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Abstract 

In steel portal frames, cold-formed steel channel sections are increasingly used as the primary framing 
components, in addition to the secondary members e.g. purlins and side rails. For such framing systems, the 
stiffness of the joints at the eaves and apex affects the bending moment distribution, as well as the frame 
deflections. This paper investigates the influence of two joint configurations having full rigidity and semi-
rigidity, respectively, on the optimum design of cold-formed steel portal frames. A real-coded genetic 
algorithm is used to search for the most cost-effective design. It is shown that through incorporating joint effects 
explicitly into the design process, a more appropriate balance between the joints and the member properties 
can be obtained, thus optimizing material use. The study then investigates the effect of secondary members on 
the optimum design. It is shown that incorporating the secondary members is important for portal frames 
having spans less than 12 m. For example, for a frame spacing less than 6 m, the material cost of the primary 
members can be reduced by up to 15%.  

Keywords: Cold-formed steel, portal frames, optimisation, real-coded genetic algorithm. 
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1. Introduction 

Cold-formed steel (CFS) portal framing systems are a popular form of construction in the UK for light 
industrial buildings and warehouses etc., having a typical span of around 12 m. Such frames are lightweight, 
economical, easy to install and erect, which is viable alternative to conventional hot-rolled steel frames (Lim 
and Nethercot 2003). For portal framing system considered in this paper, CFS channel-sections are used for 
the column and rafter members, and Z-sections are used for the purlins and side rails.  

It is well-known that the use of CFS members for portal frames requires a high rigidity of the joints at the knees 
and apex to transfer the applied loads through bending action of the members. Standard design practice 
normally assumes full rigidity (Mills and LaBoube 2004). Although semi-rigid joints may also be allowed in 
the analysis, this is not common practice for designing CFS portal frames.  

A form of rigid-joints for CFS portal frames were proposed by Kirk (1986) (see Fig. 1), having a moment 
capacity equal to that of the channel section being connected. As can be seen from Fig. 1, such joints were 
formed through the swages being rolled on the web of channel sections and brackets, which are rigidly 
interlocked at the eaves and apex under action of bending moment. With longer frame spans, to increase the 
load carrying capacity of CFS portal frames, knee braces can be included at the eaves (see Fig. 1(b)). However, 
this type of joint configuration is expensive and can be difficult to assemble on site.  

Practical design cold-formed steel portal framing systems often use a joint configuration with details as shown 
in Fig. 2. As can be seen, the eaves and apex joints are formed through plane brackets bolted to the web of 
cold-formed steel channel sections, being connected with nine bolts used for each connection. It should be 
noted that such joints are semi-rigid and have finite connection-lengths, owing to the elongation of the bolt 
holes in both the brackets and channel-sections under applied loads (Lim and Nethercot 2004). Intuitively, 
semi-rigidity and finite connection-length of the joints affect on the bending moment distribution, as well as 
the frame deflections. In order to obtain a realistic and reasonable performance of such general framing system, 
the influence of joint flexibility on the frame design needs to be accounted for, and so this effect is considered 
in this paper. 

The design optimisation of hot-rolled steel portal frames using genetic algorithm (GA) has previously been 
considered in the literature (Toropov and Mahfouz 2001, Saka 2003, Issa and Mohammad 2010). Saka (2003) 
used a binary-coded GA to minimise the weight of a hot-rolled steel portal frames, subject only to gravity load. 
Four distinct discrete variables were used, namely, the cross-section sizes of the columns and rafters, and both 
length and depth of the eaves haunch. The optimisation procedure identified the most appropriate sections for 
the members from a list of standard Universal Beam (UB) sections; similarly, the most appropriate haunch size 
was selected from a list of pre-defined discrete haunch dimensions. Thereafter, Issa and Mohammad (2010) 
continued the work of Saka and used a binary-coded GA with a number of population groups implementing 
genetic operations in parallel, referred to as distributed GA. A binary string length of five bits was applied that 
included both universal beam and universal column sections. A number of variable mutation schemes, 
proposed to improve the diversity of the population, were shown to increase the probability of achieving the 
optimum solution. However, one of the limitations of binary-coded GAs is the extra computational complexity 



of the algorithm associated with continuous decision variables. Phan et al. (2013a) investigated the effect of 
serviceability limits on optimal design of steel portal frames.  The frames were designed under ULS with a 
plastic design strategy with frame behaviour compared to the example created by Issa and Mohammad (2010) 
and benchmarked by Saka (2013). A modified GA was used with a niching technique which was shown to be 
highly effective in maintaining diversity in the population, preventing premature convergence due to over-
representation of the best individuals in the mating pool.  It was shown that the plastic design allowed for lighter 
solutions under the gravity load case compared to the elastic equivalent. McKinstray et al. (2015a, 2016) 
conducted the design optimisation of long-span steel portal frames using fabricated beams to Eurocode 3, 
including topological asymmetry. The optimisation of single-storey non-domestic steel framed buildings using 
photovoltaic panels for net-zero carbon impact was also considered (McKinstray et al. 2015b). 

In contrast to hot-rolled steel sections, the shape of CFS cross-sections can be optimised to increase their load 
carrying capacity, leading to more efficient and economical structural systems. Work on optimising such CFS 
cross-sections has been described by (Schafer et al. 2010, Gilbert et al. 2012a-b, Ma et al. 2015, Wang et al. 
2016a-b, Ye et al. 2016 a-b). For optimization of the portal framing system, a design optimisation of CFS portal 
frames with rigid-joints was carried out by Phan et al. (2013b), using Australian design code of practice for 
cold-formed steel AS/NZS 4600 (2005) for the member checks. In the frame analysis model, the joints were 
assumed to be capable of sustaining the full moment capacity of the channel-sections being connected. The 
objective function was the minimum material cost per square meter on plan. The effect of building topology, 
i.e. pitch of the roof and the frame spacing was investigated. However, design on a bare frame was carried out, 
neglecting the serviceability limit state. More recently, Phan et al. (2015) and Wrzesien et al. (2016) considered 
the effect of stressed-skin on cladded portal frame buildings. Through focusing only on optimising the material 
cost of main frame, those researchers have not considered the effect of the material cost of the secondary 
members (i.e., purlins, side rails and cladding) on the overall cost of the building. It is worth noting that with 
cold-formed steel portal frames where the spans being considered are modest, the cost of the secondary 
members can be considerable.  

This paper presents the design optimisation of the CFS portal frame building which includes the influences of 
joint configuration and secondary members. The material cost of the primary members, joints and secondary 
members (i.e. purlins, side rails and cladding) for one full bay of the building are minimised using real-coded 
niching genetic algorithm (RC-NGA). Effect of building topology, i.e. frame spacing and pitch, on the 
optimum design is also taken into account. The CFS framing system is designed to both ultimate and 
serviceability limit states using the The Steel Construction Institute recommendations for deflection limits for 
portal frames (see Table 1). It should be noted that the length of building is long enough to neglect the stressed-
skin effect through cladding system (Phan et al. 2015). 

Most of the design problems considered in this paper such as strength and stiffness of bolted joints remain 
outside the scope of British Standards as well as Eurocodes.  These subjects were studied by different 
researchers and references were made to different design codes based on time of the publication (Wrzesien et 
al. 2012, Dubina et al. 2012). The design equations for joint characteristic were chosen based on research 
predating publication of Eurocodes thus the British Standards were chosen for consistency.  



2. Idealisation of joint configuration having semi-rigidity 

The structural behaviour of the joint configuration shown in Fig. 2 has been investigated using both full-scale 
tests and frame analysis (Lim and Nethercot 2004, Wrzesien et al. 2012). Such joints cannot be treated as rigid; 
under load, the bolt holes elongate, leading to significant rotation in the joints. 

For the analysis of frames having semi-rigid joints, the rotational stiffness needs to be determined (Lim and 
Nethercot 2003, Lim and Nethercot 2004). Fig. 3 shows the layout of a typical bolt group. As can be seen, nine 
bolts per group are used for the joint. When the bolt group resists an external moment M, it rotates about a 
point known as centre of rotation, which is at the centre of the bolt group due to symmetrical configuration of 
the joint (Kulak et al. 1987, Davies 1991, Zandanfarrokh and Bryan 1992). The resisting force Fi at each bolt 
hole is proportional to its distance di from the centre of rotation and acts in a direction of moment perpendicular 
to the line drawn from the bolt hole to the centre of rotation. It should be noted that the centre of the rotation is 
assumed to coincide with the centre of the bolt-group. Experimental research on portal frames has previously 
shown that such an assumption is reasonable and approximates the stiffness of cold-formed steel frames with 
sufficient accuracy (Lim and Nethercot 2004). The rotation stiffness of the bolt group kB for a 3x3 bolt group 
is as follows: 

b
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where 
aB  is the length of bolt group  
bB  is the breadth of bolt group  

  kb   is bolt hole elongation stiffness depending on the web thickness of CFS channel sections. 
For frame analysis, the semi-rigidity of the joints is idealised by a rotational spring at the centre of rotation of 
the bolt-group. The distance from intersection of the members to the centre of rotation of each bolt-group is 
referred to as the effective length of the connection (see Fig. 4).  

3. Frame description and load combinations 

The geometrical parameters of the portal frame shown in Fig. 5 are as follows: span of frame Lf, height to eaves 
hf, pitch of frame θf, and frame spacing (or bay spacing) bf. It was assumed that the column bases are pinned. 
In this paper, a frame having span of 12 m and height of eaves of 3 m is considered and referred to as Reference 
Frame. The cross-section for the primary members i.e., columns and rafters is taken from the list of 18 cold-
formed channel steel sections, which can either be used singly or back-to-back (Phan et al. 2015). For frame 
using rigid joint configuration, it is obvious that the swages on the web of channel-section improve the load 
carrying capacity of the members. However, for simplifying the checking procedure and obtaining a 
conservative design, it should be noted that the section properties and member checks are based on plane 
channel-sections and therefore ignore the benefit of the swages. 

The primary members are laterally restrained by purlins and side rails, using the Zed sections (Fig. 6). The 
single span system is assumed with the sleeved connection (Fig. 7) at all penultimate supports, as well as at 



alternative internal supports, which can be applied to roof pitches up to 30°. According to steel manufacturer’s 
catalogues, the design guide for the purlins and side rail provides the load tables with ultimate load capacities 
under gravity and wind uplift loads for a deflection limit of bf/180. It is worth noting that the Steadmans 
catalogue shows that the minimum and maximum spans for the purlins and side rails under the action of gravity 
load and wind uplift is 3.0 m and 12.0 m, respectively (Steadmans 2012a). 

The framing system is designed under the dead load (DL) of 0.15 kN/m2 and live load (LL) of 0.6 kN/m2. In 
this paper, a dynamic wind pressure (qs) of 1.0 kN/m2 is adopted. Both transverse and longitudinal wind loads 
are considered. In accordance with BS 6399-2 (2002), the design wind pressure (p) is calculated as follows: 

p =                        (2) 
where 
  Cpe is the external pressure coefficient  

Cpi is the internal pressure coefficient 
For buildings of normal permeability, without dominant openings, Cpi has a minimum value of -0.3 for 
suction, and a maximum value of 0.2 for pressure. Six wind load cases (WLC1 to WLC6) as shown in Fig. 8 
are calculated. Thereafter, the building is designed with the ultimate limit state using four ultimate load 
combinations (ULCs), in accordance with BS 5950-1 (2000) as shown in Table 1. Also, the frame is also 
checked at the serviceability limit state under the action of two serviceability load combinations (SLCs). It 
should be noted that the same ultimate limit state load combinations are applied to the design of the purlins, 
side rails and cladding.  

4. Frame analysis and member designs 

A first-order elastic analysis is used owing to the assumption of small displacement of the frame. However, in 
the case of second-order effects being required, the amplified moment method could be adopted and applied 
to the loadings. The finite element program ANSYS was used for the purpose of the structural analysis, in 
which BEAM3 element was used for the columns and rafters. Forty elements were used for the column and 
rafter members, and five elements for eaves and apex joints. Bernoulli’s beam theory is assumed, in which the 
effect of cross-section warping under shear stress action is neglected. It should be noted that although the 
BEAM188 element includes warping, use of BEAM188 element requires the pre-defined section dimensions 
to be input (ANSYS 2009), which is not applied for CFS channel sections.  

To analyse frame having semi-rigid joints, parameters used to define CFS portal frame are shown in Fig. 9. 
For the eaves joints, the effective length of the bolt-group connecting the column and rafter to the 
bracket are 'l

ec
and 'l

er
, respectively. Similarly, the effective length of the bolt-group connecting the 

rafter to the apex bracket is 'l
ar
. Also, frame members are each connected with bracket at the rotational 

centre of bolt-groups at the eaves and apex joints, through using rotational spring elements with stiffness 
mentioned in Eq. 1. For modelling the semi-rigidity of the joints in ANSYS, a rotational spring element of zero 
size connected with two coincident nodes at the joint positions (COMBIN40) was used.  

The frame analysis is embedded in the minimum cost optimisation RC-NGA framework to analyse each 
candidate solution in every generation that evolves towards better solutions following the principle of survival 

 pipes CCq 



of the fittest. For each ultimate load combination, the bending moment, shear force and axial force diagrams 
of the frame members are determined. These results are then passed to design modules to carry out the member 
checks at the critical sections or segments between two lateral restraints. The section capacities in axial, shear, 
and bending are calculated using the effective width method. The axial, moment and shear strengths of the 
columns and rafters, as well as combined strength capacities, are determined in accordance with BS 5950 - 
Part 5 (1998). The Young’s modulus and yield strength of the cold-formed steel used for the members is 
205×103 N/mm2 and 390 N/mm2, respectively. For serviceability limit state checks, the deflections at the eaves 
and apex should satisfy the serviceability limits as mentioned in Table 2. 

For purlins, side rails and the cladding design, it is worth noting that the cold-formed steel manufacturer from 
industry also provides the design facilities with the ultimate load tables for designing purlins, side rails.  The 
load table for cladding capacity is shown in Table 3. Based on the layout of purlins and side rails, the critical 
load (pdesign) acting on these members, will be determined from all ultimate load combinations and then be 
compared against the load capacity (pc) for purlins, side rails and claddings from the load tables provided by 
steel manufacturer’s catalogue (Steadmans 2012a, b). The typical design constraint for the secondary members 
is as follows: 

1
p

p

c

design         (3) 

5. Optimisation model 

The objective of the design optimisation is to minimise the material cost of the channel-sections and brackets 
for the main frame and secondary members per unit floor area for one full bay of the building, whilst satisfying 
the design constraints basing on the code of practice. Material cost of the main frame, joint’s details and 
secondary members for one bay is expressed in terms of the material cost per square metre of the floor of the 
building, referred to as unit cost, as follows: 

        C =  
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where: 

C  is the cost of the building per square meter of floor area 
ci  are the costs per unit length of cold-formed steel sections for frame members 

and secondary members 
li  are the lengths of cold-formed steel frame members 

  m  is the number of structural members in the portal frame 
cbr  is the cost per unit weight of the brackets  
wbr  is the total weight of the brackets  

The optimisation model is solved with a genetic algorithm that employs constraint violation penalties. All 
essential design constraints should be satisfied and, consequently, the constraints are normalised to standardise 
the constraint violations. The normalised forms of the design constraints (see Phan et al. 2015) or unity-factors 
are expressed as follows: 
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The constraints for the ultimate limit state design for primary members are g1 to g5 and g7, g8 and g9 for purlins, 
side rails and cladding checks, respectively. Serviceability limit state design constraints are g10 and g11, in which 
δe and δa = deflections at eaves and apex, respectively. Design constraint g6 is applied for examining the strength 
of semi-rigid joint configuration (Dubina et al. 2012). It should be noted that superscript u indicates the 
maximum permissible deflection. 

A real-coded niching genetic algorithm (RC-NGA) was coded to solve the optimisation problem with 
constraints as shown in Eqs. 5(a-i). The advanced characteristic of real-coded GAs is that genetic operators are 
directly applied to the design variables without coding and decoding as with binary GAs (Deb 2001). The 
optimal algorithm used in this paper randomly generates a set of solutions known as initial population. From 
this population, the next generation of solutions is evolved by conducting three genetic operations: binary 
tournament selection, crossover, and mutation. It is worth noting that the process of random selection in the 
binary tournament ensures that the best solutions in the population will not dominate the mating pool, as in the 
proportional selection method. The diversity of the population is thus preserved to increase the exploration 
component of the algorithm (Deb 2001). 

Several researchers have investigated the diversity of population for GA from different perspectives 
(Michalewicz 1992). In this study, the niching strategy is applied into RC-GA’s selection and crossover 
operators to help maintain the population still scattering throughout the evolutionary process. It is observed that 
the offspring produced through every generation is well distributed around the potential regions containing the 
optima solutions (Deb 2000, Phan et al. 2013). 



Niching is conducted by randomly selecting two individuals from the current population. If a normalized 
Euclidean distance smaller than a pre-defined distance, or in the same niche, they are allowed to become mating 
partners (Deb 2001). This procedure is known as the mating restriction scheme that is applied with RC-GA to 
prevent individuals in different niches from mating with each other. If this Euclidean distance is smaller than 
an empirical user-defined critical distance known as niching radius, these solutions then compete against each 
other for selection for subsequent crossover basing on the comparison of fitness values. In this way, only 
solutions in same region (or niche) are considered, and so increasing the probability to achieve the near global 
optimum solution.  

RC-NGA flowchart for optimising Reference Frame is shown in Fig. 10. Penalty functions were used to 
address constraints and thus define the relationship between the objective function and constraints. This 
effectively transforms a constrained problem to an unconstrained one and defines the fitness function used to 
assess the quality of the solutions the genetic algorithm evolves.  In this paper, the optimisation process using 
RC-NGA was executed with genetic parameters as follows: number of generations = 200; niching radius = 
0.25; mutation probability = 0.1; crossover probability = 0.9. The evolutionary process was set to terminate 
after a predefined number of generations. 

6. Validation of RC-NGA 

In this section, the proposed algorithm is validated against the exact optimum solution determining from 
exhaustive enumeration. Some assumptions are applied in this design example for simplifying the optimisation 
process: 

 Fixed building topology: bf = 6 m and θf = 10o 
 Rigid joints applied at the eaves and apex (Fig. 1(a)) 
 Frame members with full lateral restraint.  

With these assumptions, material cost of secondary members and frame joints are therefore excluded from the 
cost function. The optimisation problem has two discrete decision variables, namely, the cross-section sizes for 
column and rafter members. It should be noted that owing to full lateral restraint applied to the primary 
members, the design constraint for lateral torsional buckling, namely, g3 and the three design constraints for 
secondary members, namely, g7, g8 and g9 are deactivated from the design process. 

The optimum cross-section size for the columns and rafters are chosen from a list of 36 options of cold-formed 
steel cross-sections used for the frame members, including both single sections (C) and back-to-back channel-
sections (BBC) that minimises the unit cost of the frame. The searching process with exhaustive enumeration 
is carried out to all permutation of sections that are used for column and rafter members. 

It was found that the cross section BC-30030 was the best solution having a minimum cost of £6.70 per m2. 
The critical design constraint was obtained for the local capacity check of the column at eaves, under the 
ultimate load combination ULC2 (i.e., g2 = -0.16). It is worth noting that searching the optimum design using 
exhaustive enumerate method generally is time-consuming and applied for simple design procedure only. 



The RC-NGA is then applied for searching for the optimum cross-section for the members of the frame. The 
optimisation process is proceeded with three different population sizes, namely 40, 60, and 80 respectively to 
investigate the RC-NGA’s consistency. The probabilities for crossover and mutation operators used in the RC-
NGA are 0.9 and 0.1, respectively. It was empirically found that the niching radius of 0.3 is suitable for 
selection and crossover operators, which work effectively to maintain the diversity of the population through 
generations in the evolutionary process. The optimisation was terminated after 200 generations. 

The convergence history obtained from the RC-NGA is shown in Fig. 11. As can be seen, the progress of RC-
NGA from three runs with different populations converged to the same optimum solution within predefined 
200 generations. As expected, three runs using different population sizes generated the same minimum-cost 
solution as obtained in the exhaustive enumeration search. This result has proved the reliability of proposed 
optimum algorithm. It was observed that the optimisation process took 8000 function evaluations to converge 
into optimum solution; results indicated that cost optimisation is improved when population size increases, 
although the computational time increases substantially. 

7. Optimisation of frame having rigid joints including effect of secondary members 

7.1 Reference Frame with fixed topology 

In this section, Reference Frame is optimised incorporating the effect of secondary members, in which material 
cost of both primary and secondary members per unit floor area for one full bay of the building is minimised. 
It should be noted that if the layout of purlins and side rails spacing is fixed. In this paper, the best design of 
framing system is determined, using RC-NGA to select the most appropriate solution for discrete variables as 
follows: 

 Cross-section sizes for the primary members 
 Cross-section sizes and numbers of purlins and side rails (Table 4) 

The population size of 80 candidates is selected for the evolutionary process, empirically chosen through a 
number of trials. The same genetic parameters used in previous optimal design are applied in this design 
example. To verify further the capacity of RC-NGA, the frame was optimised five times with different random 
seeds. The convergence progress of five optimisation runs is shown in Fig. 12.  

It can be seen that the five runs converged to the same optimum solution within 200 generations. It is interesting 
to observe that seeds 2 and 5 randomly searched for the optimum solution with higher fitness values than 
remaining seeds from the first generation. This explained the reason of the evolutionary processes for seeds 2 
and 5 converging to the optimum solution slower than those of seeds 1, 3, and 4. As can also be seen from Fig. 
12, the evolutionary process took approximately 12500 function evaluations to converge into the optimum 
solution. The minimum unit cost obtained was £24.70 per m2, which the material cost each component is 
shown in Table 5. It is interesting to observe that main frame accounted for 27% of total material cost; the cost 
of purlins and side rails accounted for 26%; the cost of claddings is the biggest accounting for 47%. It was 
obtained from the optimum process that the same cross section of BBC 30030 was obtained for both columns 
and rafters. Also, the optimum cross-section for both purlins and side rails is Z-14016 with the optimum 
spacing of 1.20 m. 



It is observed that the critical constraint of combined bending and compression on the column at the eaves 
under the load combination ULC2 governed the frame design, i.e., g2 = -0.16, whilst the constraints of 
serviceability limits were still slack. This finding indicates the fact that standard topology chosen does not 
generate the cost-effective design, since all critical constraints obtained are smaller than their upper bounds. 
Therefore, the variation of frame spacing and pitch would produce a frame working more effectively, i.e. near 
full strength capacity of members, and so the target for a cost-effective design would be achieved. 

7.2 Reference Frame with variable topology 

In this section, the effect of building topology on optimum design of Reference Frame is considered, through 
varying pitch, θf, and frame spacing, bf within the range as mentioned in Section 4. The design variables for 
this optimisation are as follows: 

 Cross-section sizes for the primary members  
 Cross-section sizes and numbers of purlins and side rails  
 Topology: frame spacing and pitch 

As can be seen, this design is more complicated than previous problems because the solution space is 
significantly larger owing to more decision variables. The optimisation is carried out ten times to check for the 
consistency of the results obtained. It is worth noting that the robustness and reliability of RC-NGA can be 
enhanced through maintaining the diversity of population for every generation, and this effect is achieved from 
adjusting niching radius.  

For the niching radius larger than 0.5, it is observed that the diversity of population was not maintained 
effectively. Interestingly, for the niching radius of unity, the population in the final generation was dominated 
by the solutions with best fitness values. Therefore, the optimisation process prematurely converged into a local 
optimum solution. It is observed that the robustness of RC-NGA was effectively achieved in searching for the 
optimum solution with a niching radius value of 0.25; population size of 120 is empirically found to be 
appropriate in searching the optimum solution in terms of the balance between the reliability and computational 
time. The lowest unit cost obtained from ten runs was shown in Table 5. 

In comparison with the optimum design of Reference Frame with fixed topology, it is observed from Table 5 
that the unit cost of optimum frame is around 15% lower and purlins and side rails unit cost is slightly 5% 
lower. This is because the optimum cross-section sizes of primary and secondary members are smaller, which 
is C-30030 for columns and rafters and Z-14014 for purlins and side rails. Small optimum frame spacing of 
3.6 m was obtained, while the optimum pitch is still around the typical pitch of 10o.  

As expected, the critical constraint achieved for lateral torsional buckling on the rafter at eaves is active, i.e. g3 
= -0.01, under the action of load combination ULC2. The design constraints of both ultimate and serviceability 
limit states indicate that a better effective design was obtained, as compared against the design of such frame 
with a fixed topology. The constraints for secondary members show that the smallest size of cold-formed steel 
Z-sections still work far lower than its strength capacity. 

7.3 Effect of joint configuration with knee braces 



In the previous section, it has been shown that incorporating the effect of building topology can produce a cost-
effective design of both primary and secondary members of CFS portal framing system. In this section, the 
parametric study is carried out on frames having different spans to investigate further the effect of rigid-joint 
configurations, i.e. joints with knee braces (Fig. 1(b)), on the optimum design. It is worth noting that the knee 
brace member is assumed to carry axial force only with geometry of knee arrangement as shown in Fig. 5(b). 
Portal frames considered for parametric study have the geometries as follows: 

 Frame span (Lf): 6 m, 8 m, 10 m, 12 m, 15 m, 18 m and 20 m 
 Column height (hf): Lf/3 and Lf /4 

For each frame, the optimisation is carried out with 2 design options, namely ultimate limit state (ULS), and 
ultimate and serviceability limit states (ULS+SLS). For ULS design only, it should be that deflection limits for 
steel portal frames are not specified in the British Standards (as well as other National Standards), and the 
decision as to whether or not a portal frame satisfies serviceability deflections is left to the judgement of the 
engineer. A typical explanation for this specific exclusion of deflection limits for portal frames is that 
deflections of portal frames have no direct significance on the serviceability of the frame itself. Although this 
explanation is technically correct, excessive deflections will affect, among other things, the serviceability of 
the cladding, water-tightness and the visual acceptability of the building in general. 

Decision variables for this design example are the same as those used in Section 7.2. The genetic parameters 
used for the optimisation process are as follows: population = 120; termination criterion = 200 generations. 
Again, RC-NGA was run ten times with different seeds generated randomly to check for the consistency of 
the obtained results. 

It was observed that RC-NGA successfully converged into the optimum solution within a predefined number 
of generations. Each optimum design took approximately 30,000 function evaluations to converge into the 
optimum solution. It is interesting to observe that the same design was obtained for purlins and side rails, in 
which the optimum cross-section is Z-14014 with spacing of around 1.2 m. This is because owing to the 
optimum frame spacing obtained for all cases of parametric study smaller than 6 m (see Fig. 13), whilst 
optimum pitch is still around 10o.  

Material cost of the primary members obtained from RC-NGA optimally designed with both rigid joint 
configurations is shown in Fig. 14. It should be noted that frame using rigid-joint configuration without knee 
braces is referred to as Type 1 and configuration with knee braces is referred to as Type 2. 

As can be seen, for frame using joint Type 1, material cost increases considerably when frame span is larger 
than 12 m under ULS+SLS design option. Especially, for frame span of 20 m and Lf/hf of 3 (see Fig. 14(b)), 
the unit cost under the optimum design with ULS+SLS is higher than ULS design by 90%. However, such 
significant difference is not obtained for frames using Type 2 joint configuration. This finding indicates the fact 
that using joint configuration with knee braces shows a significantly advantage on the unit cost of main frames, 
especially to frame spans larger than 12 m. For CFS portal frames having modest spans, i.e. less than 12 m, the 
use of knee braces would not show any significant benefit in improving the structural performance. 

For ULS+SLS design option, it was observed that the design constraint of horizontal deflection at the eaves 
governed the optimum designs of frames using Type 1 joint configuration, whilst ultimate constraints 



controlled in most design cases of frames Type 2 for modest spans. However, it was also observed that for the 
column height larger than 5 m and frame span larger than 15 m, horizontal deflection at eaves controlled the 
optimal designs of frames Type 2. Fig. 15 shows the percentage of unit cost for each component for one bay 
of the building, namely frame members, purlins and side rails, and cladding. This result again shows the 
importance of including secondary members into the design of CFS portal frame buildings having modest 
spans, i.e. smaller than 12 m. 

8. Effect of semi-rigid joints on optimum design of Reference Frame 

In this section, the joint configuration having semi-rigidity and partial strength as shown in Fig. 4 is applied for 
the eaves and apex joints of Reference Frame. Parameters used to define semi-rigid joints of main frame are 
shown in Fig. 9. As can be seen, the rotational stiffness at the eaves of the bolt-group connecting the column 
and rafter to the eaves bracket are kec and ker, respectively. Similarly, the rotational stiffness at the apex of the 
bolt-group connecting the rafter to the apex bracket is kar. 

The stiffness of such joint configuration is determined using Eq. 1 basing on the dimensions of bolt-group. It 
should be noted that the breadth of bolt-group is calculated from the height of CFS cross-sections being used 
for column and rafter members, whilst the length of bolt group is processed as continuous decision variables 
for design optimisation. The cost-effective design of Reference Frame is searched using RC-NGA to select the 
optimum solution for decision variables as follows: 

 Discrete variables: cross-section sizes for columns and rafters using channel-sections; cross-section 
size for purlins and side rails using Z-section and number of purlins and side rails on the rafters and 
columns, respectively. 

 Continuous variables: lengths of bolt-groups, i.e., aec, aer, and aar and building topology. 

The frame is optimised ten times with initially different random seeds to verify the consistency of the RC-
NGA’s solutions. Also, the influence of joint flexibility on the optimum design is investigated through two 
design options as follows: 

 Ultimate limit state (ULS) 
 Ultimate + serviceability limit states (ULS+SLS) 

It was observed that the optimum solution is obtained within the pre-defined number of generations after ten 
runs. For ULS+SLS design option, it is obtained that the optimum frame spacing is 3.3 m, which is 8.3% 
shorter than that of design with rigid joints (Type 1), whilst the optimum cross section for primary members is 
the same for both joint configurations. The constraint of the horizontal deflection at the eaves under SLC2 with 
WLC4 now governs, i.e. g10 = 0. It can be expected that the serviceability governs since the flexibility of the 
frame has increased. Details of optimum design for semi-rigid joint are shown in Table 6.  

It is observed in Table 6 that albeit the eaves joint is usually subjected to the highest bending moments in the 
portal frame, the ridge joint is also required to have a high rigidity for ULS design option to carry a reasonable 
bending moment redistributed from bending moment at the eaves joint. Interestingly, such moment 
redistribution can reduce the cost of primary members up to 16.4% (see Table 7). However, the optimum 
design with ULS+SLS option generated a bracket size of the eaves joints around twice as large as that of apex 



joint, to reduce the horizontal deflection of frame. It should be noted that no cost for the brackets is assumed 
for the rigid-joint frame, as the only purpose of considering this frame type is to compare the column and rafter 
members against those selected for frames designed taking into account semi-rigid joints. Further designs for 
different frame spans show that there is not feasible solution for such frame using semi-rigid joint configuration 
with large spans, i.e. 15 m. 

9. Conclusion 

The optimum design of cold-formed steel portal framing system was conducted, and the influence of rigid and 
semi-rigid joint configurations on frame design was considered. The effect of secondary members, i.e. purlins 
and side rails on building topology was also investigated. A genetic algorithm was adopted for the optimisation 
process which showed robustness and reliability in searching for a cost-effective design of CFS portal frame. 

For rigid joint configurations, optimum frame spacing for CFS portal frames would be smaller than 6 m, which 
could reduce the cost of primary members up to 15%. The use of knee braces shows a slight enhancement of 
frame performance CFS portal frames with modest spans, i.e. less than 12 m. However, when frame span 
becomes larger than 15 m, significant improvement was obtained. For frames having modest span, the 
percentage of secondary members in the total cost is considerable, and so accounting for such effect into the 
design of CFS portal framing system become necessary.  

For semi-rigid joint configuration, the optimum design on Reference Frame having span of 12 m showed that 
design constraint of serviceability limit governed. As expected, a large size of brackets at eaves joints can 
effectively reduce the horizontal deflection. However, when the serviceability limit state is neglected, the larger 
size of the apex bracket should be adopted for taking the bending moment redistributed from the eaves joints. 
The effect of flexibility and partial strength on semi-rigid joint configuration with knee brace will be carried 
out for future research for its consistence with Eurocode 3. 
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Figure captions 

Fig. 1 Rigid joint configuration with swages on web of CFS channel section 
(a) Rigid joint                                 
(b) Rigid joint with knee brace            
Fig. 2 Semi-rigid joint configuration 
(a) Semi-rigid joint at eaves                                     
(b) Semi-rigid joint at apex  
Fig. 3 Details of considered bolt-group with nine bolts 
Fig. 4 Details of effective length of semi-rigid joints 
(a) Eaves joint 
(b) Apex joint 
Fig. 5 General geometry of cold-formed steel portal frame 
(a) Rigid jointed frame 
(b) Rigid-jointed frame having knee braces at the eaves 
Fig. 6 Details of cold-formed steel Z-section (Steadmans 2012a) 
Fig. 7 Sleeved single span system for lateral restraints  
Fig. 8 Wind load cases (WLCs) 
Fig. 9 Parameters used to define semi-rigid joints of portal frame 
Fig. 10 Flowchart of  RC-NGA 
Fig. 11 Progress of RC-NGA for validating with exhaustive enumeration method 
Fig. 12 Progress of RC-NGA for Reference Frame with fixed topology 
Fig. 13 Variation of optimum frame spacing (bf) over frame span (Lf) 
Fig. 14 Effect of design options on minimum frame cost for different frame geometries 
 

Table captions 

Table 1: Load factors for design combinations at ULS and SLS designs 
Table 2 Deflection limits for steel portal framing system 
Table 3   Load table for cladding profile (Steadmans, 2012b) 
Table 4 Dimensions and section properties of UK cold-formed steel Zed sections 
Table 5 Minimum unit cost of Reference Frame with rigid joint and secondary members 
Table 6 Optimum length of bolt group for semi-rigid joint designed with variable topology 
Table 7 Material cost of frame members for Reference Frame having semi-rigid joints  
 

 



                                                             

(a) Rigid joint                                                              (b) Rigid joint with knee brace                          

Fig. 1 Rigid joint configuration with swages on web of CFS channel section 

 

 

                               

(a) Semi-rigid joint at eaves                                     (b) Semi-rigid joint at apex 

Fig. 2 Semi-rigid joint configuration 

 



 
Fig. 3 Details of considered bolt-group with nine bolts 

 

(a) Eaves joint 

 

(b) Apex joint 

Fig. 4 Details of effective length of semi-rigid joints 

 



 

(a) Rigid jointed frame 

 

(b) Rigid-jointed frame having knee braces at the eaves 
Fig. 5 General geometry of cold-formed steel portal frame 
 
 
 
 
 
 
 



 
Fig. 6 Details of cold-formed steel Z-section (Steadmans 2012a) 
 

 
Fig. 7 Sleeved single span system for lateral restraints  



 

(a) WL1                                                                                              (b) WLC2 

 

(c) WLC3                                                                                            (d) WLC4 

 
(e) WLC5                                                                                              (f) WLC6 

Fig. 8 Wind load cases (WLCs) 
 
 



 

Fig. 9 Parameters used to define semi-rigid joints of portal frame 

 

 
 

Fig. 10 Flowchart of  RC-NGA 
 



 
Fig. 11 Progress of RC-NGA for validating with exhaustive enumeration method 

 
 

 
Fig. 12 Progress of RC-NGA for Reference Frame with fixed topology 
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Fig. 13 Variation of optimum frame spacing (bf) over frame span (Lf) 
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(a) Lf/hf = 4 and θf  = 10o 

 

 
(b) Lf/hf = 3 and θf  = 10o 

Fig. 14 Effect of design options on minimum frame cost for different frame geometries 
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Fig. 15 Percentage of each component for one bay of cold-formed steel building  
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Table 1: Load factors for design combinations at ULS and SLS designs 
Actions Load 

combination 
Dead Load  

(DL) 
Live Load 

(LL) 
Wind Load 

(WL) 
Wind Load 

(uplift) 

Ultimate limit state 
ULC1 1.4 1.6 - - 
ULC2 1.2 1.2 1.2 - 
ULC3 1.4 1.4 - - 
ULC4 1.0 - - 1.4 

Serviceability limit state SLC1 - 1.0 - - 
SLC2 - - 1.0 - 

Table 2 Deflection limits for steel portal framing system  
 SCI Advisory Desk (2010) 

Absolute 
deflection 

Differential deflection relative to              
adjacent frame 

Lateral deflection at eaves 
100
hf  

200
bf  

Vertical deflection at apex - 
100
b f   and 125sb 2

f
2

f   

Table 3   Load table for cladding profile (Steadmans, 2012b) 
Span (m)(**) 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
 Roof 
Wind suction (kN/m2) 2.58 1.91 1.47 1.17 0.95 0.79 0.67 
Imposed load (kN/m2) 1.36 1.07 0.87 0.72 0.60 0.51 0.44 
 Wall 
Wind suction (kN/m2) 2.71 1.99 1.52 1.20 0.97 0.81 0.68 
Wind pressure (kN/m2) 1.56 1.23 1.00 0.83 0.70 0.60 0.52 

          (**) For purlins and side rails spacing 

Table 4 Dimensions and section properties of UK cold-formed steel Zed sections 
No Section Depth 

(mm) 
Thickness 

(mm) 
EA(102) 

(kN) 
EIx(106) 

(kN.mm2) 
Mcx 

(kNm) 
Weight 
(kg/m) 

Cost(*) 
(£/m) 

1 Z14014 140 1.4 781.88 239.50 5.45 3.06 4.52 
2 Z14016 140 1.6 892.65 271.97 6.63 3.48 4.73 
3 Z14018 140 1.8 1002.96 304.17 7.75 3.90 5.31 
4 Z14020 140 2.0 1113.03 336.21 8.75 4.32 5.81 
5 Z17016 170 1.6 988.59 428.82 8.30 3.86 5.54 
6 Z17018 170 1.8 1111.20 480.03 9.69 4.33 5.64 
7 Z17020 170 2.0 1233.57 531.02 11.00 4.79 6.18 
8 Z17025 170 2.5 1533.83 653.47 14.14 5.94 7.89 
9 Z20015 200 1.5 1076.58 650.38 9.43 4.20 5.62 

10 Z20016 200 1.6 1148.49 692.60 10.47 4.48 5.95 
11 Z20018 200 1.8 1291.60 776.16 12.52 5.03 6.70 
12 Z20020 200 2.0 1434.47 859.39 14.53 5.58 7.35 
13 Z20025 200 2.5 1785.99 1060.51 18.97 6.92 9.10 
14 Z24020 240 2.0 1643.41 1385.33 18.47 6.39 8.10 
15 Z24025 240 2.5 2048.23 1713.24 24.45 7.94 11.10 
16 Z24030 240 3.0 2447.17 2031.01 30.19 9.47 13.24 

                    (*) Cost was taken from the Steadmans in 2012 



Table 5 Minimum unit cost of Reference Frame with rigid joint and secondary members 

Topology Frame        
(£/m2) 

Purlins and side rails   
(£/m2) 

Cladding      
(£/m2) 

Total cost 
(£/m2) 

Fixed 6.60 6.30 11.80 24.70 

Variable 5.60 6.00 11.80 23.40 

 

Table 6 Optimum length of bolt group for semi-rigid joint designed with variable topology 

Design option Length of bolt-groups Unit cost of bracket 

(£/m2) 
aec        aer           aar           

ULS 0.50 m 0.51 m 0.64 m 1.10 

ULS+SLS 0.76 m 0.87 m 0.41 m 1.50 

 

Table 7 Material cost of frame members for Reference Frame having semi-rigid joints  

Design option Frame members 
(£/m2) 

Purlins and side rails 
(£/m2) 

Cladding             
(£/m2) 

Total cost of members  
(£/m2) 

ULS 5.10 6.00 11.80 22.90 

ULS+SLS 6.10 6.00 11.80 23.90 

 

 

 

 


