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subtilis using response surface model-based ant colony optimization

J SATYA ESWARI1, M ANAND2,∗ and C VENKATESWARLU1

1Chemical Engineering Sciences Division, Indian Institute of Chemical Technology,

Hyderabad 500007, India
2Department of Chemical Engineering, Indian Institute of Technology Hyderabad,

Hyderabad 502205, India

e-mail: eswari_iit@yahoo.co.in; anandm@iith.ac.in; chvenkat.iict@gmail.com

MS received 21 May 2015; accepted 28 June 2015

Abstract. Central composite rotatable design (CCRD) of experiments was used to obtain data for Lipopep-

tide and Biomass concentrations from fermentation medium containing the following five components: glucose,

monosodium glutamate, yeast extract, MgSO4·7H2O, and K2HPO4. Data was used to develop a second order

regression response surface model (RSM) which was coupled with ant colony optimization (ACO) to optimize

the media compositions so as to enhance the productivity of lipopeptide. The optimized media by ACO was

found to yield 1.501 g/L of lipopeptide concentration which was much higher compared to 1.387 g/L predicted

by Nelder–Mead optimization (NMO). The optimum from ACO was validated experimentally. RSM-based ACO

is thus shown to be an effective tool for medium optimization of biosurfactant production.

Keywords. Ant colony optimization; Bacillus subtilis; central composite rotatable design; lipopeptide;

response surface methodology.

1. Introduction

Biosurfactants are microbial compounds that exhibit pro-

nounced surface and emulsifying activities. There is a great

deal of interest in biosurfactants since they are considered

as “green” alternatives to synthetic surfactants. Biosurfac-

tants comprise a wide range of chemical structures, such

as glycolipids, lipopeptides, polysaccharide–protein com-

plexes and phospholipids: see Desai & Banat [1] and

Abdel-Mawgoud et al [2]. Among the various biosurfac-

tants, lipopeptides are particularly interesting because of

their high surface activities and antibiotic potential. The

bioactive peptides such as surfactin, fengycin and Turing

A, B and C, mycosubtilins and bacillomycins fall under the

category of lipopeptide biosurfactants.

The lipopeptide surfactin produced by Bacillus subtilis is

the most powerful biosurfactant [3] with potential biotech-

nological and biomedical applications. Surfactin lipopeptide

belongs to a group of cyclic lipoheptapeptides containing

beta-hydroxyl fatty acids and D2/L-amino acid residues:

Peypoux et al [4], Haddad et al [5] and Tang et al [6]. It

possesses various biological activities; anti-microbial, anti-

viral, anti-tumor, blood anticoagulant and fibrinolytic activ-

ities [7]. The cell growth and the accumulation of metabolic

products of a lipopeptide biosurfactant process are strongly
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influenced by medium compositions such as carbon sources,

nitrogen sources, phosphorous sources, growth factors, and

inorganic salt concentrations. The potential applications

considered for this biosurfactant depend on whether it can be

produced economically. In this regard, experimental design

provides greater insight in studying the impact of potential

variables affecting the process.

Experimental design and response surface methodology

(RSM), in general, have been studied for different biosurfac-

tant processes in Abalos et al [8], Al-Araji et al [9], Rispoli

et al [10] and Rikalovic et al [11]. The influence of media

components such as carbon-, nitrogen-, and potassium-

sources, and environmental factors for the growth and

production of lipopeptides by Bacillus subtilis has been

evaluated experimentally by various researchers (see, for

instance, Suwansukho et al [12]). Gu et al [13] have

employed central composite design (CCD) based RSM to

optimize the levels of sucrose substrate, ammonium chlo-

ride, ferrous sulphate, and zinc sulphate for the production

of a lipopeptide by Bacillus subtilis in shaker flask fermen-

tation. Media optimization of biosurfactant production by

Bacillus subtilis has also been studied by Abdel Mawgoud

et al [14]. Liu et al [15] have applied central composite

rotatable design (CCRD) and RSM to optimize the medium

composition for enhanced productivity of C15-surfactin by

a Bacillus genus. Mutalik et al [16] employed RSM to

find the optimum medium composition for the biosurfactant

55



56 J Satya Eswari et al

production by Rhodococcus spp. MTCC 2574. Seghal Kiran

et al [17] employed a quadratic model – fitted to experimen-

tal data – to optimize the critical control factors involved

in the production of lipopeptide biosurfactant by marine

Brevibacterium aureum MSA13. In most of the above stud-

ies, media optimization is performed either by the analysis

of experimental results or RSM results. Very few studies

have considered the use of efficient optimization algorithms

to explore the design search space for optimal solution

of a biosurfactant process. De Lima et al [18] developed

an empirical model using bioreactor data, and combined

it with an optimization method developed in Maple VIII

(release 4) software to optimize the conditions for biosur-

factant production by Pseudomonas aeruginosa. Pal et al

[19] applied artificial neural network (ANN) coupled with

genetic algorithm (GA) for media optimization of biosurfac-

tant production by Rhodococcus erythropolis MTCC 2794.

Satya Eswari et al [20] employed artificial neural network-

based response surface model (ANN RSM) coupled with

non-dominated sorting differential evolution (DE) to opti-

mize the medium composition for Rhamnolipid production

by Pseudomonas aeruginosa AT10.

The use of optimization algorithms in conjunction with

the response surface models that are formulated based on the

data of designed experiments can better explore the design

search space for optimal solution of a process. To overcome

the limitations of classical optimization techniques, a host

of new optimization algorithms that operate in a different

way have been developed. In fact, evolutionary optimization

techniques such as the GA [21–23], simulated annealing [24,

25], ant colony optimization (ACO) [26–28], particle swarm

optimization [29], and DE [30, 31] are capable of yield-

ing more flexible solutions than the classical optimization

techniques. To the best of our knowledge, the RSM cou-

pled with ACO has not been reported so far for biosurfactant

processes. Hence, in this work, it is proposed to optimize

the lipopeptide biosurfactant process by coupling the CCRD

based response surface models with ACO. ACO could be

a very powerful and flexible tool well suited for modeling

the fermentation process due to an implicit corrective action

arising from the training methodology and the associated

estimation procedure.

RSM is the most preferred method for fermentation media

optimization. The CCRD is the most popular method to

obtain data for an RSM. ACO is the most efficient meta-

heuristic search algorithm used to solve combinatorial opti-

mization problems. ACO is based on the observation that

ants can find the optimal path between a food source and

their nest exploiting a mix of probabilistic behavior and

pheromone depositing. In ACO, a set of artificial ants simu-

late the behavior of real ants; the artificial ants move on the

graph representation of a combinatorial optimization prob-

lem and build solutions probabilistically. The probabilities

are biased by artificial pheromo nes that ants deposit while

building solution. In this work, CCRD was used to design

the experiments, and data was generated for lipopeptide pro-

duction by Bacillus subtilis. The data was used to develop

response surface models for lipopeptide and biomass pro-

ductivities. These models were coupled with ACO algo-

rithm to optimize the media composition for enhancing the

lipopeptide activity. The optimized activity was validated

experimentally. The results of ACO were compared with

those of Nelder–Mead optimization method, and used to

generate conclusions.

2. Materials and methods

2.1 Microorganism and culture conditions

Bacillus subtilis, a bacterial strain as lyophilized culture

(2423) from IMTECH-MTCC, was activated in 5 ml of

nutrient broth under laminar air flow. The nutrient broth used

was beef extract (1 g/l), yeast extract (2 g/l), peptone (5 g/l)

and sodium chloride (5 g/l). The broth was incubated in a

rotary shaker run at 190 rpm at 37◦C.

The inocula were prepared as follows: The pure micro-

bial culture, i.e. Bacillus subtilis MTCC 2423 from the broth

was grown on nutrient agar slants for 24–48 h. The agar

slants were sub-cultured for every two weeks. From the sub-

culture, one isolated colony was dispensed in nutrient broth

at room temperature (30±2◦C) and kept in rotary shaker at

200 rpm for 16 h. This was used as an inoculum at the con-

centration of 10% v/v. For biosurfactant production, Bacillus

subtilis from the inocula was grown in 250 ml flask with

100 ml of Minimal medium at the same conditions for 16 h.

The concentration of the Minimal medium was glucose (2.5

g/l), monosodium glutamate (1 g/l), yeast extract (0.3 g/l),

MgSO4·7H2O (0.1 g/l), K2HPO4 (0.1 g/l), and KCl (0.05

g/l); the medium was sterilized at 121◦C for 20 min. Further

50 ml of culture from the inoculum was grown in a 1,000

ml conical flask with 300 ml of Minimal medium for 96 h

on a rotary shaker at 160 rpm and 30◦C. This experiment

is performed to observe the productivity of biosurfactant

byMinimal medium and further to design the experiments

for response surface analysis.

2.2 Analytical methods

Biomass. The biomass was determined from the cells

after centrifugation of the culture broth at 6,700g (10,000

rpm), 4◦C for 10 min. The dry cell weight (DCW) was

obtained from the cell pellets by washing twice with distilled

water and drying in hot air oven at 105◦C for 24 h.

Surface activity measurement. Culture samples were

centrifuged at 6,700g (10,000 rpm) for 20 min for cell

removal, and the supernatant was subjected to surface activ-

ity measurements. Surface tension (ST) and interfacial ten-

sion (IT) were determined with a Kruss Tensiometer: this

was performed at room temperature using the ring method.
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The instrument was calibrated by first measuring the sur-

face tension of pure water. The measurement was repeated at

least three times, and the average was reported as the surface

tension of the sample.

Extraction of crude biosurfactant. The crude biosur-

factant was isolated from the cell-free broth of culture kept

for 96 h. The bacterial cells were removed from surfactant-

containing culture broth by centrifugation at 6,700g (10,000

rpm), 4◦C for 20 min. The supernatant was kept overnight at

4◦C and precipitated by adding concentrated HCl to achieve

a final pH of 2.0. Gray white pellets (of lipids and proteins)

formed by precipitation were collected by centrifugation at

6,700g (10,000 rpm), 4◦C for 20 min. The pellets were

lyophilized and weighed for quantification. For the extrac-

tion of biosurfactant compounds, 50 ml of chloroform–

methanol mixture (2:1 v/v) was added to 500 mg of the dry

product and incubated in a rotatory shaker at 250 rpm, 30◦C

(±0.5◦C) for 15 min. The extract was evaporated to dryness

and weighed for quantification. Assays were carried out in

triplicates.

3. Design of experiments and data generation

In this study, CCRD is used to design the experiments for

lipopeptide biosurfactant production. The CCRD is the most

popular class of designs used for fitting second-order mod-

els. The total number of tests required for CCRD is 2k−1 +

2k + n0, which includes 2k factorial points with its origin at

the center, 2k points fixed axially at a distance β (β = 2k/4)

from the center to generate the quadratic terms, and replicate

tests at the center (n0); where k is the number of indepen-

dent variables. A design should include enough replications

(often at the center point) to provide an independent estimate

of the experimental error allowing it to be tested for lack of

fit of the model. For five variables, the recommended num-

ber of tests at the center is six. Hence the total number of

tests required for five independent variables is 24+ (2×5) +

Table 1. Experimental design matrix.

Actual values Coded values Responses

0 x1 x2 x3 x4 x5 X1 X2 X3 X4 X5 g Biomass lt1 g Lipopeptide lt1

1 1 2 0.2 0.2 0.2 −1 −1 −1 −1 +1 3.0 0.90

2 2 2 0.2 0.2 0.4 +1 −1 −1 −1 −1 3.0 1.10

3 1 4 0.2 0.2 0.4 −1 +1 −1 −1 −1 2.6 0.70

4 2 4 0.2 0.2 0.2 +1 +1 −1 −1 +1 1.8 0.12

5 1 2 0.4 0.2 0.4 −1 −1 +1 −1 −1 1.8 0.74

6 2 2 0.4 0.2 0.2 +1 −1 +1 −1 +1 2.4 1.06

7 1 4 0.4 0.2 0.2 −1 +1 +1 −1 +1 3.0 0.86

8 2 4 0.4 0.2 0.4 +1 +1 +1 −1 −1 4.0 1.26

9 1 2 0.2 0.4 0.4 −1 −1 −1 +1 −1 2.2 1.02

10 2 2 0.2 0.4 0.2 +1 −1 −1 +1 +1 1.6 1.16

11 1 4 0.2 0.4 0.2 −1 +1 −1 +1 +1 4.0 0.76

12 2 4 0.2 0.4 0.4 +1 +1 −1 +1 −1 4.0 1.36

13 1 2 0.4 0.4 0.2 −1 −1 +1 +1 +1 4.0 1.32

14 2 2 0.4 0.4 0.4 +1 −1 +1 +1 −1 4.4 1.14

15 1 4 0.4 0.4 0.4 −1 + +1 +1 −1 3.4 1.24

16 2 4 0.4 0.4 0.2 +1 + +1 +1 +1 2.6 0.66

17 0.5 3 0.3 0.3 0.3 −2 0 0 0 0 2.6 0.64

18 2.5 3 0.3 0.3 0.3 2 0 0 0 0 2.2 0.42

19 1.5 1 0.3 0.3 0.3 0 −2 0 0 0 2.2 0.50

20 1.5 5 0.3 0.3 0.3 0 2 0 0 0 2.6 0.38

21 1.5 3 0.1 0.3 0.3 0 0 −2 0 0 2.0 0.24

22 1.5 3 0.5 0.3 0.3 0 0 2 0 0 12 1.12

23 1.5 3 0.3 0.1 0.3 0 0 0 −2 0 9.8 1.04

24 1.5 3 0.3 0.5 0.3 0 0 0 2 0 7.2 1.32

25 1.5 3 0.3 0.3 0.1 0 0 0 0 −2 13.2 1.24

26 1.5 3 0.3 0.3 0.5 0 0 0 0 2 12.4 1.30

27 1.5 3 0.3 0.3 0.3 0 0 0 0 0 12.8 0.92

28 1.5 3 0.3 0.3 0.3 0 0 0 0 0 13 0.90

29 1.5 3 0.3 0.3 0.3 0 0 0 0 0 12.6 0.90

30 1.5 3 0.3 0.3 0.3 0 0 0 0 0 12.2 0.92

31 1.5 3 0.3 0.3 0.3 0 0 0 0 0 12.8 0.92

32 1.5 3 0.3 0.3 0.3 0 0 0 0 0 12.4 0.90
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6=32. For statistical calculation, the experimental variables

xi has been coded as Xi as per the transformation equation:

Xi =
xi − x0

�xi

. (1)

Here Xi is the dimensionless coded value of the ith indepen-

dent variable, xi is the uncoded value of the ith independent

variable, x0 is the value of xi at the center point, and �xi is

the step change value of the real variable xi .

In this study, the five independent process variables cho-

sen were Glucose (x1), Monosodium glutamate (x2), Yeast

extract (x3), MgSO4·7H2O (x4), and K2HPO4(x5). Five lev-

els (±β, ± 1, 0: where β = 24/4 = 2) and six replicates at

the central points were used to design the experiments. The

levels of lowest, low, center, high and highest for the design

variables in g/l were specified as x1: (0.5, 1, 1.5, 2, 2.5),

x2:(1, 2, 3, 4, 5), x3:(0.1, 0.2, 0.3, 0.4, 0.5), x4:(0.1, 0.2, 0.3,

0.4, 0.5), and x5:(0.1, 0.2, 0.3, 0.4, 0.5), respectively.

The response variables measured were the biomass (Y1)

and lipopeptide concentrations (Y2): note that Yi refers

to (dimensional) concentration in g/l of ith response vari-

able. Six replicates at the center of the design were used to

estimate the sum of squares error. Experiments were ran-

domized in order to maximize the effects of unexplained

variability in the observed responses due to extraneous fac-

tors. The experiments were conducted according to the

CCRD design given in table 1.

4. Modeling and optimization

4.1 Response surface methodology (RSM)

The first step in RSM is to find a suitable approximation

for the true functional relationship between the response (Y

in g/l) and the set of independent variables. An important

assumption is that the independent variables are continuous

and controllable by experiments with negligible errors. Cur-

vature is present in our system, and hence the RSM we use

is a polynomial of high degree (the second-order model):

Y = β0 +

k
∑

i=1

βiXi +

k
∑

i=1

βiiX
2
i + βijXiXj + ε, (2)

where βii represents the quadratic effect of the ith factor and

βij represents the cross product effect, or interaction effect,

between the ith and j th factors.

4.2 Ant colony optimization (ACO)

ACO introduced in Dorigo et al [32] is one of the most

recent techniques to solve optimization problems. The ACO

mimics the way real ants find the shortest route between a

food source and their nest exploiting a mix of probabilistic

behavior and pheromone depositing. The ants communi-

cate with one another by means of pheromone trails and

exchange information about which path should be followed.

This autocatalytic and collective behavior of ants results in

the establishment of the shortest route from the nest to the

food source and back. This pheromone-mediated intelligent

foraging behavior of ants is exploited by means of ACO

algorithm to solve a number of optimization problems [33].

In this work, the ACO algorithm with its global search

features is used to optimize the media compositions (g/l):

glucose (x1), monosodium glutamate (x2), yeast extract

(x3), MgSO4·7H2O (x4), K2HPO4(x5) involved in the pro-

duction of lipopeptide surfactin by Bacillus subtilis. An

objective function is defined based on the actual process

measurements and the model predictions as given by

J = f (θ) =

l
∑

i=1

(

Yi − Ŷi

)2
. (3)

where J is the cost function, θ is the vector of parameters,

l is the number of observations, Yi is the measured value of

the ith variable, and Ŷi is the corresponding predicted value.

Iterative convergence of this equation leads to minimiza-

tion of the value of J thus providing the optimum parameter

values.

The ACO-IM problem can be stated as

f (θ) : D → R, (4)

where θ is p-dimensional parameter vector, R is the space of

real numbers and D is the search space of θ . The objective

is to find the parameter vector θ that minimizes f (θ). D is

considered to be a hyper parallelepiped

D =
{

θi

∣

∣θ−
i ≤ θi ≤ θ+

i

}

; i = 1, ......, p, (5)

where θ−
i and θ+

i denote the lower and upper levels of

parameter θi . The search space D is first divided in the inter-

val
[

θ−
i , θ+

i

]

for each parameter θi into a number of strata,

mi . If each stratum be represented by the value at the middle

of the stratum, then there will be M = m1,..., mp permuta-

tions or possible pathways through the search space of input

parameters. Let θij (i =1...p and j =1...mi) be the stra-

tum j of parameter θi in the search space D. The parameters

can be initially specified such that they uniformly cover the

whole parameter space. Use of more strata can speed up the

convergence of the optimization problem but the increase of

strata would increase the computational burden.

Let there be M ants representing M strata. The possible

number of pathways, N, that the ants can travel through the

parameter space p is given by N =Mp. For instance, each ant

follows one of the Npathways from the pathway structure

list shown in the left side of figure 1. Accordingly, each ant

will follow any one of the N pathways, e.g., pathway 29

(1,2,1,1,2), or pathway 99 (2,1,2,3,3), as shown in figure 1.

The ants perform the tasks such as selection of pathways

that they pass, remembering the parameter strata along the

pathways, passing these parameter values to the model of
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Figure 1. Graphical representation of discretized parameter space and the pathway structure.

the process, evaluating the value of objective function for

each path way, and updating the pheromone based on the

objective function values.

The computations involved in ACO implementation are

as follows. The trail intensity also called the pheromone

deposit, τu on each pathway u (u =1...N ) is computed based

on the cost function values of J . The cost function J of

each pathway is represented as Ju and the minimum of the

cost functions, Jmin is found. The mean, μJ and the stan-

dard deviation, σJ of the objective functions are evaluated.

The ratio of standard deviation to mean represents the vari-

ability in the function values and the critical cost Cwhich is

evaluated as

C = Jmin + Cc

σJ

μJ

, (6)

where Cc is a constant.

The critical cost, C is used to evaluate the trail intensity,

τu on each path according to the formula

τu =

{

exp
[

4.6
(

Ju−C
Jmin−C

)]

, Ju ≤ C

0, Ju > C
(7)

According to this equation, pathways with the cost function

larger than C receive no trail intensity, while those below C

receive larger trail intensity values. It can be observed that

any single stratum φij in Dmay be the crossroad of many

ant pathways. The trail share Ŵu calculated of each stratum

θij from each pathway can be summed to yield φij as φij =
N
∑

u=1

τu u ∈ crossing pathway.

Here, the crossing pathways are those that cross the stra-

tum φij . The mean, μij and the standard deviation, σij of the

cost functions are used to compute the scores, Sij according

to the formula:

Sij =
(φij )

A(σij )
B

∑

i

∑

j (φij )A(σij )B
, (8)

where

B = CS

σij

μij

, (9)

where A and CS are constants. Eqs. (8) and (9) in ACO struc-

ture represent trail intensity and transition probability [34].

The scores, Sij are used to eliminate the strata with low-

est scores while retaining the highest score. The interval of

highest retained score results in narrowing the ranges for the

parameters. This strategy is subsequently reinitialized with

updated parameter ranges and the procedure is repeated until

the convergence in objective defined by Eq. (3) is achieved.

The constant Cc in Eq. (6) signifies the variability of the trail

received by each stratum.

5. Results and discussion

5.1 Experimental observations

The lower and upper ranges considered for the media

compositions in CCRD design were: glucose (x1): 0.5–

2.5 g/l, monosodium glutamate(x2): 1–5 g/l, yeast extract

(x3): 0.1–0.5 g/l, MgSO4·7H2O (x4): 0.1–0.5 g/l, and

K2HPO4 (x5): 0.1–0.5 g/l. Response data was generated for

biomass and lipopeptide productivites. The design matrix

of 32 experiments with the acutal and coded composi-

tions, and the response data are shown in table 1. The
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carbon source and nitrogen source were observed to influ-

ence the biosurfactant production. The experimental results

have shown that the media composition with glucose (x1):

2 g/l, monosodium glutamate (x2): 4 g/l, yeast extract (x3):

0.2 g/l, MgSO4·7H2O (x4): 0.4 g/l and K2HPO4 (x5): 0.4 g/l

yielded maximum lipopetide productivity. Increase of glu-

cose or monosodium glutamate is observed to increase the

biosurfactant productivity. Studies by various researchers

have shown that the presence of glucose in the produc-

tion medium increased the biosurfactant production [35, 36].

The presence of nitrogen can play an important role in the

regulation of biosurfactant synthesis, and it was found that

nitrogen plays an important role in the production of surface-

active compounds by microbes [1, 37]. Decreasing glucose

or monosodium glutamate concentration did not show any

improvement in biosurfactant production. Increase of yeast

extract has no influence on the production of biosurfactant.

Decrease of MgSO4·7H2O and K2HPO4 also did not show

any improvement in biosurfactant production.

5.2 Response surface model

The aim of developing a response surface model based

on the experimental design data is to employ these mod-

els to optimize the compositions of McKeen medium so

as to maximize lipopeptide production. The data gen-

erated from the designed experiments for lipopeptide

surfactin production by Bacillus subtilis was used to develop

response surface models (RSM). A second order full regres-

sion model with factor interactions was considered to build

relations between the factors and responses. The form of the

model is

Y = β0 + β1X1 + β2X2 + β3X3+β4X4+β5X5 + β12X12

+ β13X13 + β14X14 + β24X24 + β34X34 + β15X15

+ β25X25 + β35X35 + β45X45 + β11X
2
1 + β22X

2
2

+ β33X
2
3 + β44X

2
4 + β55X

2
5 (10)

The experimental data in table 1 was used to determine the

regression coefficients of the second-order multiple regres-

sion models. The coefficients of the models representing

the biomass and lipopeptide concentrations were deter-

mined by using the method of least squares. The empirical

models identified for biomas and lipopeptide productivities

are given as follows:

Ybio = 12.997+0.260X1+ 0.158X2+ 0.975X3− 0.025X4

− 0.192X5 − 0.063X12 + 0.163X13 − 0.138X23

− 0.113X14 + 0.038X24 + 0.113X34 − 0.688X15

− 0.138X25 − 0.013X35 − 0.038X45 − 3.051X2
1

− 2.92X2
2 − 1.771X2

3 − 1.396X2
4 − 0.321X2

5 (11)

Ylipo = 8.802−0.023X1− 0.717X2+1.217X3+1.033X4

− 0.667X5 − 0.4X12 − 0.25X13 + 0.625X23

− 0.65X24 − 1.25X34 − 1.625X15 − 0.475X25

+ 0.00001X35 + 0.001X45 − 0.640X2
1 − 0.877X2

2

− 0.277X2
3 + 0.973X2

4 + 1.198X2
5 (12)

The validity of the second order regression models was

studied by F test and the significance of the regressed model

coefficients was evaluated by student t test as described below.

5.3 Analysis of variance and test of significance

The validity of the full regression models was studied using

analysis of variance (ANOVA). Table 2(a) and 2(b) showed

the ANOVA results of quadratic response-surface model fit-

ting for both response Ybio (Biomass concentration) and

Ylipo (Lipopeptide concentration), respectively. The higher

values of calculated F than the table values and correspond-

ing lower P values indicate less significance of the full order

models. The R2 values of these models were found to be

0.901 and 0.883. The significance of each of the coefficients

of the full order regression model was determined by using

student t-test. The student tvalues and the corresponding P

values are given in columns 4 and 5 of table 3 and table 4,

respectively. A large magnitude for t-value, and small P -

value, indicates the higher significance of the corresponding

coefficient. The elimination of insignificant coefficients led

to the following reduced models:

Ybio = 12.997 + 0.260X1+ 0.158X2+ 0.975X3−0.192X5

− 0.063X12 + 0.163X13 − 0.138X23 − 0.113X14

+ 0.038X24 + 0.113X34 − 0.688X15 − 0.138X25

− 0.038X45 − 3.051X2
1 − 2.92X2

2 − 1.771X2
3

− 1.396X2
4 − 0.321X2

5 (13)

Table 2. ANOVA results of full order regression models: (a) Biomass; (b) Lipopeptide.

Source Sum of squares Degree of freedom Mean square Fcal <F21,10 table P

(a)

Regression 1702.474 21 85.124 32.88<2.32 0.05

Residual 51.778 10 2.354

Total 1754.248 31

(b)

Regression 1289.336 21 64.467 SSR/SSE=33.91<2.32 0.05

Residual 38.014 10 1.728

Total 1327.344 31



Optimum lipopeptide production using ant colony optimization 61

Table 3. Test of significance for the coefficients of Biomass regression model.

Intercept Coefficient estimate Standard error t table <tcalculated; t 0.05,31 = 1.695 P-value

X0 12.997 0.050 260.491 < 0.001

X1 0.260 0.030 8.609 0.0005

X2 0.158 0.025 6.210 < 0.05

X3 0.975 0.025 38.243 < 0.0005

X4 −0.025 0.025 −0.981 < 0.2

X5 −0.192 0.025 −7.518 0.001

X1X2 −0.063 0.031 −2.002 0.05

X1X3 0.163 0.031 5.204 0.001

X2X3 −0.138 0.031 −4.404 0.0005

X1X4 −0.113 0.031 −3.603 0.003

X2X4 0.038 0.031 1.201 0.15

X3X4 0.113 0.031 3.603 0.001

X1X5 −0.688 0.031 −22.018 0.001

X2X5 −0.138 0.031 −4.404 0.0005

X3X5 −0.013 0.031 −0.400 < 0.25

X4X5 −0.038 0.031 −1.201 0.15

X2
1 −3.052 0.026 −116.642 < 0.025

X2
2 −2.922 0.023 −125.809 0.003

X2
3 −1.772 0.023 −76.292 < 0.003

X2
4 −1.397 0.023 −60.145 < 0.003

X2
5 −0.322 0.023 −13.857 < 0.02

Table 4. Test of significance for the coefficients of lipopeptide regression model.

Intercept Coefficient estimate Standard error ttable < absolute tcalculated; t 0.05,31 = 1.695 P-value

X0 8.802 0.334 26.370 < 0.01

X1 −0.023 0.202 −0.116 0.25

X2 −0.717 0.171 −4.202 <0.025

X3 1.217 0.171 7.133 0.001

X4 1.033 0.171 6.058 < 0.05

X5 −0.667 0.171 −3.909 < 0.001

X1X2 −0.40 0.209 −1.915 0.15

X1X3 −0.25 0.209 −1.197 0.15

X2X3 0.625 0.209 2.992 0.02

X1X4 −0.225 0.209 −1.077 < 0.2

X2X4 0.15 0.209 0.718 0.25

X3X4 −0.65 0.209 −3.112 0.01

X1X5 −1.25 0.209 −5.984 0.0005

X2X5 −1.625 0.209 −7.779 < 0.003

X3X5 0.475 0.209 2.274 0.025

X4X5 0.001 0.209 0.0001 < 0.25

X2
1 −0.640 0.175 −3.659 0.003

X2
2 −0.877 0.155 −5.645 < 0.0005

X2
3 −0.277 0.155 −1.784 0.0005

X2
4 0.973 0.155 6.262 < 0.05

X2
5 1.198 0.155 7.710 < 0.001

Ylipo = 8.802 − 0.717X2 + 1.217X3 + 1.033X4−0.667X5

− 0.4X12 − 0.25X13 + 0.625X23 − 1.25X34

− 1.625X15 − 0.475X25 + 0.00001X35 + 0.640X2
1

− 0.877X2
2 − 0.277X2

3 + 0.973X2
4 + 1.198X2

5

(14)

The resulting reduced models were statistically validated

and tested for their predictive ability by comparing with the

experimental results. The ANOVA results of the reduced

models are shown in table 5(a) and 5(b), respectively. The

lower values of calculated F compared to the table values

and the corresponding higher P values indicate the adequacy

of the reduced models. The R2 values of reduced models

representing the biomass and lipopeptide were calculated

as 0.912 and 0.904. The experimental and model predic-

tion results of biomass and lipopeptide concentrations were
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Table 5. ANOVA results of reduced order regression models: (a) Biomass; (b) Lipopeptide.

Source Sum of squares Degree of freedom Mean square Fcal <F18,13table P

(a)

Regression 16.089 18 0.88 12.15<12.16 0.05

Residual 1.9 13 0.344

Total 17.999 31

(b)

Regression 14.089 18 0.725 10.1<12.1 0.05

Residual 2.9 13 0.144

Total 16.999 31

shown in figures 2 and 3, respectively. These results showed

the predictive ability of the fitted regression models for both

the biomass and lipopeptide concentrations.

Sensitivity analysis was performed to find the media

components that significantly influence the lipopeptide pro-

ductivity. The variables that most influence the lipopeptide

productivity were found by using the normalized sensitivity

studies. The normalized sensitivities are evaluated by using

the relation:
(

∂Y
∂Xi

) / (

Y
Xi

)

. Here Y refers to the lipopeptide

concentration and Xirefers to the respective independent

variable, i.e., the (non-dimensional) media composition. The

absolute normalized sensitivity values of lipopeptide pro-

ductivity with respect to glucose (X1), monosodium glu-

tamate (X2), yeast extract (X3), MgSO4·7H2O (X4), and

K2HPO4(X5) were computed as 2.026, 2.283, 0.659, 3.110,

and 3.795, respectively. This sensitivity analysis shows that

the variables X4 and X5 exhibit greater influnce on the

productivity of lipopetide. The contour plots represent the

effect of the significant variables and their interaction in the

response variable. The response surface counter plot drawn

for X5 vs. X4 on lipopetide productivity is given in figure 4.

5.4 Optimization of lipopeptide production

The reduced order response surface model detailed in

the previous section was coupled with ACO to optimize

the compositions of fermentation process medium com-

ponents (Glucose, Monosodium glutamate, Yeast extract,

MgSO4·7H2O, and K2HPO4) so as to maximize the lipopep-

tide productivity. The optimization problem is stated as

Maximize : Ylipo(x1, x2, x3, x4, x5) (15)

within the ranges of medium composition (in g/l):

0.5 ≤ x1 ≤ 2.5

1 ≤ x2 ≤ 5

0.1 ≤ x3 ≤ 0.5

0.1 ≤ x4 ≤ 0.5

0.1 ≤ x5 ≤ 0.5

(16)

The ACO was designed and coupled with the reduced

order empirical models to solve the optimization problem.

The cost function J in Eq. (3) was defined based on the expe-

rimental and model predicted lipopeptide concentrations.

Figure 2. Predicted and experimental values of biomass (Ybio) concentration.
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Figure 3. Predicted and experimental values of lipopeptide (Ylipo) concentration.

The dimension of the vector (∝) representing the medium

compositions was set as 5. The number of strata (M) was

assigned as 3. The number of ant sets chosen is 20. The con-

stants involved in Eqs. (6), (8) and (9) were appropriately

tuned as Cc = 0.5, A = 1.0 and Cs = 0.3. The ACO algo-

rithm was implemented iteratively to provide the updated

values of compositions until convergence in the cost func-

tion was achieved. The number of pathways generated for

Figure 4. Response surface counter plot of X5 vs. X4 on lipopetide concentration.
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Figure 5. Convergence in objective function of ACO with ants=20, strata=3, and estimated parameters=5.

ants’ travel was 243. The convergence in optimal solution

defining the lipopeptide productivity evolved for each ant set

by ACO was shown in figure 5. The ACO was executed by

writing the program in C language. The optimized medium

composition by ACO was found as x1 = 1.098 g/l, x2 =

4.01 g/l, x3 = 0.426 g/l, x4 = 0.431 g/l, and x5 = 0.219 g/l.

The maximum lipopeptide concentration obtained due to the

optimized medium composition was 1.501 g/l (ylipo) and the

corresponding biomass concentration was obtained as 4.291

g/l (ybio).

A classical Nelder–Mead optimization (NMO) method

[38] was also employed to compare with ACO. The NMO

has been successfully applied for modeling and optimization

of many chemical and biological problems [39, 40]. The tun-

ing parameters involved in NMO were the reflection, con-

traction and expansion coefficients, which were set as 1.0,

2.0 and 0.5, respectively. The optimum medium components

found by NMO are x1 = 2 g/l, x2 = 3.8 g/l, x3 = 0.2 g/L,

x4 = 0.4 g/l and x5 = 0.4 g/l with the maximum lipopeptide

concentration of 1.387 g/L and the corresponding biomass

concentration was obtained as 3.99 g/l. The NMO predicted

optimum lipopeptide concentration 1.387 g/l was found to

be lower than the 1.498 g/l that was predicted by ACO.

The results show that optimizing the medium composition

by ACO can identify the maximum lipopeptide productivity

more accurately. The experimentally validated lipopeptide

concentration based on ACO optimized media composition

was found to be 1.498 g/L. These results thus exhibit the

effectiveness of ACO in optimizing the media composition

for lipopeptide production.
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