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PREFACE

A new technique has been developed for the weighting of data from

satellite tracking systems in order to obtain an optimum least squares

solution and an error calibration for the solution parameters. Data

sets from optical, electronic, and laser systems on 17 satellites in

GEM-TI (Goddard Earth Model, 36x36 spherical harmonic field) have been

employed toward application of this technique for gravity field

parameters. Also GEM-T2 (31 satellites) was recently computed as a

direct application of the method and is summarized here. The method

employs subset solutions of the data associated with the complete

solution and uses an algorithm to adjust the data weights by requiring

the differences of parameters between solutions to agree with their

error estimates. With the adjusted weights the process provides for an

automatic calibration of the error estimates for the solution

parameters. The data weights derived are generally much smaller than

corresponding weights obtained from nominal values of observation

accuracy or residuals. Independent tests show significant improvement

for solutions with optimal weighting as compared to the nominal

weighting. The technique is general and may be applied to orbit

parameters, station coordinates, or other parameters than the gravity

model.
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I. INTRODUCTION

The method of data weighting has been an outgrowth of a

calibration process for the error estimation of gravitational models

chat have been derived from satellite data, Lerch et al. (1985 and 1988)

and Wagner and Lerch (1978). The principle of the new technique is to

estimate the weighting of the data so as to produce realistic error

estimates of the solution parameters from subset solutions of least

squares normal equations. Application has generally been with use of a

large set of satellites with inhomogeneous data from tracking systems of

laser, electronic, and camera (optical) data. The gravity model of

GEM-TI (Marsh et al., 1988) using some 17 satellites has been tested

with the new technique and the GEM-T2 (Marsh et al., 1989) solution with

some 31 satellites has been derived with the new process of optimum

weighting of the satellite data sets.

The accuracy estimation of the gravity model is particularly

important for the TOPEX Project (1992 launch) for ocean application of

its altimetry. It requires that the radial orbit error be accurate to

better than 10 cm due to the uncertainty of the gravity field. Hence

the estimation process for the errors, which are based upon the weights

assigned to the data, must be reliable. The accuracy of the solutions,

particularly the low degree field, is also important for the Lageos

orbit. Accuracy is needed for the estimation of baseline motion of

laser tracking sites at the centimeter-per-year level as part of the

NASA Crustal Dynamics Project.



2. OBSERVATION WEIGHTING AND DATA CHARACTERISTICS

Observations obtained from geodetic satellite tracking systems

generally have precision levels, particularly laser systems, much better

than the observation residuals obtained from satellite orbital arcs in

post-fit analyses using the best models. This is true even though the

orbital models employed were derived from the same satellite data and

with the same arc lengths of several days. The problem here is that

there are unmodeled systematic errors (biases) which need to be

accounted for in the weighting system of the solution (Brown, 1988).

In Figure I an example of the characteristics of the residuals is

shown for a pass of data from a typical laser tracking site. The

Drecision error (ao) of the laser data is generally small (centimeter

level) as compared to the rms (_t) of the residuals for a satellite data

set t. Values of ot are given in Tables IA and IB (GEM-TI and T2 data

sets) for different satellite data types,and for laser systems,o t varies

from 10 cm for Lageos orbits to over 50 cm on GEOS-I orbital data in

1978.

Note in Figure I that the residuals of a tracking pass with noise

removed fit very closely to a straight line as a function of a bias

offset (bo) and a timing error. The bias offset is the dominant part of

the residuals. If the residuals were random with rms equal to ot the

weight per observation point should be

w t : I/ot2 ,

but with a constant offset (bo) , say for N=50 points in a pass, the

weight should be degraded by

wt = I/No2t = .02/_



The latter case is characteristic of our situation particularly for the

high-precision laser data. The bias effects per pass tend to fluctuate

randomly from pass to pass.

In general, for a given satellite data type t we have

wt = ft/o_

_here at is the rms of residuals for the satellite data set and ft is a

downweighting factor to account for the bias effects and the correlated

effects of the residuals, particularly within the pass. The weighting

technique will obtain wt directly. Note from Table IA (and IB), _ as

well as ot is given for each data type where

wt : I/_

hence

ft = (at/_t)2

which is approximately a constant

ft -" .01

for the satellites with the laser data. In Table IB for the Starlette

('86) and AJISAI laser data,f t = .002 instead of .01 since the data

rates were 5 times faster (I per second as compared to I per 5 seconds),

and hence ft counteracted the excess data. Note also for the optical

systems, the factor ft is generally much larger than with the laser

systems. This may be expected since the number of points per pass for

optical data are fewer and the ratio of noise to bias is much larger

than with the laser data.
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3. LEAST SQUARES MINIMIZATION

The method of solution is a modified least squares process which

minimizes the sum (Q) of signal and noise as follows:

C2 + S2 2

Q = _ _zm _m rit2 + _-_-ft

_,m og t obs ot
i

(i)

where the signal is given by

C_ S_ •,m' ,m"

spherical harmonics comprising the solution

coefficients; and

1 10-5

o_: -- X --

is rms of the coefficients of degree _ (a priori

rule) and is introduced to permit larger solu-

tions to degree and order 36x36. This law,

based upon Kaula's rule, has been obtained inde-

pendently from studies of the spectra of the

Earth's gravity field and is used here to repre-

sent the observed power within the geopotential.

and the noise by

tit :

observation residual (observed-computed)

for the ith observation of satellite

tracking data set (type) t; and

o t :

ft :

rms of observation residuals (generally

significantly greater than a priori

data precision)

downweighting factor to compensate for unmodeled

error effects for each data type t (ideally f=1 for

pure noise).

The optimum

directly, namely

weighting meth6d estimates the

4
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wt = ft/o_ (2)

Whenminimizing Qabove using the least squares method, the normal

matrix equation and error covariance is obtained as follows:

Nx : R

V
ZZ

-I
= N

are the normal equations, where x is the

solution, R is the vector of residuals, and

is the approximate form for the variance-

covariance error matrix which must be

calibrated by adjusting the weighting.

The process of minimizing both signal (Kaula constraints) plus

noise in (I) is also known as collocation by Moritz (1978). With the

normal least squares approach (noise-only minimization) there is a

problem of separability due to the strong correlation between many of

the high degree coefficients. The absence of collocation (GEM-TI without

the Kaula constraint) results in excessively large power in the

adjustment of the potential coefficients. Figure 2 illustrates the

instability of the least-squares solution when collocation is not

used. A satellite-derived gravity solution has been solved without

collocation which is evaluated using a global set of independent gravity

anomalies. An unrestricted high degree field performs poorly due to

excessively large adjustment in the coefficients which is normally

circumvented in the standard least-squares method by solving for a

smaller sized field. Unfortunately, by restricting the size of the

field, one also is requiring the higher degree terms above the field

limits to be constrained absolutely to zero. Figure 2 also shows the

disadvantage of this approach where the smaller sized field (PGS-3067)

contains aliasing in its coefficients and does not perform well. (The

abbreviation PGS stands for Preliminary Gravity Solution.) The aliasing

signal sensed in the data above the field limits is absorbed into the

adjustment of the lower degree coefficients. The best approach is seen

with the least squares collocation (or constrained) solution, GEM-TI,

with a complete solution of a 36x36 field in harmonics.

i
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4. LEAST SQUARES NORMAL EQUATIONS

In matrix form the observation equation is given by, assuming

linearity,

O - C = r = r - Ax
O

(3)

x:X-X R

where

r = 0 - C --- residual, observation (0) minus computed value (C)

from solution

x : X - XR--- adjustment of solution (X) from reference value

(XR) (for error analysis XR _ X(true))

--- matrix of partials evaluated at X = X R

r o --- residuals based upon a priori value X R.

For the gravity field, the linearity of perturbations may be seen for

the spectrum of harmonics in Kaula (1966). The weighted normal

equations are where W is a diagonal weight matrix (Lawson and Hanson,

1974)--

ATwr : 0

then from (3)

ATWAx : ATwr . (4)
0

For error analysis it is convenient to let the reference value



XR = X(true)

then from (3), x is the error in the solution X, namely

x : X - X(true).

Hence(4) becomes

ATwAx: ATwe (5)

where

e - r O = 0 - CR

: 0 - C(true)

represents the errors due to all unmodeledsystematic effects including
random noise but excluding errors in the adjusted parameters. Instead,
these are the errors in x given by the solution to (5). Our solutions

will be represented by the form (5) as we are interested in the
^

difference between two solutions, x and x, namely

^

x - x = [X - X(true)] - IX - X(true)]

=X-X.

(6)

The normal matrices for (5) are written compactly as

Nx : R

where



N = ATwA

R - ATwe•

(7)

The normal matrices for each data subset t will be given as

w t N t : wtA_A t

T

wtR t = wtAte t

(8)

where t:O is a special case which corresponds to the signal constraints

where the weight is fixed.
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5. METHOD OF ESTIMATION OF WEIGHTS

The technique for estimating w t for each data set t is based upon

a Complete solution (S) with all the data and a subset solution (St )

where data set t is removed. Let the normal equations for the complete

solution x and the subset solution xt be given as in (7),namely

Nx = R (9)

Nx t :R

where from (7)

: Z wjNj R : Z wjRj
jSt jSt

(10)

N : N + wtN t R : R + wtR t.

The covarianee (variance-covariance) matrices (V) for the errors x

and xt are obtained as

V(x) : N-I _ E(xx T)

v(xt) _-I Tt: = E(xtx ).

(11)

As in (6),

xt-x : [Xt - X(true)] - [X - X(true)]

= Xt-X.

The covariance of the difference between the solutions is

(12)



V(xt-x) : E(xt-x)(xt-x) T

: V(xt)-2 E(xtxT)-v(x) (13)

: v(xt) - V(x)

where as shown below

E(xtxT) : V(x). (14)

From (9),

E(xtxT ) : _-I E(R RT) N -I

From (10) and (11),

('15)

E(R RT) : E[R(R + wtRt)T]

: E(R _T) : _ V(xt ) (16)

since

E(_ R_) : o.

The latter result is true as from (I0) the data set t is excluded from

the subset solution, making R and Rt independent. Hence (14) results

by substituting (16) into (15) and using (11).

10



5. I WEIGHTING ALGORITHM

Using just the gravity parameters in (Xt-X) the weighting

algorithm is given by the calibration factor kt obtained from

(Xt-x)T(xt-x) (xt-x)T= (xt-x) = kt TR V(xt-x) (t7)

where TR denotes the trace of the matrix and where from (9) through (13)

--I N-I
xt-x : N R - R : Xt-X (18)

: _ wjNj (19)
jSt

N : N + wtN t

: _ wjRj (20)
jSt

R : R + wtR t

V(xt_x ) = _-I _ N = V(x t) - V(x), (21)

Since kt scales the error variances it will be inversely

proportional for scaling the weight w t to obtain the adjusted weight

w_, namely

w_ : wt / k t. (22)

This latter result will be derived more directly below. By iterating on

the solutions xt for each data set t and the complete solution x for all

data sets until

kt : 1

11



for each t, the weights by (22) will then converge and the error

estimates will automatically be calibrated from (17).

Results are given below to show how the weights and associated

calibration factors converge. Because of the extensive computations for

a large number of data sets a reasonable set of a priori values for the

weights should be available for their refinement in the optimization

process.

The gravity parameters of spherical harmonic coefficients are

calibrated as a set by (17). Calibrations (kt) are also given by

subsets of spectral components from the harmonics of degree g and order

m. For all satellite data sets t (Lerch et al., 1988) relatively little

variation is seen in the spectral calibrations.

5.1.1 Weighting Adjustment

The relation (18) for the weighting adjustment

w E = wt/k t

is derived from use of (17) through (21). It is assumed that the data

set t does not significantly change the solutions x and xt beyond first

order effects as follows:

V(xt_x ) = _-I . N-I = _-I _ (_+wtNt)-1 (23)

= _-_ _ (I+wtNt)-IN -I

wt_-1 Nt _-I

To the same approximation

12



xt-x = wt _-I Rt

E(xt-x)(xt-x)T = w__-I E(RtRT) _-I (24)

From (8),

T E(ete_ ) AtE(RtRt T) : At

^2
= ot N t

(25)

= Nt/w _

^

where ot accounts for the unmodeled systematic effects in et and the

corresponding weighting effect is given as

. I ft/a2twt = =-_ =

°t

Using (23) and (25),then (24) becomes

E(xt_x)(xt_x)T wt
= w-_ V(xt-x) (26)

From (26) and (17)

s

k t = wt/w t

which gives the result (22).

13



6. TESTS AND RESULTS FOR OPTIMUM WEIGHTING TECHNIQUE

Sample tests of the weighting algorithm (22) were made using

GEM-TI plus additional data sets for several satellite data types of

laser, optical, and electronic data. Results are given in Table 2 which

show that the algorithm nearly converges in one step from the a priori

starting weights. Plots of w t vs kt from (17) show a strong linear

relationship from the origin (wt = kt = 0). Hence

W" W

k _ - k

and by setting k" : I for calibration the adjusted weight w" should

nearly converge from (22).

The above tests were made in preparing the weights for additional

data sets to GEM-TI that were combined for the GEM-T2 model. The

convergence of these weights for GEM-T2 is shown in Table 3. In

addition to the optimum weights the technique provides an automatic

calibration of the error estimates based upon the satellite data types t

since each of the kt from (17) is required to converge to I.

The data weights in GEM-TI were derived primarily by requiring the

weight for each data type t to give the best overall agreement with

independent mean gravity anomalies (Rapp, 1986) and with the satellite

observation residuals on selected test arcs. The calibration factors

(ktl/2) for several of the major data types (Lerch et al., 1988) are

given in Table 4 which show that the weights converge (kt = I) except

for the Lageos laser data. However, several additional tests were made

in Table 4 for the calibration factor using independent data from Seasat

altimetry (Rapp, 1986) and surface gravity data (Pavlis, 1988). All of

the latter tests show good calibration of the error estimates,

indicating optimum weighting was closely achieved. The last test

deliberately increased the weighting for a subset of laser data by a

14



giving a value kt=(2.75) 2. From (22) the adjusted weightfactor of 10

should be reduced by a factor of I/kt which would nearly recover the

original weight in one step of the iteration process. The gravity model

with the increased weight naturally gives smaller error estimates but it

also gave significantly worse agreement with independent surface gravity

anomalies.

15



7. SUMMARY

The optimum weighting technique was shown to be important in the

weighting of satellite data, particularly precise laser data where

unmodeled systematic effects require a significant downwelghting factor

as shown in Table 1. The method of weighting was shown in Section 5.2

to provide realistic error estimates for GEM-TI and-T2. These models

were calibrated using subset solutions based not only on data employed

in their solutions but also upon independent data from altimetry and

gravimetry. Because of the important application of the gravity model

to ocean altimetry in the Topex Project, the gravity model errors were

projected on the radial component of the TOPE× orbit and the result gave

10 cm for GEM-T2 which nearly meets the goal of the gravity model.

It was also shown in Section 5.2 that the model with the increased

weight on the data over the optimum weighting gave much poorer agreement

with independent surface gravity anomalies. The optimum weighting

technique based upon the mathematical formulae is general and may be

applied to other than gravitational parameters such as station

coordinates and, in particular, orbit parameters where knowledge of

accuracy estimation and refined solutions are needed.

16



ACKNOWLEDGMENTS

I wish to express my sincere thanks to Girish Patel of STX

Corporation for his analysis and computation of the GEM-TI and-T2 data

weights and calibrations of this report.

17



REFERENCES

Brown, R.D., Characterization of the GEOS-I Laser Ranging Residuals
(1976-1980), STXContract Report 8801, Oct. 1988.

Kaula, W.M., Theory of Satellite Geodesy, Blaisdell Press, Waltham,

Mass., 1966.

Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems, Prentice-

Hall, Englewood Cliffs, New Jersey, 1974.

Lerch, F.J., Klosko, S.M., Wagner, C.A. and Patel, G.B., "On the

Accuracy of Recent Goddard Gravity Models," J. Geophys. Res., 90,

(B11), pp. 9312-9334, 1985.

Lerch, F.J., J.G. Marsh, S.M. Klosko, E.C. Pavlis, G.B. Patel, D.S.

Chinn and C.A. Wagner, "An Improved Error Assessment for the

GEM-TI Gravitational Model," NASA TM 100713, 1988.

Marsh, J.G., F.J. Lerch, B.H. Putney, D.C. Christodoulidis, D.E. Smith,

T.L. Felsentreger, B.V. Sanchez, S.M. Klosko, E.C. Pavlis, T.V.

Martin, J.W. Robbins, R.G. Williamson, O.L. Colombo, D.D.

Rowlands, W.F. Eddy, N.L. Chandler, K.E. Rachlin, G.B. Patel,

S. Bhati, and D.S. Chinn, "A New Gravitational Model for the Earth

from Satellite Tracking Data: GEM-TI," J. of Geophys. Res., 93,

6169-6215, 1988.

Marsh, J.G., F.J. Lerch, B.H. Putney, D.E. Smith, T.L. Felsentreger,

B.V. Sanchez, S.M. Klosko, E.C. Pavlis, T.V. Martin, J.W. Robbins,

R.G. Williamson, O.L. Colombo, D.D. Rowlands, W.F. Eddy, N.L.

Chandler, K.E. Rachlin, G.B. Patel, S. Bhati, and D.S. Chinn, "A

New Gravitational Model for the Earth from Satellite Tracking

Data: GEM-T2," in Print, 1989._

18



Moritz, H., "Least Squares Collocation," Rev. Geophys., 16, 421-430,

1978.

Pavlis, N.K., "Modeling and Estimation of a Low Degree Geopotential

Model from Terrestrial Gravity Data," Report No. 386, Department of

Geodetic Science, OSU, March 1988.

Rapp, R.H., "Gravity Anomalies and Sea Surface Heights Derived from

Combined GEOS-3/SEASAT Altimeter Data Set, J. Geophys. Res. 91,

E5, 4867-4876, 1986.

Wagner, C.A. and Lerch, F.J., "The Accuracy of Geopotential Models,"

Planet. Space Sci., Vol. 26, pp. 1081-1140, 1978.

19



TABLE IA

SATELLITE DATA IN GEM-T1

SATELLITE

+

1 LAGEOS

2 STARLETTE

3 GEOS-3

4 PEOLE

5 BE-C

6 GEOS-1

7 GEOS-2

8 DI-C

9 DI-D

SEMI HAJOR

AXIS (km.)

12273.

7331.

7226.

7006.

7507.

8075.

7711.

7341.

7622,

7170.

74_0.

7501.

7354.

7_69,

9669.

8496.

8298.

10 SEASAT

110SCAR-I_

12 ANNA-18

13 BE-B

lg COURIER-1B

15 TELSTAR-1

16 VAHOUARD-2R!

17 VANGUARD-2

ECC

INCL DATA # OF # OF

DEG TYPE ARCS OBS

• 0038 109.85 LASER 57

.O204 49.80 LASER 46

.0008 114.98 LASER 36

.0164 15.01 LASER 6

.0257 41.19 LASER 39

CAMERA 50

.0719 59.39 LASER 48

CAMERA 43

• 0330 105.79 LASER 28

CAMERA 46

.0532 39.97 LASER 4

CAMERA 10

.0848 39.46 LASER 6

CAMERA 9

.0021 108.02 LASER 14

DOPPLER lk

.0029 89.27 DOPPLER 13

.0082 50.12 CAMERA 30

• 0135 79,69 CANERA 20

.0161 28.31 CAMERA 10

• 2_29 44.79 CAMERA 30

.1832 32+92 CAMERA 10

.1641 32.89 CAHERA 10

, SIGMA

14k527

57356

42407

4113

642_0

7501

71287

60750

26613

61403

7_55

2712

11487

6111

14923

138042

63098

4463

1739

2476

3962

686

1299

]LMS

RESID.

0
t

lOcm,

20cm.

70cm,

90cm.

50cm.

2 arcsec

70cm.

1 arcsec

80cm.

1 arcsec

150cm.

2 arcsec

lOOcm.

2 aPcsec

7Ocm.

.5cm/sec

lcm/sec

2 arcsec

2 arcsec

2 arcsec

2 aPcsec

2 aPcsec

2 arcsec

stY*
WEIGHTS

^

° t

112cm.

22kcm.

816cm.

816cm.

577cm.

5.6 lr¢$ec

667cm.

8.9 arcsec

816cm.

8.9 arcsec

816cm.

7.3 arcsec

816cm.

8.9 arcsec

707cm.

7cm/sec

8cm/sec

4.5 arcsee

4.5 arcsec

4.5 arcsec

4.5 arcsec

4.5 arcsec

4.5 arcsec

2O



TABLE 1B

NEW SATELLITE DATA IN GEM-T2 IN ADDITION TO GEM-T1

LAGEOS
'84,'85,'86,'87

STARLETI'E
'83,'84

STARLE'I-I-E
'86

AJISAI

GEOS-1 '80

GEOS-3 '80

GEOS-3

GEOS-3:ATS
'75,'76

GEOS-3".ATS
*77°'78/79

NOVA

LANDSAT-1

GEOSAT

OVI-2

ECHO-1RB

SECOR-5

INJUN-1

TRANSIT-4A

5BN-2

OGO-2

OSCAR-7

MIDAS-4

SEMI MAJOR

AXIS (kin.).

12273

7331

1500

8075

7226

1170

900

800

8317

7966

8151

7316

7322

7462

7341

7411

9995

I

INCL

ECC DL=G.

.0038 109.85

.024 49.80

.0006 50.0

.0719 59.39

.0008 114.98

.0011 89.96

.0012 99.12

.0008 108.0

.0184 144.27

Ol18 47.21

0793 69.22

0079 66.82i

0076 66.821

0058 89.951

DATA # OF

TYPE ARC_¢

LASER 29

LASER 38

LASER 73

LASER 36

LASER 30

LASER 50

LASER 26
SST 9

SST 17

DOPPLER

DOPPLER

DOPPLEF

CAMERA

CAMERA

CAMERA

CAMERA

CAMERA

CAMERA

0752 j 87.37 I CAMERA

0224 I 89.70 I CAMERA

0112 I 95.83 I CAMERA

#OF

134093

40041

411102

156021

54129

54526

17027
19074

8326

16 73238

10 26428

13 549141

4 973

32 4482

13 726

44 3310

50 3832

17 820

16 1207

4 1862;

50 31779

O t

RMS

RESlD.

10cm.

20cm.

20cm.

16cm.

32cm.

25cm.

70cm.
._'S ec

.2cm/$ec

.4cm/sec

1.5cm/sec

1.3cm/sec

2 arcsec

2 arcsec

2 arcsec

2 arcsec

2 arcsec

2 arcsec

2 arcsec

2 arcsec

2 arcsec

_t

SIGMA*

]6LSLG.I:E._

1 12¢m.

224cm.

500cm

316cm.

258cm.

224cm.

816cm.

7.1 cmlsec

3.2cm/sec

2.6cm/sec

10.5cm/sec

4.5cm/sec

5.8 arcsec

8.2 arcsec

5.8 arcsec

8.2 arcsec

8.2 arcsec

8.2 arcsec

8.2 arcsec

5.8 arcsec

8.2 arcsec
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TABLE 2

TEST FOR OPTIMUM WEIGHTING TECHNIQUE WITH GEM-T1 AS

SUBSET SOLUTION (TWO ITERATIONS)

wt

w't :_tt

GEM-T I + kt w t wE

1980 GEOS-I LASER .49 .05 .10

(30 ARCS) .88 .10 .11

STARLETTE LASER .46 .020 .043

(73 1986 ARCS) .78 .043 .055

NOVA DOPPLER 1.60 .I .062

(16 ARCS) 1.02 .062 .061

9 NEW OPTICAL SATS. 3.2 .2 .063

(230 ARCS) .97 .063 .065

LANDSAT S-BAND .60 .0025 .0042

(10 ARCS) .98 .0042 .0043
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TABLE 3

DATA WEIGHTS AND CALIBRATION OF GEMoT2

SUBSET
SOLLmON
_TASEI"

AJISAI

STARLETFE

4-LASER*

GEO_T

GEOS-3:ATS
LASER,SST

NOVA

LANDSAT

198(_ GEOS-3
LASER

1980 GEOS-1
LASER

OPTICAL*

SEASAT

3-LASER*

PG83429
CAUBRATION

1.28

1.29

1.04

1.02

.59

.68

.82

.90

.86

.87

.95

PGS3429

,4"

.8

.2,.2,.04

.015

.01

.015,.1,.02

.07

.0075

.1

.1

.05,.06

.02

.015

.015

PGS3454
_HTS

.3 Ili

.8

.2,.2,.04

.015

.015

.015,.05..02

.O75

.0075

.15

.15

.05,.06

.02

.015

.015

PGS3454
CALIBRATION

1.21

1.00

1.01

1.00

.66

.73

.83

.90

.91

.97

.95

1.02

1.47

.82

PGS3480
_HTS

.2

.8

.2,2,04

.015

.O35

.015,.1..02

.1

.O09

.2

.15

.05,.06

.02

,.0..0.Z.

.015

PGS3480
CAUBRATION

1.29

1.11

.96

.96

.75

.66

.83

.92

.97

.99

.94

.97

.95

.83

GEM-T2
WEIGmS

.1

.8

.2,.2,.04

.015

.os

.015,.1 ,.02

.15

.009

.2

.15

.05,.06

.02

.007

.o2

(2)
GEM-T2

CALIBRATION
F,_'TORS

.79

.87

.96

1.01

.81

(3)
.66

.90

.92

.96

1.05

.92

.94

1.13

.87

1°

2.

3.

UNDERMNED WEIGHTS ARE THE ADJUSTED ONES INTHE ITERATED SOLUTIONS

CALIBRATIONFACTORSARE_ERVATIVE BUT SUFRCIENTLYCONVERGED

ATS SST WEIGHT DEUBERATELYUNDERWEIGHTED BASED UPON _PARISION WITH
SEASATAL'I1METERANOMALIES

4-LASER data.setis laser data from GEOS-1 , GEOS-2, GEOS-3 and BE-C satellites
3-LASER data.setis laser data from DI-C, DI-D, and PEOLE satellites
OPTICAL dataset is thecamera data from 20 satellitesshown in TABLE 1A and 1B
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TABLE 4

SUMMARY OF RESULTS FOR ERROR CALIBRATION

CALIBRATION

FACTOR

GEM-TI vs. GEM-TI minus DATA SUBSET

4-LASERS (GEOS 1,2,3 BE-C) ................................ 1.06

STARLE'I"FE LASER ............................................. 1.10

OSCAR + SEASAT DOPPLER ................................ 1.09

OPTICAL (11 SATS) .............................................. 0.84

LAGEOS LASER .................................................. 1.45

GEM-T1 vs. GEM-TI + SURFACE GRAVITY ................ 0.95

GEM-TI vs. GEM-T1 + SURFACE GRAVITY +

SEASAT ALTIMETER ............................................ 0.94

GEM-TI vs. SURFACE GRAVITY + SEASAT

ALTIMETER ....................................................... 0.99

GEM-TI minus LAGEOS vs. LAGEOS + SURFACE

GRAVITY + SEASATALT!METER .......................... 0.95

Weighting Factor f = 0.2
10TIMES DATA WEIGHT OF GEM-T 1

GEM-T1 vs. GEM-TI minus 4-LASERS .......................... 2.75
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Figure 1. Characteristics of a Pass of Orbital Laser Residuals at a

Tracking Site in Post Fit Analysis
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DEGREE TRUNCATION IN HARMONICS

Models show three modes of solution. The 25 x 25 field solves GEM-TI tracking data without

the Kaula constraint showing misclosure for high-degree terms. PGS-3167 solves GEMoTI data

(with Kaula constraint) to the GEM-L2 size field (20 x 20), showing no improvement over our

previous model. GEM-Tl uses the Kaula constraint with a high-degree field (36 × 36) and is

free of the above problems.

Figure 2. Gravity Model Comparison With 1114
5° x 5° SEASAT Gravity Anomalies
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