Apostol (1957), 
p. 441) one finally gets 

(2.9) f ~ [ E L ( x )  - f(x)]2dx 

Consider next the second integral in (2.6). It follows from (2.1) that  

F S I (2.10) [Var fn(x)]dx -= [Var fn(x)ldx + [Var fn(2a - x)ldx 
o~ o~ ot 

L + 2 [Cov(l~(x), A(2~ - x))]ex. 

The first term on the right-hand side of (2.10) is given by (see Rosenblatt (1971)) 

( 2 . 1 1 )  [ V a r / ~ ( ~ ) l e x  = (rib) - 1  w ~ ( z ) a z  + o ( n - 1 ) ,  

and the second term is 

( 2 . 1 2 )  ~ o¢ A ( 2 .  - [Var x)]dx 

= (rib) - 1  w 2 ( z ) I ( 2 ~  - x - b z ) e z e x  

- n - 1  [ E I ~ ( 2 ~  - x ) ] 2 d x .  

It is easily shown that the first term in (2.12) is O(n -1) and the second term is 
O(bn-1), so that (2.12) is O(n-1).  Since 

I Cov(fn(x), fn(2a  - x)) I _< [Varf~(x)]i/2[Varf~(2a - x)] 1/2 

for all x _ a, it also follows that the third term in (2.10) is O(n-lb-1/2). Thus 

(2.13) [Var fn(x)]dx -~ (nb) -1 w2(z)dz -t- O(n-lb-1/2). 

Relations (2.6), (2.9) and (2.13) lead to (2.5). [] 

If w is nonsymmetric, the first term on the right-hand side of (2.7) does not 
simplify to f(x) for all x. One can easily show that this, in turn, causes (2.8) to 
be of order O(b). Note that the symmetry of w has not been used in (2.13). If 
w is bounded then one can replace O(n-lb -1/2) in (2.13) and (2.5) by O(n-1). 
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The reason is that the third term in (2.10) can then be written as 2n- l (An - Bn), 
where 

An = b - 1  w(z)w(z -- 2(x -- a)b-1) f (x  - bz)dzdx 

_~ 4[sup w(z)] [sup f(x)] . / Iz lw(z)dz 

and 

Bn = [Efn(x)][Efn(2~ - x)]dx <_ b[supf(x)] 2 Nw(z)dz,  

LEMMA 2.2. Let 14o be the class of all functions w on ~ satisfying 

(2.14) ~(z) = ~(-z) >_ o, / ~(z)dz = 2~, / z~(z)dz = 2~, 

where ~ and 5 are given positive numbers. Then the functional 

zs minimized on 14o uniquely by 

{ m~/(C - 1)e mlzl {cos(mz) - sin(mlzl) } 
(2.16) w~(z) = 0 +m~Ce-ml~l{c°s(mz) +sin(mlzl)} for Izl < r / (2m)  

for lz] > ~/(2m), 

where 

(2.17) C ~-~ (l - -  e-lr) -1, m : (2~ /~ )1 t2 (e  lrl2 - -  - -~r /2 ) -1 /2 .  

PROOF. For each w E 142o, define a function g on •+ by 

(2.18) g(z) = w(x)dx for z >_ O, 

and express (2.15) under (2.14) as 

f0 (~ 
(2.20) g' (z)  _< o for z > o, g(o)  = ~, zg ( z )dz  = ~/2, 
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where g~ denotes the first derivative of g. Denote by G the class of all g on [~+ 
satisfying (2.20). Since there is a one-to-one correspondence between w • 14)o and 
g • ~, it suffices to show that  the g corresponding to w~, i.e., 

(2.21) fz 
'~/(2m) 

g.(z) = w~(x)dx 

f 7[Ce -mz - (C - 1)e mz] cos(mz) 
[ 0 

for 0 < z < 7r/(2m) 
for z > 7r/(2m) 

(2.22) OL(g. + hR)/Oh Ih=O 

= fO ~ [-g~.'(z)+(A/3B)/o z fy~g,(x)dxdy I R(z)dz, 

where 

Jo (2.23) A = gP.(x)2dx, 

It is easily verified that  

A/(3B) = 4m 4, 

B -- fo g, (x)dx dy. 

~o ~/(2m) j~y~ g,(x)dxdy = 1/4, 

where m is defined in (2.17). Consequently, 

{ (2.24) -j.P(z) + (A/3B) g.(x)dxdy = 0 
m 4 

It follows from (2.22) and (2.24) that  

(2.25) 

for 0 < z < 7r/(2m) 
for z > rr/(2m). 

OL(g, + hR)/Oh Ih=O 

= --j.'(z) + (A/3B) g.(x)dxdy R(z)dz 
/(2m) 

= m 4 g(z)dz _> 0 for every g • G. 
/(2rn) 

The first equation in (2.24) and the convexity of L show that  g. minimizes L 
uniquely among all g • G with support  in [0, rr/(2m)]. The result in (2.25) glob- 
alizes the conclusion to ~. [] 

minimizes L of (2.19) uniquely on ~. The calculus of variations involved in proving 
this is quite similar to that  in the proof of Theorem 1 in Ghosh and Huang (1991) 
and we mention here the essential steps. It is easily shown that  L is strictly convex 
on ~. Simple computat ions show that  g. indeed satisfies the constraints in (2.20) 
and g~.(Ir/2m) = 0. Let h e (0, 1) be a real number and define R(z) = g(z)-g . (z)  
for an arbitrary g E ~. One gets from (2.19), by integrating by parts, the Gateaux 
differential as 
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PROOF OF THEOREM 2.1. It follows from (1.6) and (2.5) that  the bandwidth 
which asymptotically minimizes/~n is given by 

(2.26) b~(f , w) = 6-U4[{ ff (a) } 2 + {f,(/~))2]-U4 

• [LCCw2(z)dz][L(w)]-l/4n -1/4, 

where L(w) is defined in (2.15). Substituting (2.26) in (2.5) one gets 

(2.27) r a i n / ~  (f, bn, w) 
bn 

= 213~43-3~4[if(a)2 + ff(13)211/4[L(w)]l/4n-3/4 + o(n-3/4). 

It follows from the remark after Lemma 2.1 that,  for any nonsymmetric w, 
/ ~ ( f ,  b~, w) is an -1/2 + o(n -1/2) for some a > 0, which is larger than (2.27) 
for sufficiently large n. Consequently, it suffices to restrict attention to symmetric 
w for the purpose of determining the optimal kernel. The latter problem is equiv- 
alent to minimizing L(w) of (2.15) with respect to symmetric w C W. It follows 
from Lemma 2.2 with ~/= 1/2 and 6 = ~-2/2 that  L(w) is minimized, subject to 
~-w = r, uniquely by w~ of (2.3). Finally, substituting w~ in (2.26) one gets (2.4). 
[] 

It is easily verified that  (2.15) is invariant in ~-w for any symmetric w. Substi- 
tut ion of (2.16) in (2.15) yields 

(2.28) L(w~) = (27/262144)(e" + 1)4(e" - 1) -4. 

3. Relative efficiency of f~ and fn 

Suppose f C 9r(a, oc) or ~ ( a ,  fl). Consider first the efficiency of ]n based on 
an arbitrary w relative to ]n based on w~. An asymptotic measure of this relative 
efficiency is biven by 

(3.1) lira [ /~ ( f ,  b~(f, w~), w~)/R~(f, bn(f, w), w)] 
n - - - 4  O 0  

= { [L(w~)/L(w)] 1/4 if w is symmetric 
0 if w is nonsymmetric, 

where L(w) is defined in (2.15) and L(w~) is given by (2.28). Theorem 2.1 shows 
that  L(w~) < L(w) for any symmetric w ~ w~. Table 1 shows values of L(w) 
and (3.1) for some popular symmetric kernels (Epanechnikov (1969), Rosenblatt  
(1971)). It can be seen that,  in practical terms, there is very little difference 
between w~ and the quadratic kernel in the table. This quadratic kernel happens 
to be the best choice w* for fn when f E 9 r ( - ~ ,  c~). Conversely, it is interesting 
to note here that  there is very little difference between Rn under the kernels w o 
and w~ when f C 5r(-oo,  c~) (e.g., in Epanechnikov's (1969) Table 1, r = 1.004 
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under w~). Consider next the efficiency of fn based on its optimum kernel w~ 
relative to ]~ based on any symmetric w. It follows from (1.14) and (2.27) that 
the relative efficiency of fn is asymptotically zero, in addition to the fact that fn 
is globally consistent but f~ is not. 

Table 1. Relative efficiency of some symmetric kernels for fn. 

Kernel L(w) [L(w~)/L(w)] 1/4 

w~(z) of (2.3) 
w(z) = ( J g -  Izl)/6 for Izl ~ v~t 
w(z) = 3(4v/-5)-1(1- z2/5) for Izl ~ ~/5' 
w(z) = (2~)-1/~ exp(-~2/2) 
w(z) = (2x/3) -1 for Izl < ~ *  
W(Z) = (V/2) -1 exp(--V~lzl) 

see (2.28) 

1/6804 .9976 

33/224000 .9970 

(v/2 - 1 ) /192V~ 2 .9851 

1/5120 .9291 

1/4096 .8787 

tw(z) = 0 otherwise. 

In principle, one may think of using ]~ of (2.2) to estimate an f with compact 
support [a,/3] even when the latter is continuous at a and /3. However, folding 
seems to be undesirable at a continuity point for two reasons. Suppose first that 
f E ~ ( - o c ,  ec), w is symmetric, and both fn and fn use the same w. The 
conditions underlying 9r(-oc,  co) imply f ( a )  = f ' ( a )  = f " ( a )  = 0 and f(/3) = 
f'(/3) = f " (~)  = 0, using which it is easy to show that IRn - /~nl  is 0(5 4) nt-O(n--1). 
This means that folding will not affect the asymptotic adequacy of .In for the family 
5c(-ec,  oe). Suppose next that  f(c~) = 0 = f(/~) but f ' ( a )  ¢ 0 or f'(/3) ¢ 0; such 
an f does not belong to ~ ' ( -c~,  ec), 5r(a, c~) or 9r(a, j3). One can then show that 
/~n is as in (2.5) and R~ is given by (2.5) with the factor 4 replaced by 2. This 
implies 

m i n  R n ( f  , b~, w) = 21/4 min R n ( f  , bn, w) + o(n-3/4), 
b~ bn 

and therefore fn is an asymptotically better estimate than ]n. It follows from the 
results for f~ that,  under the present conditions on f ,  the optimal kernel for f~ is 
w~ (and not w o nor w~). 

4. An alternative definition of IMSE of fn 

Suppose that the support of f is [a, ~], - o c  < a < 3 _< oc, and consider 

(4.1) / ~ ( f ,  b~, w) = E[f~(x) - f(x)]2dx 

/ / = [ E A ( z )  - f(z)l az + [Varfn(x)]dx. 

Clearly, R~ > / ~ n  for each n because fn need not be zero outside [a, 3]. In some 
situations, Rn may be a more meaningful indicator of the IMSE of fn than R~. 
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One reason is that, if a and fl are known, one would not really use fn to estimate 
f = 0 outside [a, fl] and, therefore, no loss is incurred by f,~(x) for x ~t [a, fl] 
(see Lehmann (1983), pp. 55-56, for a discussion). A second reason is that, for 
estimating f • 9t'(a, oc), fn is uniformly consistent for f if and only if the support 
of w is in gO-. This feature is not revealed by the minimization process of Rn (see 
(1.12) and (1.13)) whe reas /~  does exhibit this feature as noted below. Finally, in 
the context of using fn for hypothesis testing, Bickel and Rosenblatt (1973) also 
ignored the loss in f,~(x) for x ~ [a,fi]. 

It is of some interest to know the asymptotically optimum kernel and band- 
width for f~ that min imize /~ .  The relevant results follow from those under R,~ 
by noting that 

R ~ ( f , b ~ , w ) - R n ( f , b ~ , w )  = [Efn(x)]2dx+ [Ef~(x)]2dx+O(n -1) 
oo 

and then analyzing the two integrals above under the appropriate assumptions of 
f.  We summarize them without proofs which are similar to those in Rosenblatt 
(1971) and van Eeden (1985). First, if f • 9r(-c~, oc), then w* and bn(f, To) 
are also the optimum kernel and bandwidth under Rn. Second, if f E 9v(a, c~) or 
9v(a, fl), then we have 

THEOREM 4.1. Let f • ~(a,  oc) and assume that (1.2) and (1.3) hold. Then, 
under the IMSE [:tn, the optimum kernel and bandwidth for f~ are, repectively, 

(4.2) 

(4,3) 

f (z + 3 ,nl/9   < < 0 w~(z) 
t o elsewhere, 

bn(f ,w~)=~ "-1 9 f'(x)2dx n -1/a, 

where ~" is an arbitrary positive number. Moreover, 

(4,4) Rn(f,  bn(f, w~), w~) = f'(x)2dx n -2/3 + o(n-2/3). 

THEOREM 4.2. Let f E 5v(~,fl) and assume that (1.2) and (1.3) hold. Then, 
under the IMSE [:ha, the optimum kernel and bandwidth for fn are, respectively, 

= J" [T(1 + p)]-l(1 + p2)1/2 exp[--(1 + p2)l/~z/r] 
(4.5) W~(Z) [~(i + p)]-1(1 + p2)1/~ exp[(1 + p~)l/2z/p~] 

(4.6) b~(f, G)  = (1 + p~)i/~[~f(a)]-ln-1/L 

~ r z > O  
~ r z < 0 ,  

where p = f (a ) /  f(fl) and T is an arbitrary positive number. Moreover, 

(4.7) [:t~(f, bn(f,w~),w~) = [ f - l ( a )  + f - l ( f l )]- ln-1/2 + O(n-1). 
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(i) The fn-curve based on (4.2) and (4.3), ISE -- .03492. 
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(ii) The fn-curve based on (1.9) and (1.11), ISE = .06952. 
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(iii) The j~n-curve based on (2.3) and (2.4), ISE = .00423. 

Fig. 1. Three estimates of (5.1) using n = 100 observations. 
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If f E f ( a ,  oc), then (1.15) shows that  f~ under every w with support  in 
~ -  is uniformly consistent for f;  (4.2) effectively gives the best kernel among 
these w's under the c r i t e r ion /~ .  On the other hand, (1.12) is not related to the 
consistency property because it is constrained by the very choice of Rn as the 
IMSE. The best kernel among uniformly consistent f~ under the criterion R~ is, 
in fact, w(z) = r -1 exp(z/ r )  for z _< 0. 

In practical terms, Theorems 4.1 and 4.2 are moot because, when f e ~'(a, oc) 
or f ( a ,  t3), fn is a superior estimator also under (4.1). If fn(X) in (4.1) is replaced 
by ]~(x) of (2.1) or (2.2), it is easily shown that  Theorem 2.1 remains valid so 
that  the right-hand side of (4.1) is of order n -3/4. 

5. Numerical results 

The efficacy of f~ and ]~ as global estimators of a discontinuous f can be best 
judged by estimating a known f over a range of x-values using actual samples 
from f .  We consider the exponential density 

(5.1) f(x) = { 0 xp(-x) for x _~ 0 
elsewhere 

as an example of ~ ( a ,  oc) to illustrate the essential features. A pseudo-random 
sample of size n = 100 was obtained by computer from the exponential distribu- 
tion. Figure 1 shows the target curve (5.1) and three estimates: (i) the fn-curve 
based on (4.2)-(4.3), (ii) the fn-curve based on (1.9) and (1.11) and (iii) the )~- 
curve based on (2.3)-(2.4). Also shown are the observed integrated squared errors 
(ISE) f[fn(X) -- f(x)]2dx and f [ • (x )  - f(x)]2dx. In Fig. l(i), the "local kinks" 
are caused by the discontinuity of w~ at 0 while the "global waves" are due to 
the one-sided nature of w~ (i.e., only observations in Ix, x + bn] are contributing 
to fn(X)). At the expense of inconsistency of fn(O), the local kinks are corrected 
in Fig. l(ii) by the continuity of w*. Figure l(iii) shows, as a confirmation of the 
formal results of Section 2, that  the folded estimator rectifies the drawbacks of 
f~. Actual computations show that the fn-curve based on (1.12) and (1.13) is 
indistinguishable from Fig. l(ii), and the in-curve based on (1.11) and (2.26) is 
indistinguishable from Fig. 1 (iii). 
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