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OPTIMUM DESIGN OF CROSSFLOW PLATE-FIN HEAT EXCHANGERS THROUGH 

GENETIC ALGORITHM 

 

ABSTRACT 

 

A genetic algorithm based optimisation technique has been developed for crossflow 

plate-fin heat exchangers. The optimisation program aims at minimising the total annual cost for 

a specified heat duty under given space and flow restrictions. A multilayer plate-fin heat 

exchanger has been considered and the optimum values of the design variables consisting of the 

core and the fin geometrical parameters are obtained for the minimum total cost. For the 

validation, optimisation of a reduced model of a two-layer heat exchanger has been compared 

with the solution obtained by the conventional optimisation technique. Comparison of the 

solutions has been made between the cases when no restriction is there on the upper limit of 

Reynolds number and with the laminar flow restriction. The effect of fixing the heat exchanger 

dimensions on the optimum solution has also been studied.  

 

Key Words: crossflow, genetic algorithm, heat exchanger, optimisation, plate-fin, total cost. 
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1. INTODUCTION 

Crossflow plate-fin heat exchangers are widely used in aerospace, automobile and 

chemical process plants. They offer various advantages like low weight, high efficiency and 

ability to handle many streams. Often the design of such heat exchangers has to meet the 

stringent requirements of low initial and operating cost associated with a superior thermal 

performance.  Thus there is a strong motivation for optimising the design of plate-fin heat 

exchangers to give desired performance with minimum cost, volume or weight or with a 

combination of these properties. 

Optimisation of heat exchangers is a very active field of design research in thermal 

engineering. A multitude of techniques ranging from classical techniques like Lagrange 

multiplier, geometric programming, dynamic programming and different non-linear 

programming methods to various non-classical methods as discrete maximum principle, random 

search as well as the method of case study have been adopted for such purpose. A 

comprehensive review of different methods adopted for optimum design of heat exchangers till 

early 90’s has been given by Rao (1991). In this review the merit of all the available techniques 

have been critically judged and their limitations for the optimisation of heat exchangers have 

been highlighted.  

Rao et al. (1996) obtained the optimal design of shell and tube heat exchanger by a two-

stage technique, where optimisation of the geometric design was first done decoupling the 

geometrical and the heat transfer aspects. Next, the geometric optimisation problem was linked 
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to a thermal rating module to obtain thermal design for any given heat duty. Based on 

Lagrangian multiplier technique Venkatrathnam (1991) optimised the design of matrix heat 

exchanger. Abramazon and Ostersetzer (1993) put forward an iterative solution method termed 

as ‘Omega method’ for optimisation. They have applied this technique for optimum design of 

plate-fin heat exchanger as well as cold plates for electronic component cooling and compared 

the results with those obtained from random search algorithms. Dzyubenko et al. (1993) 

discussed a method based on pressure drop and heat transfer experimental data to select optimum 

heat transfer surface for space application. Hesselgreaves (1993) suggested an analytical method 

for calculating optimum size and weight of a plate-fin heat exchanger for a given heat duty using 

dimensionless design parameters. Muralikrishna and Shenoy (2001) pointed out the difficulties 

for determining the optimum design of shell and tube heat exchangers. They have suggested a 

methodology based on graphical technique where a region of feasible design is identified on a 

pressure drop diagram. On the diagram, curves corresponding to constant heat exchanger area or 

total cost  can be plotted and the optimum solution can be picked up. Gonzales et al. (2001) 

determined the optimum values of ten operating and geometric variables for determining the 

minimum cost of an air-cooled heat exchanger using successive quadratic programming. Though 

the technique produces non-integer values of the integer variables, the authors suggest its use as 

a good starting point. 

Out of the different techniques of optimisation calculus based techniques are well known 

for their mathematical rigor and elegance. Though they are time tested and suitable for multiple 

variables, the complexity of any algorithm based on this method increases with the increasing 

number of variables. In the absence of a proper initial guess the solution may converge onto 

some local extrema or may even diverge finally. To guard the convergence of the calculus based 
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algorithm onto a local extrema, one may need to try different starting points for the iteration 

setting initial values of the variables. Moreover, the calculus-based methods are not very 

convenient for handling discrete variables. 

Different versions of branch and bound techniques are suitable for non-linear 

optimisation problems containing discrete-continuous variables (Gupta and Ravindran, 1983; 

Salajegheh and Vanderplaats, 1993). These methods in general treat all the variables as 

continuous and subsequently select feasible discrete solution to identify the optimum. While 

doing so the original optimisation problem is expanded to a large number of sub-optimisation 

problem. On the other hand in the methods based on penalty function approach (Gisvold and 

Moe, 1972), the diversity of local optima may not guarantee convergence to a feasible discrete 

optimal point. In most of the cases the penalty parameters need further adjustment to continue 

search iterations. 

Different search techniques could be good alternatives for optimisation problem 

containing discrete or discrete-continuous variables. However, the conventional technique 

(Stoecker, 1999) becomes very cumbersome and laborious when the extremum is sought for a 

multivariable problem having a number of constraints. In recent times, some probabilistic search 

algorithms namely genetic algorithm (GA) and simulated annealing (SA) are being applied to the 

optimisation of various engineering systems in general and to thermo-processes and fluid 

applications in particular. These techniques can overcome the above-mentioned difficulties to a 

large extent. 

Genetic algorithm has been applied successfully for the analysis and optimum design of 

diverse thermal systems and components namely convectively cooled electronic components 

(Queipo et al., 1994) and cooling channels (Wolfersdorf et al., 1997), flow boiling 
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(Castrogiovanni and Sforza, 1997), fin profiles (Fabbri, 1997; Younes and Potiron, 2001), finned 

surface and finned annular ducts (Fabbri, 1998), compact high performance coolers (Schmit et 

al., 1996) and shell and tube heat exchangers (Tayal et al. 1999). In an effort of predicting heat 

exchanger performance Pacheco-Vega et al. (2001) recently demonstrated the superiority of GA 

over the conventional least square technique. The authors commented that as GA works on a 

global search, it out performs the conventional local gradient-based methods. In case of gradient-

based methods there is always a risk to converge at local extrema unless one tries multi-initial 

values. On the contrary, GA starts with a population of possible solutions, which minimizes the 

risk of premature convergence. However, it needs to be mentioned that for convergence GA 

needs a large number of iterations. It posses a great demand on computational time and renders 

the application of GA unsuitable for simpler problems. 

Using the basic framework of GA, a technique for multiconstraint minimisation has been 

developed in the present work. The technique has been applied to obtain the design of crossflow 

plate-fin heat exchangers for the lowest total annual cost (TAC). To check the accuracy of the 

developed method initially a simplified design having only two geometrical variables has been 

considered. The optimum solutions of this problem as obtained by the present technique agreed 

closely with an accurate solution obtained by gradient search method. Different cases of 

optimum design have been studied next. In all these exercises minimisation of TAC has been 

targeted for a specified heat duty constraint under different combinations of space and flow 

restrictions. Finally a comparison between the optimum designs attained under different design 

constraints has been made.  

The effect of GA parameters on the optimal solution has been seen. Further, the effect of 

different constraints on the solution has also been discussed. The methodology used is not new, 
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but the system like plate-fin heat exchanger where it has been applied and the way it has been 

used is new to the researchers working in this area. 

 

2. OUTLINE OF THE SOLUTION METHODOLOGY 

 Genetic algorithm is a search procedure based on the principles of genetics and natural 

selection. An elaborate description of this technique is available in a number of references, for 

example, Holland (1975), Mitchell (1998) and Goldberg (2000).  

2.1 Basic Algorithm 

 In the simplest form GA can be used to maximise the objective function f(X), which in 

turn depends on a number of variables. Following is the statement of the problem. 

 Maximise f(X),  

where,  

 X = xi,       i=1,2,…..,k 

and 

 xi,min ≤ xi ≤ xi,max (1) 

 The vocabulary used in GA belongs originally to genetics. A feasible solution is 

represented by a binary coded string known as chromosome. The variables xi’s are first coded in 

some string structure. In a simple GA (Goldberg, 2000) binary coded strings consisting of 0’s 

and 1’s are mostly used. The length of the string depends on the desired solution accuracy. The 

variable xi is coded in a substring si of length li. The decoded value of a binary substring si is 

calculated as ∑
−

=

1l

0i
i

i s2 , where si ∈ (0,1) and the string is represented as (sl-1 sl-2 …s2 s1 s0). For 

example, a four bit substring (0111) has a decoded value equal to [(1)20 + (1)21 + (1)22 + (0)23] 

or 7. If there are two variables then it needs total 8 bits (0111 0010). A set of feasible solutions is 
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known as population. The value of the objective function for a particular member decides its 

merit (competitiveness) in comparison with its counterparts. In GA language this is termed as 

fitness function. After creating an initial population a simple GA works with three operators: 

reproduction, crossover and mutation. Reproduction, which constitutes a selection procedure 

whereby individual strings are selected for mating based on their fitness values relative to the 

fitness of the other members.  Individuals with higher fitness values have a higher probability of 

being selected for mating and for subsequent genetic production of offsprings. This operator, 

which weakly mimics the Darwinian principal of the survival of the fittest, is an artificial version 

of natural selection. The reproduction operator used here creates a roulette wheel where each 

string in the population is assigned a slot in the wheel sized in proportion to its fitness. Since the 

population size is usually kept fixed, the sum of the probability of each string being selected 

must be one. Therefore the probability for selecting the ith string is 

 

∑
=

=
pN

1j
i

i
i

f

f
p , where Np is the population size.  (2) 

The evolution is achieved by means of crossover and mutation. After reproduction, the crossover 

operator alters the composition of the offspring by exchanging part of strings from the parents 

and hence creates new strings. Though different types of crossover techniques are common in 

practice, in the present analysis single point crossover is used (Figure 1). Crossover operation 

takes place in two steps. In the first step, selection of two random streams (chromosomes) takes 

place from the mating pool generated by the reproduction operator. Next a crossover site is 

selected at random along the string length, and alleles (gene values in a chromosomes) are 

swapped between the two strings between the crossover site and the end of the strings.  
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FIGURE 1 HERE 

 

Mutation is a secondary operator, which increases the variability of the population. For a GA 

using binary alphabet to represent a chromosome, mutation provides variation to the population 

by changing a bit of the string from 0 to 1 or vice versa with a small mutation probability pm 

(Figure 2). The need for mutation is to create point in the vicinity of the current point to prevent 

the solution from falling into a local optimum, thereby achieving a local search around the 

current solution, which sometimes is not possible by reproduction and crossover.  

 

FIGURE 2 HERE 

 

A generation or an iteration from the computational point of view is completed when the 

offspring replaces the parents from the preceding generation. A simple flow chart for a GA based 

optimisation procedure is given in figure 3. 

 

FIGURE 3 HERE 

  

GA’s do not guarantee convergence to global optimum solution and so require suitable stopping 

criteria. The GA can be terminated when there is no improvement in the objective function 

(fitness) for a defined number of consecutive generations within a prescribed tolerance range, or 

when it covers a prespecified maximum number of generations. 

2.2 Modification for Constrained Minimisation 
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If there are number of constraint conditions and the objective function needs to be 

minimised, the problem is modified as follows:  

Minimise f(X),   X=[x1,……xk]  (3) 

Where,   

gj(X) ≤ 0,  j=1,……,m      (4) 

and 

xi, min ≤ xi ≤ xi,max,  i=1,……,k.   (5) 

The problem can be recast into unconstrained maximisation problem and the solution may be 

obtained as outlined earlier. The first step is to convert the constrained optimisation problem into 

an unconstrained one by adding a penalty function term. 

 Minimise f(X) + ))X(g(m

1i i∑ =
Φ ,  (6) 

subject to 

xi, min ≤ xi ≤ xi,max,  i =1,……,k.      (7) 

Where Φ is a penalty function defined as,  

Φ(g(X)) = R.〈g(X)〉2.    (8) 

R is the penalty parameter having an arbitrary large value.  

The second step is to convert the minimisation problem to a maximisation one. This is done 

redefining the objective function such that the optimum point remains unchanged. The 

conversion used in the present work is as follows  

 Maximise F(X),                                                              (9) 

where,  F(X) = 1 / { f(X) + ))X(g(m

1i i∑ =
Φ }.        (10) 
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The above algorithm can be used for minimising the total annual cost of crossflow plate-fin heat 

exchangers. 

 

3. GEOMETRICAL, THERMOHYDRAULIC AND COST PARAMETERS OF PLATE-

FIN HEAT EXCHANGERS  

 

FIGURE 4 HERE 

  

 Figure 4 depicts a schematic view of a crossflow plate-fin heat exchanger with offset-

strip fins. The initial and running costs of such equipments depend on the geometrical 

specifications and thermohydraulic performance parameters. These details are estimated based 

on the following assumptions.   

1. The steady state condition is assumed to be prevailing. 

2. Offset-strip fins having the same specifications are used for both the fluids. 

3. Heat transfer coefficients and the area distribution are assumed to be uniform and 

constant. 

4. Property variation of the fluids with temperature is neglected. 

5. When the design consists more than two layers of finned passages, number of fin layers 

for fluid ‘b’ (which has a mean temperature closer to atmospheric temperature) is 

assumed to be one more than that of fluid ‘a’ (Nb=Na+1). 

6. In general, the fin effectiveness for compact plate-fin heat exchangers are quite high 

(more than 90%). However, in the present exercise, calculations have been done taking 
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100% fin efficiency. If required one may readily introduce fin efficiency in the present 

formulation. 

3.1 Geometrical Parameters 

 For the geometrical details shown in figure 4, one may get the free flow areas as 

 abaaaaa N.L).tn1).(t(H  Aff −−= ,  (11) 

babbbbb N.L).tn1).(t(H  Aff −−= .       (12) 

Similarly heat transfer areas for the two sides can be obtained as given below.  

Aa = La.Lb.Na[1+ 2.na.(Ha-ta)]   (13) 

Ab = La.Lb.Nb[1+ 2.nb.(Hb-tb)]                              (14) 

Total heat transfer area, AHT = Aa + Ab  = La.Lb.[ Na{1+ 2.na(Ha-ta)}+Nb{1+2.nb(Hb-tb)}]   (15) 

Hydraulic diameter (Joshi and Webb, 1987) of the finned passages is given by 

 

fl
t)tH()}tH(s{

)tH)(ts(2Dh
−

+−+

−−
= ,           (16) 

where s = (1/n – t) (17) 

3.2 Thermo-hydraulic Parameters 

 The rate of heat transfer may be calculated as follows 

Q = ma.Cpa.(Ta,in – Ta,out) = mb.Cpb.(Tb,in – Tb,out)     (18) 

Q = UA(F.LMTD)  (19) 

The LMTD (log mean temperature difference) can be given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

∆−∆
=

2

1
e

21

T
T

log

TT
LMTD ,  (20) 

where 
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 ∆T1 = Ta,in - Tb,out                   and                   ∆T2 = Ta,out - Tb,in 

Neglecting the thermal resistance due to the metal wall, overall heat transfer between the two 

fluids can be expressed as, 

 
ba )hA(

1
)hA(

1
UA
1

+=   (21) 

The heat transfer coefficient can be obtained in terms of Colburn ‘j’ factor as  

            j = St.Pr2/3 = 
Cp.G
h . Pr2/3  (22) 

Substituting h, A and UA in eq. (21) the equality constraint for the heat duty may be expressed as 

bbb

bbbb
3/2

bbbbaaa

aaaa
3/2

aaaa L)hn.21(
)tn1)(tH(

.
aPrCpmj

1
L)hn.21(

)tn1)(tH(
.

aPrCpmj
1

+
−−

+
+

−−
−−

    

 Zq
Q

)LMTD(F
==  (23) 

Pressure drop for the two fluid streams can be calculated readily as 

)tn1()tH.(N.L.D
Lm.2.f

 
D..2
.G.L4.f

P
aa

2
aa

2
a

2
ba,h

a
2

a

2
aa

a,ha

2
aaa

a −−ρ

 
=

ρ
=∆  ,                 (24) 

)tn1()tH.(N.L.D
Lm.2.f

 
D..2
.G.L4.f

P
bb

2
bb

2
b

2
ab,h

b
2

b

2
bb

b,hb

2
bbb

b −−ρ

 
=

ρ
=∆ .                     (25) 

j and f factors may be evaluated from available correlations (Joshi and Webb, 1987). 

For laminar flow (Re≤1500) 

 14.015.0
hf

5.0 )}tH/(s{)D/l((Re)53.0j −−− −= .  (26) 

 02.041.0
hf

74.0 )}tH/(s{)D/l((Re)12.8f −−− −= .  (27) 

For turbulent flow (Re>1500) 

 02.0
h

24.0
hf

4.0 )D/t()D/l((Re)21.0j −−= .  (28) 
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 17.0
h

65.0
hf

36.0 )D/t()D/l((Re)12.1f −−= .  (29) 

Where, 
µ

=
µ

=
.Aff

D.mGD
Re hh .  (30) 

3.3 Cost Estimation 

The method of defining the total annual cost may vary depending upon the application. 

However, it should comprise of the initial cost of the equipments namely the heat exchanger and 

the prime movers for the fluid streams and the running cost. Cost of both the heat exchanger and 

the prime movers will have a fixed and a variable component as Z=kA+k0 (Zubair et al., 1987). 

The variable component (kA) for the heat exchanger may be assumed to depend on the total heat 

transfer area as the type of the heat transfer surface has been specified. In case of prime movers 

the variable component of the cost will depend on the product of capacity and pressure drop. The 

running cost on the other hand will depend on the power consumption. Such basis for cost 

estimation has also been taken by Muralikrishna and Shenoy (2000). 

Total annual cost, TAC = Initial cost of (heat exchanger core + pump a + pump b) +  

                                                              Operating cost of (pump a + pump b) 

TAC =  Af.[{Ca + Cb.AHT c}  + {Ce + Cf. d
a

a

a )P.m( ∆
ρ

}+ {Ce + Cf. d
a

a

a )P.m( ∆
ρ

}] 

                                                                                +  ]PmPm[
)year/Time.(C

b
b

b
a

a

a

pump

pow ∆
ρ

+∆
ρη

 (31) 

Where, ∆Pa and ∆Pb are in kPa. 

As a specific example following values are selected for the cost factors (Muralikrishna and 

Shenoy, 2000) and other operating parameters. 

c=0.8, d=0.68, Af=0.322, Ca=30000, Cb=750, Ce=2000, Cf=5, Cpow = 0.00005 $/W-hr,  

pumpη = 0.7, total operation time/year = 8000 hours, specified heat duty, Q = 160 kW 
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Operating conditions are based on a design problem by Shah (1980). 

ma = 0.8962 kg/s, ρa = 0.7468 kg/m3, Cpa = 1.022 kJ/kg-C, Pra = 0.687, Ta,in = 240 °C 

mb = 0.8296 kg/s, ρb = 1.3827 kg/m3, Cpb = 1.013 kJ/kg-C, Prb = 0.694, Tb,in = 4 °C 

 

4. OPTIMUM DESIGN THROUGH GA – DIFFERENT CASES 

Optimum design of plate-fin heat exchangers have been achieved based on the 

methodology described in the preceding sections. Three different cases, as elaborated below, 

have been considered.  

4.1 Case I -  Heat Exchanger With Two Fin Layers 

FIGURE 5 HERE 

 

At the outset an effort has been made to compare the results obtained through GA with 

those computed using the gradient search technique available with MATLAB. For this the 

original problem has been simplified substantially. Only two fin layers have been considered 

with fixed fin geometry and specified coefficients of heat transfer as well as frictional pressure 

drop. The length (La) and breadth (Lb) are the only variables, which are to be optimised. The 

statement of the problem is as follows.  

Na = Nb = 1 

Total annual cost can be expressed as 

TAC = Za + Zb.La
c.Lb

c + Zc. La
d.Lb

-2d+ Zd. La
-2d.Lb

d+ Ze. La.Lb
-2+ Zf. La

-2.Lb,   (32) 

where,  

 Za = Af.(Ca + 2.Ce),                                Zb = Af.Cb, 

dad

a

a )
1000
Kp()mAf.Cf.(  Zc

ρ
= ,                              dbd

b

b )
1000
Kp()mAf.Cf.(  Zd

ρ
= , 
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1000
Kpmyear/Time.C

  Ze a

a

a

pump

pow

ρη
= ,                    

1000
Kpmyear/Time.C

  Zf b

b

b

pump

pow

ρη
= , 

             
2

Affa

2
a

aa

a
a K

m
Dh.

2.f
  Kp
ρ

= ,                                
2

Affb

2
b

bb

b
b K

m
Dh.

2.f
  Kp
ρ

= , 

 KAffa = Affa / La,                           and       KAffb = Affb / Lb.     

The optimisation problem then becomes minimisation of the objective function 

f(X) = Za + Zb.La
c.Lb

c + Zc. La
d.Lb

-2d+ Zd. La
-2d.Lb

d+ Ze. La.Lb
-2+ Zf. La

-2.Lb,       (33) 

subjected to constraints: 

g1(X) ⇒ 0.13 ≤ La≤ 2;  (34) 

g2(X) ⇒ 0.12 ≤ Lb≤ 2.            (35) 

When required heat duty is specified, an additional equality constraint comes as, 

g3(X) ⇒ ξ(X) – Zq = 0.      (36) 

Where ξ(X) is the LHS of the equation (23). 

Based on the above formulation optimum solution is sought through GA as well as 

through gradient search technique using the following parametric values. 

 H=6.35 mm, t=0.152 mm, lf =3.18 mm, n=615 fins/m (15.62 fins per inch). 

 ja=jb=0.015, fa=fb=0.062 

Penalty parameter for GA has been selected as, R=106. 

Optimum dimensions of the heat exchanger and corresponding total cost are obtained 

using the gradient search technique and GA both without and with the heat duty constraint. In 

figure 6(a) and 6(b) the optimum solutions obtained from gradient search technique and GA are 

depicted for cases without and with heat duty constraints. The GA solutions of the above 

problem have been obtained by changing the GA parameters (like population size ‘Np’, crossover 

probability ‘pc’ and mutation probability ‘pm’).  
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FIGURE 6 HERE 

 

As GA is a technique based on stochastic methods the resulting solutions will not be 

unique one as shown in figure 6. With the variation of GA parameters results are not exactly 

identical but are very close to one another. To bring out this feature clearly the GA result along 

with that obtained from MATLAB are once again plotted in figure 7 on a space bound by the 

physical limits of La and Lb used in the problem. Additionally constant cost contours are also 

plotted on the figures. The close agreement between the solutions obtained from gradient search 

technique and that from GA is obvious in the figures. All the GA solutions satisfy the constraint 

conditions while there is a slight variation in the corresponding cost function. Though GA does 

not produce a unique solution it gives number of near optimal solutions and ultimately offers 

more flexibility to the designer. Finally an average value of all the GA solutions has been 

tabulated in table 1. It compares very well with the solution obtained through gradient search 

technique. However, it needs to be mentioned that time taken for the solution through GA is 

much more compared to that through gradient search technique.  

 

FIGURE 7 HERE 

 

TABLE 1 HERE 

 

4.2 Case II - Multilayer Heat Exchanger With Inequality Constraints For Heat Duty and 

Flow Rates 
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After gaining confidence through a simplified design in the previous example, GA has 

been applied for the optimum design of the plate-fin heat exchanger having multiple layers. The 

statement of the optimisation problem is as follows. 

Minimise f(X)=TAC, (37) 

Subjected to the constraints: 

g1(X) ⇒ 0.1 ≤ La ≤ 1;                         

g2(X) ⇒ 0.1 ≤ Lb ≤ 1; 

g3(X) ⇒ 0.002 ≤ H ≤ 0.01; 

g4(X) ⇒ 100 ≤ n ≤ 1000; 

g5(X) ⇒ 0.0001 ≤ t ≤ 0.0002; 

g6(X) ⇒ 0.001 ≤ lf ≤ 0.010; 

g7(X) ⇒ 1 ≤ Na ≤ 10.   (38) 

The minimum heat duty generated is given by 

g8(X) ⇒ ξ(X) – Zq ≤ 0,   (39) 

where ξ(X) is the LHS of the equation (23). 

 In most of the applications of plate-fin heat exchangers, the flow remains either in 

laminar or in the lower turbulent range. Therefore, additional constraints have been introduced, 

to limit the Reynolds number below 1500 for both the fluids.  

g9(X) ⇒ Rea ≤ 1500, and  

g10(X) ⇒ Reb ≤ 1500. (40) 

Though the designer has some independence in selecting the GA parameters, it has been 

shown that selection of proper GA parameters (Grefenstette, 1986; Wolfersdorf et al., 1997) 

renders a quick convergence of the algorithm. The proper GA parameters are problem specific. 
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Therefore initially an exercise has been made following the methodology of the Wolfersdorf et 

al. (1997) to select the optimum GA parameters for the present problem. Figure 8 shows the 

variation of maximum fitness function and the total cost with the population size, crossover and 

mutation probabilities and penalty parameter. Except for penalty parameter R1, in all the cases 

the minimum cost corresponds to the maximum value of the fitness function. Taking minimum 

cost as the selection criteria following parametric values are selected for GA, population size 90, 

crossover probability 0.8, mutation probability 0.01, and penalty parameter R1=4000, R2=500 

and R3=1000.  

 

FIGURE 8 HERE 

 

The optimum solution based on the optimum GA parameters are listed in table 2. 

 

TABLE 2 HERE 

 

4.3 Case III – Effect of Higher Flow Rates and Equality Constraint on Heat Duty 

 In the present exercise the constraints on Reynolds number have been relaxed while the 

heat duty constraint is made more restrictive as follows. 

Q=160 kW. 

The GA parameters for this modified problem has been selected following the 

methodology described before. The values are as follows: population size = 30, crossover 

probability = 0.8, mutation probability = 0.01 and penalty parameter = 1000. The optimum 

solution based on these GA parameters are listed in table 3. 
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TABLE 3 HERE 

 

5. COMMENTS ON THE RESULTS 

 On the basis of the optimum solution for different cases given in the earlier section, a few 

important observations can be summarised as follows. 

5.1 Effect of Constraint Conditions on Optimum Design  

A comparison of table 2 and 3 reveals a number of interesting points. Restriction on 

Reynolds number gives a heat exchanger with a large length, width and higher number of fin 

layers and at the same time provides a larger rate of heat transfer. On the other hand if the 

restriction on Reynolds number is relaxed, the heat exchanger can be designed for a required 

lower thermal performance and at the same time its cost can be reduced. This fact can be 

explained better with help of a constant cost and constant heat duty contours as depicted in figure 

9. In this figure iso-cost and iso-heat duty curves are constructed as functions of La and Lb while 

taking all the geometrical parameters of the heat exchanger from table 2. Due to the restriction 

put in the Reynolds number on the two sides, the solution space is limited to area OABC and the 

solution is obtained at point O, which gives the limiting values of the Reynolds numbers. Though 

the solution gives a much higher heat duty it also corresponds to a much higher annual cost for 

the equipment. 

 

FIGURE 9 HERE 
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In a similar fashion the cost and the heat duty contours for the second case is shown in figure 10. 

Corresponding to equality constraint Q=160 kW one gets a much lower cost of the heat 

exchanger. 

 

FIGURE 10 HERE 

 

5.2 Imposition of Additional Constraints  

Due to different practical reasons sometimes there may be space restrictions. As a result 

one of the dimensions of the heat exchanger may have to be fixed a priori. This acts as an 

additional constraint. The effect of fixing the heat exchanger lengths on the minimum total cost 

for case II is shown in figure 11. In general the total cost increases with the increase of La as 

depicted in figure 11(a). Minimum cost is obtained at La= 0.509 m, which corresponds to the 

optimum design when no restriction was put on the heat exchanger length. The same figure gives 

an additional information of the pressure drops occurring on the two sides of the heat exchanger 

due to change of La. In figure 11(b) the variation of total minimum cost as a function of Lb along 

with the corresponding pressure drops for the two fluids is depicted. The curves exhibit similar 

nature to those shown in the previous figure. The total cost increases with Lb, the minimum being 

at a point where no restriction on length is imposed. 

 

FIGURE 11 HERE 

  

Next, the effect of additional constraints on optimum design for case III has been studied. 

The total minimum cost is determined varying La, Lb and number of layers, Na individually. The 



 22

results are shown in figure 12 (a), (b) and (c) respectively. In all these three figures the minimum 

value of the respective variable corresponds to the optimum value given in table 3. The 

variations of pressure drop for both the fluids with the variation of La, Lb and Na have also been 

depicted in the respective curves. It may be noted the pressure variations shown both in figure 11 

and 12 do not follow any particular trend. This is because the pressure drop values correspond to 

the optimum design condition. The optimum design condition gives a combination of parametric 

values, which may change substantially if a particular parameter is varied. Therefore the 

observed behaviour of ∆P curves is not unexpected. 

 

FIGURE 12 HERE 

  

Figure 13 gives a comparison of the values of TAC and the corresponding heat duty 

produced for case II and III for a variation of one of the lengths of the heat exchanger. It shows 

clearly that the optimum solution is very sensitive to the variation of heat exchanger lengths for 

case II, where the upper limit of Reynolds number is restricted. 

 

FIGURE 13 HERE 

 

6. CONCLUSION 

A methodology based on GA has been developed for the optimisation of multilayer plate-

fin heat exchangers with large number of design variables of both discrete and continuous nature. 

Initially a two-layer heat exchanger with given fin specifications has been considered. The 

scheme determines optimum values of length and width of the heat exchanger, which minimise 
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the total annual cost. Solution obtained for different combinations of GA parameters gave 

different set of optimum values for the length and the width. However, the optimum values 

obtained from all the GA exercises are close enough. The same problem has also been solved 

graphically as well as through gradient search technique. The solutions generated by GA agree 

very closely to the  graphical solution as well as that obtained from gradient search technique. 

Optimisation of multilayer plate-fin heat exchangers has been considered next. Two 

different cases have been taken up. In the first case the lower limit of the heat duty was specified 

and the heat exchanger was designed for laminar flow conditions. In the second case the 

constraint on fluid Reynolds number was relaxed while the design was made to meet the 

specified heat duty exactly.  By imposing the laminar flow constraints, the effective domain in 

the feasible design space reduces and the size of the heat exchanger increases, which leads to 

increase in total cost and also the corresponding heat duty produced.  

Further, the effect of fixing any of the main geometrical parameters of the heat exchanger 

on its optimum design has been investigated. In general this additional constraint increases total 

annual cost of the heat exchanger. However, the effect of this additional constraint is more 

significant when the design is made for laminar flow conditions.  
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NOMENCLATURE 

A, AHT –heat transfer area, m2 Af – cost factor 
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Aff – free flow area, m2 

C – heat capacity rate (mCp), J/K 

Ca, Cb, Ce, Cf – cost factors 

Cp – specific heat of fluid 

Cpow - cost of power, $/W-hr 

Dh – hydraulic diameter, m 

f – Fanning friction factor 

fmax – maximum fitness parameter 

f(X) - objective function 

F  – crossflow correction factor 

g(X) - constraint 

G – mass flux velocity (= m/Aff), kg/ m2-s 

h – heat transfer coefficient 

H - height of the fin, m 

j - Colburn factor 

lf – lance length of the fin, m 

L - heat exchanger length, m 

li - length of substring 

LMTD - log mean temperature difference 

m – mass flow rate of fluid, kg/s 

n - fin frequency, fins per meter 

Na, Nb – number of layers of finned passages 

NG – number of generations 

Np – population size. 

NTU – number of transfer units 

p – probability 

Pr - Prandtl number 

∆P – pressure drop, N/ m2 

Q – rate of heat transfer, W 

R, R1, R2, R3 – penalty parameters 

Re – Reynolds number 

s – fin spacing (1/n-t), m 

si - binary sub-string 

St – Stanton number [=h/(GCp)] 

t – fin thickness, m 

T-Temperature, K 

TAC – total annual cost, $ 

Time/year – annual operational time, hours 

U– overall heat transfer coefficient, W/ m2K 

xi - variable 

X – (x1, x2,……xk)                   

 

Greek symbols 

ρ –  density, kg/ m3 

µ - viscosity, N/ m2-s 

φ(.) – penalty function 
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ηpump – efficiency of pump 

 

Subscripts 

a, b – fluid ‘a’ and ‘b’  

c - crossover 

i - variable number 

in – inlet 

m – mutation 

max  -maximum 

min – minimum 

out – exit 
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FIGURE 1. Schematic representation of crossover technique 
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FIGURE 2. Schematic representation of mutation technique 
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FIGURE 3. Flowchart for a Genetic Algorithm computation 
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FIGURE 4. (a) crossflow plate-fin heat exchanger (b) offset-strip fin. 
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FIGURE 5. Crossflow Plate-Fin Heat Exchanger with two layers. 
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FIGURE 6. Different GA runs (a) without heat duty (b) with heat duty constraint. 
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FIGURE 7. Total cost contour (a) without heat duty (b) with heat duty constraint along with 

conventional and GA solutions. 
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FIGURE 8. Effect of different GA parameters, (a) population size (b) crossover probability (c) 

mutation probability, and penalty parameters (d) R1, (e) R2, and (f) R3 on maximum fitness and 

total annual cost. 
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FIGURE 9. Total annual cost and heat duty contours in the design space with flow restrictions. 
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FIGURE 10. Total annual cost and heat duty contours without any flow restriction. 
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FIGURE 11. Effect of variation of length on total cost and pressure drops. (a) Variation of La, 

and (b) variation of Lb. 
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FIGURE 12. Effect of variation of La (a), Lb (b), and Na (c) on optimum total cost and 

corresponding pressure drops on the two sides. 
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FIGURE 13. Variation of optimum total cost and heat duty with length (a) La, and (b) Lb. 
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TABLE 1. Solution for two layer heat exchanger. 

 La, m Lb, m Total cost (TAC), $ 

gradient search technique 0.639 0.877 16180 Without heat 

duty constraint GA 0.637 0.877 16180 

gradient search technique 0.213 0.306 19963 With heat duty 

constraint GA 0.227 0.310 19967 

 

TABLE 2. Solution for multilayer heat exchanger with flow constraint. 

La, m Lb, m H, mm n, fins/m t, mm lf, mm Na TAC, $ Q, kW 

0.509 0.554 8.0 891.2 0.168 3.242 9 19046.2 402.05 

 

TABLE 3. Solution for multilayer heat exchanger without flow constraint. 

La, m Lb, m H, mm n, fins/m t, mm lf, mm Na TAC, $ Q, kW 

0.418 0.457 5.43 992.7 0.182 1.321 4 14164.0 159.97 

 


