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ABSTRACT

PANDA2 has been extended to handle panels with
sandwich wall construction by inclusion of the
following failure modes in addition to those previously
accounted for: (1) face wrinkling, (2) face dimpling, (3)
core shear crimping, (4) core transverse shear stress
failure, (5) core crushing and tension failure, and (6)
facesheet pull-off. Transverse shear deformation effects
are included both for overall panel buckling and for
local face sheet dimpling and face sheet wrinkling. The
new PANDA2 code will optimize stiffened sandwich
panels in which the stiffener segments as well as the
panel skin may have sandwich wall constructions. The
effects of panel buckling modal initial imperfections as
well as initial face sheet waviness are accounted for
during optimization cycles. The updated PANDA2 code
will also handle optimization of a panel supported by an
elastic Winkler foundation. Examples are presented for
a uniformly axially compressed perfect and imperfect
unstiffened panel without and with a uniform
temperature gradient through the panel wall thickness.
Initial face sheet waviness and initial overall buckling
modal imperfections both have major influence on
optimum designs of sandwich panels with honeycomb
cores.

INTRODUCTION

Brief Review Of The Literature

Noor, Burton, and Bert [1] provide a recent survey of
the state-of-the-art with regard to sandwich panels.
Stein and his colleagues [2-4] have contributed several
papers. The work reported here is based on earlier work
by Vinson [5-7], Hoff and Mautner [8], Plantema [9],
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Hetenyi [10], and Bitzer and his colleagues at Hexcell
Corporation [11-13]. The PANDA2 computer program
for minimum weight design of unstiffened and stiffened
flat and cylindrical panels and shells [14-20] is
modified as described here. PANDA2 supercedes an
earlier code PANDA [21] and contains algorithms
adapted from BOSOR4 [22] in which the equations
valid for branched shells of revolution are transformed
to those valid for prismatic structures. PANDA2 will
handle optimum designs of panels for which the panel
skin stiffener module (module = one stiffener plus
stiffener base plus panel skin on either side of the
stiffener of total width equal to the stiffener spacing, as
shown in Fig. 1) is in its locally postbuckled state (local
buckling of the panel between adjacent stiffeners and of
the stiffeners). The postbuckling theory in PANDA2
represents an extension of a theory first set forth by
Koiter in 1946 [23]. Optimization is performed with use
of the ADS software developed several years ago by
Vanderplaats and his colleagues [24-25]. Although the
examples presented here are for "classical" (non-
composite) materials, PANDA2 will handle both
regular and sandwich panels composed of laminated
segments of advanced composite material [18,19].
PANDA2 consists of a "bundle" of executable
processors, the most significant of which are:

BEGIN (user supplies starting design,
material properties, boundary
conditions)

DECIDE (user chooses decision variables
and lower and upper bounds for
optimization)

MADSfSETUP (user supplies loads, strategy
parameters, type of analysis to be
performed, etc.)

PANDAOPT (mainprocessor execution is
launched)
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CHOOSEPLOT (user chooses what to plot.)

DIPLOT

CHANGE

SUPEROPT

STAGSMODEL

(plots are generated)

(user changes selected quantities)

(like PANDAOPT, except it
attempts to find a global
minimum-weight design [20])

(a finite element model to be
used in an execution of STAGS
[17,26,27] is generated from an
optimum design by PANDA2)

The purpose of the work on which this paper is based
was to enhance PANDA2's capability to generate
practical optimum designs of sandwich panels by
inclusion of several new "sandwich-related" constraint
conditions: face wrinkling, face dimpling, core shear
crimping, core crushing, core normal tensile failure,
face sheet pull-off, and core transverse shear stress
failure. The very significant effects of initial face sheet
wrinkling and initial buckling modal imperfections are
included. This paper represents an abridged version of
ITEM 271 in the file ,../panda2/doc/panda2.news [29].

Meaning Of The Phrase, "Panel Module", And Other
Panda2 Jargon

In the following discussion, the terms "module
segment" and "nodal point" are used. Also the
terminology, "Iseg" and "Dseg", occurs. "Iseg" and
"Dseg" represent two panel module segment numbering
schemes: "Iseg" used primarily with input (Fig. la) and
"Dseg" referring to segment numbering in a discretized
single skin-stringer panel module (Fig. Ib).

As described in previous papers, a stiffened panel is
considered by PANDA2 to be built up of a series of
identical modules, each of which is divided into
segments, as depicted in Figs. l(a) and (b) for a
hat-stiffened panel. Any or all of the module segments
can be of sandwich wall construction. Different
materials can be used in different segments of the
mod,ule.

In the PANDA2 literature "x" is the axial coordinate
(normal to the plane of the paper), "y" is the coordinate
normal to "x" and lying in the plane of the panel skin,
and "s" is a coordinate similar to "y": normal to "x" and
lying in the plane of each segment of the panel module
cross section, as shown in Fig. 9 on p 492 of [14]. In

this paper "z" is the local through-thickness coordinate
normal to the plane of each panel module segment.

NEW SANDWICH-RELATED BEHAVIORAL
CONSTRAINT CONDITIONS INTRODUCED INTO

PANDA2

Face Wrinkling

Face wrinkling is defined in the literature on sandwich
shells as buckling of a face sheet supported on a
continuous elastic foundation with a foundation
modulus AT (e.g. lb/in3). See Eqs.(2,3) forA^ which
represents the effective stiffness of the sandwich core
plus effective stiffness of the glue layer between the
core and the face sheet. The elastic foundation modulus
K relates normal displacement w of the face sheet to
the pressure on that face sheet exerted by the core+glue
material. The elastic foundation modulus depends on: 1.
the thickness of the sandwich core, 2. the effective
"normal-displacement" stiffness of the glue "layer"
between a face sheet and the sandwich core, and, if the
core is of honeycomb construction, on 3. the diameter
of the honeycomb cell and 4. the thickness of the
honeycomb cell wall. Three alternate formulas for face
wrinkling are used in PANDA2:

(1) a formula based on Eq. (57) of [21] with the elastic
foundation term added to a33 (Eq.(55f) of [21]; see
Eq.(37) below)

(2) a formula presented by Vinson [5], Eq.(4)

(3) a formula first derived by Hoff and Mautner [8] and
presented by Plantema [9], Eqs.(5,6).

PANDA2 uses (1) and the minimum face wrinkling
load factor computed from either (2) or (3). There is no
post-face-wrinkling analysis included in PANDA2.

Face Dimpling

Face dimpling is defined in the literature on sandwich
shells as buckling of the face sheet over the diameter of
a single cell of a honeycomb core. There is no post-
face-dimpling analysis included in PANDA2.

Core Shear Crimping

Core shear crimping is defined as overall buckling of
the sandwich wall in a short-wavelength mode in which
transverse shearing of the core predominates, as shown
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in Fig. 3, p 1692 of Vinson's paper [5], Eqs.(9-l 1).

Core Transverse Shear Stress Failure

Core transverse shear stress failure under transverse
shear forces, Qx and Q (e.g. Ib/in) can occur when

there is local bending of the panel, as is the case with
axially compressed imperfect panels and panels
subjected to normal pressure. This is not the same type
of failure as "core shear crimping", a buckling
phenomenon that can occur in a perfect, uniformly
axially compressed flat panel for which the transverse
shear forces Qx and Q are zero. Rather, the new

constraints for core failure under transverse shear forces

Qx and Q are analogous to stress constraints. New

calculations for the transverse shear forces Qx and Qy

are performed in PANDA2. It is assumed that the Qx

and Q are carried entirely by the sandwich core. The

maximum values of Qx and Q in each skin-stringer

module segment, <2xmax and Gymax, are computed, and

the corresponding maximum transverse shear stress

components in the sandwich core, CT13 = Qxmaj,/tcore

and CT23 = Qym!0i/tcore, in which tcore is the thickness

of the sandwich core, are compared to allowables that
are now provided by the PANDA2 user as input data in
"look-up" tables of experimentally determined core
shear failure stress as a function of core density
obtained from sandwich core manufacturers such as the
Hexcel Corporation [13]. Initial facesheet waviness
often has a dramatic influence on the sandwich core
transverse shear stress margins.

Core Crushing

Core crushing pressures are computed from the
combined effects of axial and hoop curvature changes
in each segment of the skin-stringer module which has
a sandwich wall construction, applied normal pressure,
amplification of initial facesheet waviness under load,
and bending of initially imperfect stringer webs,
especially stringer web bending along the lines of
intersection of the stringer web with other parts of the
skin-stringer panel module. The computed core
crushing pressures are compared with allowables
obtained, as in the case of sandwich core transverse
shear stress allowables, from user-provided "look-up"
tables. As is the case with core transverse shear stress,
initial facesheet waviness has a dramatic influence on
the sandwich core crushing margins.

Face Sheet Pull-off And Core Normal Tension Failure

Face sheet pull-off and core tension failure (tension in
the core normal to the plane of the sandwich panel
module segment) are computed with use of formulas
from Plantema [9] and from Hetenyi [10]. Initial
facesheet waviness, stiffener web root bending, and
hoop bending of initially imperfect cylindrical
sandwich panels play major roles.

Summary Of New Sandwich-related Design Margins

New design margins for a single segment of a panel
module now appear in the PANDA2 output. These new
"sandwich-related" margins are listed in Table. 1. The
margins with the string, "(VTNSON)", are computed
from Vinson's theory [5-7] The margins with the string
"(HOFF)" are computed from a formula in Plantema's
book [9]. PANDA2 uses only the minimum of the face
wrinkling margins from "VDSfSON" and "HOFF'.
Therefore, both "VINSON" and "HOFF' face
wrinkling margins never appear together for the same
face sheet.

If more than one segment in a stiffened panel module
consists of sandwich wall construction there can be
many, many "sandwich-type" constraint conditions
generated in a case. An example is presented in [29].

THEORY

Some details on the theories on which the "sandwich-
related" constraint conditions just listed are based
follow.

Overall Buckling Of The Sandwich Wall

The margin:

localbuck (VINSON) strng Isegl ....

is referred to by Vinson [5] as "Overall Instability" (of
an unstiffened sandwich panel). Equations (2-6) in [5]
govern. This mode of failure is called "localbuck" in
PANDA2 because it represents buckling of a single
segment of a skin-stringer module (panel skin or
stringer web or under hat or hat crown) treated as a flat
panel simply supported along all four edges. PANDA2
reserves the term "overall instability" or "general
instability" to signify buckling in which the lines of
intersection of stiffeners and panel skin displace normal
to the panel skin in the buckling mode.
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The "localbuck(VINSON)" margin provides a parallel
prediction of what PANDA2 has always computed with
analysis type IQUICK=1, that is, local buckling
analysis of the panel module segments with use of
Eq.(57) in [21] with subsequent "knockdown" as
described in Section 8.2 of [14] to account for the effect
of transverse shear deformation. For local buckling of
the panel skin, the previously (and still) available
PANDA2 margins that represent the same phenomenon
as "localbuck(VINSON)" read:

buck.(DONL) simp-support local buck....

buck.(SAND) simp-support local buck....

in which the string "DONL" means "Donnell theory"
and "SAND" means "Sanders theory".

For local buckling of various segments of the panel
module other than the panel skin, the previously (and
still) available PANDA2 margins that are analogous to
the "localbuck(VINSON)" margin read:

buckling margin for stringer Iseg.3

in the case of the web of a T, J, or Hat stiffened panel,
or

buckling margin for stringer Iseg.4

in the case of crown buckling in a Hat-stiffened panel.
PANDA2's original local buckling constraints and
Vinson's "localbuck(VINSON)" constraint are all still
retained in the PANDA2 analysis because the effect of
transverse shear deformation is handled differently in
the two theories: in the original PANDA2 formulation
the transverse shear deformation (t.s.d.) effect is applied
as a "knockdown" factor as described in Section 8.2,
pp495-496 in [14], whereas in Vinson's equations the
effect of transverse shear deformation appears as
quantities Vx and Vv in Eq.(3) of [5]. It is important that
designs generated by PANDA2 survive the most
conservative approximation of the buckling load factor
obtained from various theories.

With use of analysis type IQUICK = 0 in PANDA2
(discretized single module model, see Figs. 3 - 5 on
p.46 of [15]) the same local buckling phenomenon is
identified by the phrase,

Local buckling from discrete model....

The "localbuck(VINSON)" margin is computed with

the assumption that the module segment is flat and is
simply supported along all four edges. Vinson uses
certain coefficients in Eqs.(7) of [5] that depend on the
number of axial halfwaves which he calls n. (In
PANDA2 jargon this axial halfwavenumber is called
m). If one assumes that there is only one-half wave
across the width of the panel segment, then an explicit
value for number of axial halfwaves tn,

= (a/b)(C55/C44)
1/4

(1)

results from minimization of the buckling load factor
with respect to the number of axial halfwaves in the
buckling mode. In Eq.(l) The quantity a is the axial
length of the panel module segment (length between
adjacent rings if the module represents a stringer), b is
the "hoop" width of the panel module segment (for
examples: stringer spacing, or width (height) of a
stiffener web between the panel skin and outstanding
flange, or width of the base or the crown of a hat), C55

is the "hoop" (y or s) bending stiffness of the sandwich
(D22 in the usual laminated composite plate
nomenclature), and C44 is the axial (x) bending
stiffness of the sandwich (D n in the usual
nomenclature).

Strictly speaking the "localbuck(VINSON)" margin is
valid only for uniaxial compression. However, in
PANDA2 the application of Vinson's Eq.(2) in [5] is
broadened to handle combined axial compression and
in-plane shear in a panel skin because the
"localbuck(VINSON)" buckling load factor (for the
panel skin only) is "knocked down" by the same factor,
FKNOCK(2), that accounts for in-plane shear and
anisotropy in the computation of the local buckling
margin obtained from the discretized single panel
module modeh "Local buckling from discrete model".

Face Wrinkling

There are three margins for face wrinkling computed in
PANDA2,

wrinkling; strng Isegl....

wrinkling (VINSON);strng Isegl....

wrinkling ( HOFF );strng Isegl....

The first, "wrinkling strng", is computed from Eq.(57)
of [21] (knocked down as described above to account
for t.s.d.), with a term added to a33 in Eq.(55f) of [21]
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to account for the effect of the elastic foundation
represented by the sandwich core [see Eq.(37) in the
"BUCPAN2" entry in the section,
IMPLEMENTATION...], which is treated as a Winkler
elastic foundation with stiffness EFOUND (e.g. lb/in3):

EFOUND = Keff =
1

(2)

in which the elastic foundation modulus of the
sandwich core, Kcore, is assumed by PANDA2 to be

(3)

where E'^re is the effective elastic modulus of the

sandwich core for displacements normal to the face
sheets and tcore is the thickness of the sandwich core.

The "wrinkling strng" margin is valid for arbitrary

combinations of in-plane face sheet loads: N^ ,

fjf
ace

**

The second face wrinkling margin, "wrinkling
(VINSON)", is computed from Eq.(15) in Vinson's
paper [5] or Eq.(60) in Vinson's paper [6] (same
right-hand-sides in both Vinson equations). In
PANDA2 the equation is written in terms of face sheet

resultants (e.g. Nf
°") and coefficients C. of the 6 x 6

integrated constitutive law for each face sheet, which
are available in SUBROUTINE BUCPAN, rather than
in terms of stress and moduli, as is the case in Vinson's
papers [5] and [6]. That is, in PANDA2 the critical face
sheet resultants are given by:

_ jj(face,crit) _ \j(face,crit) _
Wy '*xy

(4)l / 2 1/2

s

in which C{"ce and C^ce are the axial and hoop
integrated stiffness coefficients for a face sheet, tcore

the thickness of the sandwich core, and tface is the

thickness of a face sheet.

The third face wrinkling margin, "wrinkling ( HOFF )",
is computed from a modified form of Eq.(lO), p 43 of
Plantema's book [9]:

*r(face,crit) _ Q
l\x -V-

N(face,crit) Q
IV — V-

_ ^r(fact.crit)

For combined in-plane loads, Nf
°", N?

ce
, A^e',the

face wrinkling load factor (Eigenvalue) in PANDA2
corresponding to "wrinkling (VINSON)" is computed
from

Eigenvalue = \l[(Nf™ I N(/ace'crit)}2

(8)

+(N
fa

" / N
(fa

"'
crit)

}
2
 + (N

face
 I N(/ace'cr"))2]1/2

\y y / \ *y *y i

N; is the largest negative axial resultant in the face

sheet of the current module segment, Ny is the

largest negative hoop resultant in the face sheet of the

current module segment, and N^°
e is the largest

absolute value of N^" in the segment. (See Table 14

for an example in which the face sheet resultants vary
across the width of the panel module segment).

Face Sheet Dimpling

The face sheet dimpling load factor is governed by
buckling of a simply-supported flat, square plate in
which the hexagonal cell boundary is INSCRIBED. The
length of one side of the square flat plate is 2*s, in
which "s" is the width of one side of the regular
hexagon of the honeycomb core. Equation [57] of [21],
with subsequent "knockdown" to account for t.s.d., is
used to compute the buckling load factor. Since the 2*s
x 2*s simply supported square plate is larger than the
actual hexagonal plate that dimples, This procedure
should yield a conservative estimate for dimpling,
provided that the local transverse shear deformation in
the face sheet is properly accounted for. PANDA2's
dimpling margins are valid for any combination,

•y ' "xy

composite, anisotropic face sheets.

Core Shear Crimping

Core shear crimping is computed from Vinson's
Eq.(12) in [5] which, for axial compression, can be
expressed in the form:

\r(total,crit) s-icore*/V —- f -r f
"x '-'13 'core

and for hoop compression or in-plane shear can be
expressed in the analogous forms:

(9)

.,_,

\j(total,crit) __

\r(total,crit) _ s l /2

(10)

(11)
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in which the subscript "total" denotes the sum of the
corresponding resultants in the two facesheets. The

other variables, G,c3°
re , G^

n
 , and tcore , represent the

x-z and y-z transverse shear moduli and the core
thickness, respectively. For combined loads an equation
analogous to Eq.(8) is used.

New Configuration Constraints For Hexagonal
Honeycomb Sandwich Core

For each panel module segment that is of hexagonal
honeycomb core sandwich wall construction, two new
constraint conditions of the following type have been
added:

Face 1 wavelength/celldiam;STR;Iseg= 1 ...

Face2 wavelength/celldiam;STR;Iseg=l...

For each face sheet, the ratio

(face sheet wrinkling halfwavelength)/(1.732*s)

must be greater than or equal to 2.0 if the PANDA2
user indicates in "BEGIN" that he/she wants these
constraints to be activated. In the expression above, the
quantity "s" is the width of one side of the regular
hexagonal honeycomb cell and 1.732*s is the flat-to-
flat diameter of the hexagonal honeycomb cell.
(1.732*s is called "cell size" in Hexcel Corporation's
literature [11-13]). According to Plantema [9], the axial
halfwavelength of the face wrinkles in an axially
compressed sandwich plate is given by (face sheet
wrinkling halfwavelength), L:

L = 1. (12)

in which C^" is the axial bending stiffness of the face
sheet (Dl 1 in the usual composite material

nomenclature), Gc°™ is the effective x-z transverse

shear modulus of the sandwich core, and E
c
°

re is the
effective modulus of the sandwich core for stretching of
the core normal to the facesheet (z-direction).

The configuration constraint,

L/(1.732s)>2.0 (13)

in which L is the halfwavelength of the face sheet
wrinkling mode of failure, was introduced into
PANDA2 in order to force the honeycomb cell size to

be small enough so that Plantema's equations for the
effect of initial face sheet waviness, to be discussed in
the next subsection, become valid for honeycomb core
sandwich panels. If constraints of the type (13) are
imposed, then in the analysis of the effect of initial face
sheet waviness (an effect that is significant if the
characteristic wavelength of this initial waviness is the
same as that of the face wrinkling mode of instability,
which is the assumption used in PANDA2) the
honeycomb core can be "smeared out", that is, treated
as a homogeneous continuum in the computation of
certain "sandwich-related" stress constraints to be
discussed later in the subsection entitled "Additional
New Sandwich-Related Stress Constraints".

Often imposition of the configuration constraint (13)
does not significantly increase the optimum weight of a
panel because the honeycomb cell wall thickness
decreases in proportion to the honeycomb cell diameter.
Also, small honeycomb cells are generally better than
large cells because there are more surfaces for the
facesheet-core adhesive to stick to, increasing the
facesheet-core interface stress required to pull the
facesheet from the core.

Effect Of Initial Face Sheet Waviness

For normal (z-direction) stress and x-z and y-z
transverse shear stress at the facesheet-core interface,
Plantema (p 43, Eqs.(3) in [9]) gives the following
equations as valid for a semi-infinite core:

°A=-

T,,, =,

T.,., =:

e
E

c
z
ore

)
1/2

(14)

(15)

(16)

in which W0 represents the amplitude of the initial face

sheet waviness and L, the halfwavelength of the face
wrinkling mode, is given above in Eq. (12). Plantema
[9] writes that typical sandwich panels of good quality
have W0 / L = 0.001. In Eqs (14,15) /I, represents the

load factor for face sheet wrinkling with all facesheet

resultants, N**, JV/a",and N%", present. In

Eq.(16) A^ represents the load factor for face sheet
wrinkling with only the facesheet "hoop" resultant,

A^f", present. The factors, [1/(A,. - l), i=l,2], result

from amplification of the initial face sheet waviness as
the sandwich face sheets are subjected to destabilizing
loads.
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The stresses, <Tzl, T^p and T j play a significant role

in the stress constraints to be discussed later in the
subsection entitled "Additional New Sandwich-Related
Stress Constraints".

Effect Of Web Root And Tip Bending

If the IQUICK=0 model option (discretized single
skin-stringer panel module model [14]) is used in the
PANDA2 processors, MAINSETUP and PANDAOPT,
and if a stringer-stiffened sandwich panel has an initial
imperfection in the form of its local buckling mode,
significant local face sheet pull-off stresses can develop
in the top face sheet of the stringer base due to growth
of the initial buckling modal imperfection as the panel
is loaded. See, for example, the local buckling mode of
the tee-stiffened panel shown in Fig. 4(b) on p. 46 of
[15]. There can be significant bending in the imperfect
web at its root where it intersects the top face sheet of
the stringer base. (This web root bending is what gives
rise to stringer popoff, as displayed in Figs. 5 and 6 on
p 477 of [14]). A concentrated line moment,

, web

'« (17)

is therefore applied to the top face sheet of the stringer
base. In Eq.(17) S is the width-wise coordinate in the
web, identified in Fig. 9 on p 492 of [14].

If the stringer base is of sandwich construction, the line
moment M0 gives rise to a normal displacement
distribution w(y) in the face sheet of the stringer base
adjacent to the stringer web. This w(y) is
antisymmetric with respect to the line of intersection of
the stringer web and the stringer base. This face sheet is
supported by an elastic foundation with stiffness K.
Hetenyi in his article on beams on elastic foundations
[10] gives for the normal stress at the beam facesheet-
foundation interface:

in which

'sin(Ay) (18)

(19)

Note that Hetenyi's formulas for a beam on an elastic
foundation with a concentrated moment can be applied
directly to the problem of a face sheet on an elastic
foundation with a uniform applied line moment. Where
Hetenyi uses El for the bending stiffness of the

facesheet of the beam, we can use O^ for the "hoop"

bending stiffness of the top face sheet of the stringer
base.

The maximum normal stress, (Tz2, occurs at a distance

y = 7T/(4A) from the line of intersection of the web

root with with the top facesheet of the stringer base.
The quantity <Tz2 in Eq.(18), with substitution of

y = K /(4A) , must be added to CTzl generated from

amplification of the the initial face sheet waviness,
Eq.(14). These normal stresses contribute to the total
normal stress tending to crush the core or tending to
cause normal tensile failure in the core or tending to
pull the facesheet from the core.

An analogous line moment occurs at the tip of a stringer
web where it intersects the outstanding flange of a
TEE-shaped stringer.

The formulas above are valid for a semi-infinite elastic
foundation. PANDA2 accounts for the finiteness of the
depth of the elastic foundation in the case of a sandwich

wall by "knocking down" the sum, <Tzl plus <Tz2 by a

factor that depends on the ratio (n I A) / tcore , in which

tcore is the thickness of the sandwich core. If the ratio,

(ill tyl tcore, is less than unity the "knockdown"

factor is unity; if the ratio, (n I &)/tcore, is greater than

3.0 the "knockdown" factor is zero; and the
"knockdown" factor is assumed to vary linearly
between these two limits.

What if the stringer web is a rather thick sandwich
wall? Then, rather than a single applied line moment
Ma, PANDA2 assumes that there are equal and

opposite line loads /> = N™
bfa

"
1 and

P2 = N^Wo"2
 > applied to the top face sheet of the

stringer base where the two local web face sheet

resultants, N™bfacel and N™bfa"2 , occur.

Pl = -P2 = p = ± Nf*«*1 because there is zero net

total hoop load N'°ta we in the stringer web. Hetenyi

[10] gives for the normal stress at the beam- foundation
interface when the beam is subjected to a concentrated
load:

crz2 =Kw = 0.5PAe"cos(Ay) + sin(Ay) (20)

in which A is given above by Eq. (19). Rather than
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compute the value of y for which the maximum
absolute value of <7z2 occurs, in this case PANDA2
simply assumes the worst: that the two equal and
opposite line loads, P; and P2, applied by the two web
face sheets to the top facesheet of the stringer base are
far enough apart so that the maximum tensile or
compressive normal stress, <Tz2, can with reasonable
accuracy be given by

<7z2 = 0.5PA (21)

In order to generate conservative results, PANDA2 uses
the following value for the line load P:

P = (22)

in which the superscripts "web face 1" and "web face
2" denote the maximum values anywhere in the stringer
web face sheets rather than at the web face sheet roots
only. This strategy also serves to smooth the
optimization somewhat because very small changes in
the dimensions of the stringer segments can sometimes
lead to dramatic changes in the local buckling mode
shape. An example of this behavior is displayed in Fig.
13 on p. 539 of [28]. The load factor for local buckling
and the shape of the local buckling mode in the stringer
web are the most significant determinants of (7z2 .

Additional New Sandwich-related Stress Constraints

Additional new sandwich-related stress constraints are
also computed in SUBROUTINE BUCPAN of
PANDA2. The new margins corresponding to these five
additional "stress" constraints are identified in the
PANDA2 output as listed in Table 2.

The "Iseg" number and the "Mat!" number can be
different from those listed in Table 2, of course, and
"STR", which stands for "stringer", can just as well be
"RNG", which stands for "ring"; and "MIDLENGTH",
which corresponds to load Subcase 1, can just as well
be "AT RINGS" or "PANEL END", which correspond
to load Subcase 2 [17].

Sandwich core transverse shear stress constraints:

L-dir. sandwich core shear...

W-dir. sandwich core shear...

"L-dir" and "W-dir" are Hexcel Corporation jargon
[11-13] denoting the major and minor sandwich core

transverse shear stiffnesses, denoted in PANDA2 Gcxz
and Gcyz, respectively. In PANDA2 "L-dir" always
coincides with the x-z transverse shearing plane and
"W-dir" always coincides with the y-z or s-z transverse
shearing planes of each module segment, in which the
coordinate "y" or "s" is in the plane of the panel
module segment and normal to the x (axial) direction,
as displayed in Fig. 9 on p. 492 of [14].

In order to compute the new sandwich core transverse
shear stress constraints, transverse shear resultants, Qx

and <2V (e-8- lb/in), must first be obtained at every

nodal point in the panel skin-stringer discretized single
module. These transverse shear resultants, Qx and Qy,

are now computed in SUBROUTINE STRMID of the
KOITER library in PANDA2 [15]. Qx and Qy are

computed from the following equations for each
discretized module segment:

(24)

in which C^, C45, C^, C55, C56, C66 are the integrated

elastic constants for the module sandwich segment
(elements of the 3x3 D matrix in the usual
nomenclature for laminated composite walls) and w is
the normal displacement field obtained from the
KOITER branch of PANDA2 as described in [15]. The
"triple derivatives", W xxx, w ,, etc.,were not

previously computed anywhere in PANDA2. Now the
W^, W^y, W , W^ correponding to the local

buckling mode W(Note: uppercase W\) used in the
KOITER branch are computed in SUBROUTINE
MODE (MODE library) by backward differencing of
W^. and W . The quantity W (cap w) denotes
"normal local buckling modal displacement". The
relation between w (lower case) and W (cap) is

= fW (25)

in which/is the amplitude quantity obtained by
solution of the nonlinear equations for the four
unknowns,/ "a", M, N, in the KOITER branch of
PANDA2 [15]. <f represents the amplitude of the
postbuckling normal displacement field, "a" represents
a postbuckling modal flattening parameter, "M"
represents the slope of the postbuckling nodal lines, and

2170

American Institute of Aeronautics and Astronautics



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

"N" is an axial wavelength parameter). Details about
how the four unknowns,/, "a", M, and N, are
determined in the KOITER branch are given in [15].
This postbuckling section in PANDA2 was very
difficult to develop. It has been adjusted over a period
of many years to increase its reliability.

PANDA2 computes (in SUBROUTINE STRMID) the
maximum absolute values of the transverse shear stress
components, Qx 11 and Qy/t, where t is the total wall

thickness of the module sandwich segment, for each
skin-stringer module segment which has sandwich wall
construction, then compares these two components of
transverse shear stress with two user-provided
allowable values for each sandwich core material used
in the panel, as follows:

(sandwich core x-transverse shear stress constraint) =

(26)

(sandwich core y-transverse shear stress constraint) =

in which Tal and T t are obtained from the analysis

that accounts for initial face sheet waviness, Eqs.
(15,16).

rm. —allowable , ...allowable ,,• , r
T*16 T

xzcore
 and T

yxore Me obtained from
user-provided "look-up" tables of values of core shear
strength:

allowable ,
Xzcore

 vs core density

and

vs core density

and

(28)

(29)

"knockdown factor for tau-allowable(core) vs core
thickness" (30)

which originate in some published document such as
Hexcel Corporation's [13]. An example of these
user-provided "look-up" tables appears in Table 271.3
of ITEM 271 of [29].

Because the KOITER branch in PANDA2 does not
handle transverse shear deformation effects in a

rigorous manner but via "knockdown" factors for
effective bending stiffnesses of panel skin and stringer
web(s) based on Timonshenko beam factors computed
as described in Section 8.2 of [14] and via a "knockup"
factor for the amplitude/based on different values
obtained for the local buckling load factor computed in
the KOITER branch vs that computed from BOSOR4-
type theory (See panda2.news ITEM 298 [29]), the
values of the maximum transverse shear stresses, Qx It

and Qy/t, obtained in the KOITER branch may be

unconservative. Therefore, alternative values of Qx It

m&Qylt are computed in SUBROUTINE STRCON

as described in panda2.news ITEM 294 [29]. PANDA2
uses the maxima of the values of Qx 11 and Q It as

computed in SUBROUTINE STRMID and as
computed in SUBROUTINE STRCON.

Sandwich core crushing/tensile failure:

Core crushing margin....

sandwichcore tension margin....

Core crushing or tensile failure can occur from the
combination of sandwich core normal stresses
generated from the following phenomena:

1. Initial face sheet waviness: inward or outward initial
face sheet waviness is amplified by the applied loading

and tends to crush or pull apart the core locally [<Tzl in
Eq. (14)].

2. Bending at the root and tip of a stringer web in a
panel with a finite local buckling modal initial
imperfection: amplification of the initial local buckling
modal imperfection may be associated with significant
concentrated line loads where the stringer web
intersects other parts of the structure that may have
sandwich wall construction. These line loads give rise
to local normal stresses at the facesheet core interface
[(7z2inEq.(18)orEq.(21)].

3. Applied normal pressure to the panel skin: this
pressure must be added to the other normal stress
components tending to crush the core.

4. Deformation-induced core crushing or normal
tension: Changes in curvature of initially flat panel
segments always tend to crush the core. In the case of
imperfect sandwich cylindrical panels and shells,
curvature changes that increase the local hoop radius of
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curvature give rise to tension in the core normal to the
face sheets.

The contributions of Items 1 and 2 to core
crushing/tensile failure have already been discussed.
Item 3 requires no discussion. Next, we will address the
question of deformation-induced core crushing/tensile
failure.

Part of the core crushing/tensile pressure is induced by
the development of changes in axial and hoop curvature
as an imperfect, thermally and mechanically loaded
panel deforms. The deformation-induced core crushing
or tensile pressure is assumed in PANDA2 to be given
by

in which N^
ace is the axial resultant in the top face

sheet caused by pure bending of the sandwich module
segment about its neutral plane for axial bending; R, is
the change in axial radius of curvature due to the pure
bending (e.g. W(Xpt = 1/R, in which w is the normal

displacement resulting from pure bending)); N^' is

the hoop resultant in the top face sheet caused by pure
bending of the sandwich module segment about its
neutral plane for hoop bending; and R2 is the change in
hoop radius of curvature due to the pure bending (e.g.
W = 1/R2). For orthotropic face sheets with no "B"

terms in the 6x6 integrated constitutive matrix, N^'

and Ny can be expressed in terms of the two normal

strain components, £, and £2
ace, at the top face

sheet generated by pure axial and hoop bending, as:

fjface _ (-,face-face , ^face-face ,-_.
x '—' 11 1 12 2 \3~)

fjface _ ,-<face-face , si face „ face
• v — 12 1 22 2

and the strain components, £, and £2, for pure
bending can be written in the form:

e*" =[v.5(t-tface)-C(r
l
IC(r

l
\IR, (33)

in which t is the total thickness of the sandwich; tface is

the thickness of the top face sheet; and €'?"" are

elements of the integrated constitutive matrix for the

entire sandwich wall. The ratio -C'™' I C,'f'

represents the eccentricity of the neutral plane for axial
(x) bending from the middle surface of the sandwich

wall; -Cy "' / C22
al represents the same for "hoop" (y

or "s") bending.

Equations (33) can be inserted into Eqs.(32), and the
result can be inserted into Eq.(31) to yield the
deformation-induced crushing pressure pcrush in terms
of the axial and hoop curvature changes, 1/R, and 1/R

2 (and ptensne in the case of initially curved sandwich
panels with locally reduced curvature 1/R2).

In PANDA2 the maximum deformation-induced core
crushing (tensile) pressure in each segment of the
discretized skin-stringer single module is computed in
SUBROUTINE GETEPS, which is called from
SUBROUTINE STRTHK. In SUBROUTINE GETEPS
the curvature changes, 1/R, and 1/R 2, are known.
These curvature changes are associated with the local
deformations normal to the module segment surface
computed in the KOITER branch of PANDA2 [15] plus
the local (prismatic) deformation that arises when a
stringer-stiffened plate under normal pressure locally
"wraps around" the line of intersection of the stringer
web with the panel skin in the prebuckling phase (Figs.
56-58 in [14]).

As is true in the case of transverse shear stress
components, Qx It and Q 11, discussed above, the

deformation-induced sandwich core crushing/ tensile
pressure computed in SUBROUTINE GETEPS may be
unconservative because this crushing/tensile pressure is
derived from a displacement field determined from the
KOITER branch in PANDA2, in which the effect of
transverse shear deformation is accounted for in an
approximate, possibly unconservative, manner.
Therefore, an alternative value of the deformation-
induced crushing/tensile pressure is also computed in
SUBROUTINE STRCON as described in panda2.news
ITEM 294 [29]. PANDA2 uses the maximum of the
values of deformation induced crushing/tensile pressure
calculated from the two alternative methods, as
demonstrated in Parts 5a and 5b of Table 271.17 of
ITEM 271 of [29].

Face Sheet Pull-Off

The constraints for face sheet pull-off are generated as
described in the previous section. If PANDA2 perceives
that the facesheet-core adhesive fails before the core, it
identifies the corresponding normal tensile stress failure
as "face sheet pull-off margin...." rather than as
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"sandwichcore tension margin....".

IMPLEMENTATION OF "SANDWICH"
CAPABILITY IN PANDA2

PANDA2 permits analyses of sandwich walls with
dissimilar face sheets and sandwich walls in which the
in-plane loading in each face sheet may be different.
Different loading in each of the two face sheets occurs
in imperfect panels, thermally loaded panels with a
temperature gradient through the sandwich wall, panels
with applied external bending moments MK and My,
panels with applied normal pressure, and panels that are
in their locally postbuckled states.

In each module segment (see Figs. l(a,b) for definition
of a "module segment") there may be only one "core":
the user cannot "stack" sandwich walls. If there is a
"core" there cannot also be an "external" elastic
foundation. By "external" is meant a core-like
(relatively soft) material as the extreme layer of a
segment. If there is an "external" elastic foundation
there cannot also be a sandwich "core". There can only
be a single "external" elastic foundation; the user may
not embed a segment wall between two elastic
foundations.

The user provides input data for each segment laminate
as previously. The "external" elastic foundation or the
sandwich "core" layer in each segment is provided by
the user simply as a layer of the wall, just like any other
layer in that wall. Then the user provides properties for
the various materials in the structure just as previously.
Up to this point the input data required for the BEGIN
processor are the same as previously.

After the user has provided all the material properties,
PANDA2 automatically searches through the layers of
each module segment in order to identify possible
candidates as sandwich cores or "external" elastic
foundations. This search is performed in
SUBROUTINE PANEL of the BEGIN library. The
criterion for candidacy of a module segment layer to be
treated as an elastic foundation or as a sandwich core
material appears in the following code fragment in the
"BEGIN" processor:

ENORM =SQRT(E1L(J)**2 + E2L(J)**2)

IF (ENORM/EMAX.LT.0.001

.AND.TL(J).GT.0.5*TWALL) THEN

(ask user for elastic foundation
modulus or core properties)

ENDIF

in which J is the Jth layer in a module segment; E1L
and E2L are the lamina elastic moduli for deformation
parallel and normal to the Jth lamina fibers,
respectively; EMAX is the maximum value of ENORM
for the segment laminate; TL is the thickness of an
individual segment layer; and TWALL is the total
segment laminate thickness. If the user wants a certain
segment layer to be treated as an "external" elastic
foundation or as a sandwich core, then he/she must:

1. supply a thickness for that layer which is at least half
the thickness of the entire wall and

2. the square root of the sum of the squares of the
moduli for axial and hoop stretching of the core must be
smaller than 0.001 times EMAX, where EMAX is the
square root of the sum of the squares of the moduli of
the material of that layer which has the maximum value
of ENORM for any of the layers in that segment
laminate.

If the soft candidate material corresponds to an extreme
layer of a module segment (that is, this layer actually
represents an external elastic foundation), then the
previously user-provided thickness of that layer is
automatically reset to zero by PANDA2 so that in
further PANDA2 processing that ("fake") layer does
not contribute to the in-plane or bending stiffness of the
segment laminate. NOTE: the weight of the elastic
foundation is not included in PANDA2's computation
of panel weight.

In order to implement the "sandwich/elastic
foundation" capability into PANDA2, it was necessary
to modify the PANDA2 prompt file, PROMPT.DAT, as
listed in Table 271.1 of ITEM 271 of [29] and to
modify the PANDA2 source code libraries, ARRAYS,
BEGIN, BOSPAN, BUCKLE,... as described next.

ARRAYS

Introduce a new subroutine FOUNDA (taken from
BOSOR4) which computes the contribution of the
elastic foundation to the local finite element stiffness
matrix. SUBROUTINE STABIL was modified.
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BEGIN

Introduce new input data for sandwich core or external
elastic foundation as called for in the modified
PROMPT.DAT file (Table 271.1 of [29]). Reset
previously user-supplied thickness for any layer
representing an external elastic foundation to zero so
that that "fake" layer will not affect in-plane or bending
stiffness of the segment laminate. SUBROUTINE
PANEL was modified.

BOSPAN

Introduce the elastic foundation modulus K into the
BOSOR4 model of the panel generated via the
PANDA2 processor, PANEL. SUBROUTINE
SEGMNT was modified.

BUCKLE

Allow for a higher maximum allowable number of axial
halfwaves in the local buckling model based on the
discretized module. This is required because axially
compressed plates on elastic foundations typically
buckle into many, many axial halfwaves.
SUBROUTINE LOCAL was modified. Also, include in
SUBROUTINE CRIPPL (CRIPPL is called from
SUBROUTINE STFEIG and performs local buckling
of stiffener segments) the effect of an external elastic
foundation, EFOUND=/T. New quantities that govern
the buckling load factors for stiffener segments are
given for an "internal" stiffener segment by the
following expressions. (An "internal" segment is a
segment that is supported along both longitudinal edges
by other stiffener segments or by the panel skin):

The new expression for the critical number of axial
halfwaves m, in the tth locally buckled stiffener
segment is given by:

(34)

NOTE: mt in Eq.(34) (a wavenumber) is equal to the
value of what is called "m," in Eq.(69) of [21]
multiplied by i I It. The first term in the numerator on
the right-hand side of Eq. (71) in [21] becomes

(35)

In Eqs.(34-35) the quantity F is given by (ft / &,) ,

where bt is the width of the ith module segment. The
quantity i is the length between stiffeners. It was also
necessary to modify SUBROUTINE WEBBUK (see
panda2.news ITEM 121 [29]) to account for an elastic
foundation. The simple modification is:

C44M4 = +K
i
)/(C

i
44C'55)

1
'
2 (36)

This simple modification holds because the elastic
foundation modulus, Kt, called "EFOUND" in
SUBROUTINE WEBBUK, contributes a "w-type"

term to the strain energy analogous to the term C'44mi

that represents the strain energy for axial bending. (See
the similar kind of addition of EFOUND to the
coefficient a}3 in SUBROUTINE EIGREG).

Also, in the case of hat stiffeners and truss-core
sandwich panels, any elastic foundation that occurs as
the first layer under the hat or as the first layer in the
lower face sheet of a truss-core sandwich configuration
is handled as if the elastic foundation material (called
"FOAM" in the revised SUBROUTINE OBJECT) fills
the hat or, in the case of a truss-core panel, fills the
space between the lower and upper face sheets. The
contribution of this "FOAM" is included in the
computation of panel weight in SUBROUTINE
OBJECT.

In addition, because of the extreme sensitivity of the
sandwich core maximum transverse shear stress
constraints to the local buckling mode shape predicted
for the skin-stringer discretized module, it was
necessary to introduce some iterative refinement in
SUBROUTINE LOCAL, as described in panda2.news
ITEM 301 [29].

BUCPAN1

Compute buckling load factors corresponding to the
new "sandwich-related" constraints listed above in the
section entitled "SUMMARY OF NEW SANDWICH-
RELATED MARGINS". A list of the new code is
included in Table 271.2 of ITEM 271 of [29]. Most of
the modifications in PANDA2 required for

2174

American Institute of Aeronautics and Astronautics



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

implementation of the "sandwich" capability occur in strain energy in a manner analogous to that done in
SUBROUTINE BUCPAN.

BUCPAN2

Introduce the elastic foundation modulus term,
EFOUND^, into the coefficient a33 (see Eq. 55f, p.
553 of [21]). This term accounts for both the face
wrinkling phenomenon in a sandwich wall as well as
local buckling of the module segment with an
"external" elastic foundation. SUBROUTINE EIGREG
was modified as follows:

A33 = C22*2.*FCUR/R**2 +

2.*C24*MSUM*FCUR/R
+2.*C25*NSUM*FCUR/R +C44*(M14+M24)
+C55*(N14+N24)
+(2.*C45+4.*C66)*(N12*M12+M22*N22) +
PREB + 2.*EFOUND/C11SVE (37)

in which the FORTRAN variables, FCUR, MSUM,
NSUM, M14....PREB, etc., are defined in
SUBROUTINE EIGREG. NOTE: The elastic
foundation modulus, EFOUND, is divided by Cl 1SVE
because the coefficients of the integrated constitutive
law for the sandwich wall, [Cij, ij=l,6], are normalized
byCHSVE.

GETCIJ

Compute integrated 6x6 constitutive matrices,

C^ corresponding to the local segment laminates

that comprise face sheet 1 and face sheet 2 of each
skin-stringer module segment judged by PANDA2 to
be a sandwich wall. Compute face sheet laminate
thicknesses, tfacel, t , 2 Compute effective transverse

shear stiffnesses, Gjf', Gg
cel

, G,f2, Gg*, of the

two face sheets. Modifications were made to
SUBROUTINES GETCIJ and OUTCLJ.

KOITER

Introduce the elastic foundation contribution to the

ARRAYS and in BUCPAN2. The new terms associated
with the elastic foundation contribution might well
appear (for ease of implementation into PANDA2) in
association with Eqs. (3) and (4), pp. 50 and 51, of [15],
for the panel skin and the stringers, respectively. The
strain energy of the elastic (Winkler) foundation is
given by:

(38)

which, for the panel skin, will cause to be added a term
analogous to that in the first line of Eq.(45), p 62, [15],

in which the coefficent, 4N D^, is replaced by

0.25K.. For the stringer the new contribution is
analogous to the first term in Eq.(47), p. 62, [15], with

the coefficient, 4N
2
C'M, replaced by 0.25K.

SUBROUTINES EPSAVE, EIGKOI, GETBK,
ENERGY were modified.

Also, SUBROUTINE KOIT2 was modified as
described in panda2.news ITEM 298 [29] in order to
compensate for the lack of a rigorous theory in the
KOITER branch for the transverse shear deformation
effect.

SUBROUTINE STRMID was modified to compute
transverse shear forces, Qx and Q (e.g. Ib/in), at every

nodal point in the discretized single panel skin-stringer
module where the stresses are calculated. [See Eqs.
(23-25)]. The maximum transverse shear stresses in
each module segment, Qxm!ai and <2ymax, are also

computed. Later Qxiniai and <2ymax are usecl> al°ng
with the user-provided "look-up" tables for allowable
values, to generate constraint conditions for transverse
shear stress failure of sandwich cores. [See Eqs.(26) -
(30)].

MODE

It was necessary to modify SUBROUTINE MODE to

>xxx W ;compute the "triple" derivatives of W ( W>

Wyyx ; W T ) needed for computation of transverse

shear forcess, Qx and Q , and maximum transverse

shear stresses, Qxrsaailt and Qyma]i/t, corresponding

to the growth of buckling modal initial imperfections.
The Qxmai/t and Qymia It are required for building
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the constraint conditions involving the maximum
allowable x-z and y-z transverse shear stress
components in the sandwich core in each panel module
segment.

It was necessary to modify SUBROUTINE OUTPRS in
order to compute the "triple" derivatives, WXXXGL
and WYYYGL ("GL" for "global), which are required
for inclusion of the maximum x-z and y-z transverse
shear stress components in the sandwich core of an
unstiffened flat sandwich panel subjected to normal
pressure.

The absolute values of the transverse shear stress
components from growth of the buckling modal
imperfections are added to those from normal pressure
before the "L"-direction (x-z) and "W"-direction (y-z)
sandwich core transverse shear stress constraints are
calculated.

In addition, it was necessary to modify SUBROUTINE
MODE to compute buckling modal derivatives for the
"long-wavelength bending-torsion" mode, in order to
compute the "triple" derivative (W™,) required for
computation of sandwich core transverse shear stress, in
case the "long-wavelength bending-torsion" mode
generates values of QXXMAX/t, QYYMAX/t that are
greater in absolute value than the previously computed
Qxmm It and gyma* It. (See panda2.news ITEM 302

[29] for more
details).

PANCOM

Face wrinkling and dimpling mode shapes had to be
initialized and new constraint phrases for "localbuck.",
face wrinkling, face dimpling, and core shear crimping
had to be introduced. SUBROUTINES PANCOM and
RECORD were modified. New margins are recorded,
as listed above in the section entitled "SUMMARY OF
NEW SANDWICH-RELATED MARGINS" and in
Part 3 of Table 6, for example.

SETUPC

Previously, the properties of materials used in the panel
segment layers were assumed to be fixed. Because the

length "s" of one side of the hexagonal cell of the
honeycomb core and the thickness "tc" of the
honeycomb cell wall can now be decision variables, the

properties, G£", G£", pcore, Ecore derived from

these dimensions must now be recomputed every time
the design is changed. Also, the effective elastic
foundation modulus, EFOUND, of a sandwich core
now depends upon the thickness of the core as well as
on the dimensions "s" and "tc" of a honeycomb cell.
For these reasons, SUBROUTINE SETUPC of the
CONMAN library had to be extensively modified.
(SUBROUTINE SETUPC takes the current values of
the decision variables and design parameters and inserts
them into their proper places in labelled common
blocks).

STRAIN

The prebuckling in-plane resultants in the two face
sheets of each module segment are computed from the
already-computed stresses in the particular lamina of
which the face sheets are composed. These face sheet

resultants, N?", Nf", N%", are called (FNXF1,

FNXF2), (FNYF1, FNYF2), (FNXYF1, FNXYF2),
respectively, in which "Fl" and "F2" signify "face
sheet 1" and "face sheet 2", respectively. A rather gross
approximation is used in this part of PANDA2: Within
any one face sheet of a given module segment, the

minimum N "" and minimum N;ace (maximum
•* /

compressive values) for that face sheet and segment are

combined with the maximum absolute value of N™'

in that face sheet and segment. This extreme set

[ N*™, Nf", N%
ce

 ] (from the point of view of

stability) is assumed to be uniform over the entire
segment. See Table 14 and associated discussion for an
example. This "worst" approximation will always be
conservative and may perhaps be too conservative in
cases for which there is significant local bending caused
by post-local buckling deformations or prebuckling
bending in the neighborhoods of stiffeners, such as the
"hungry horse" phenomenon described on p. 495 of
[19]. PANDA2 will handle cases in which the

[ N*", N'ace, N*ce ] are different in each of the two
A / -V

face sheets of a segment.

SUBROUTINES STRTHK and GETEPS in the
STRAIN library were also modified to compute the
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deformation-induced sandwich core crushing pressure.
(See discussion above associated with Eqs.(31) - (33)).

SUBROUTINE STRCON was modified to compute x-z
and y-z transverse shear deformation stresses
corresponding to deformations: w.^, w , w ,

w , which are now calculated for imperfect panels in

SUBROUTINE CURIMP of the STRUCT library.

STOGET

Introduce new labelled common blocks as listed and
defined in Table 271.2 of ITEM 271 of [29].

STRUCT

Certain quantities are initialized and new output is
provided for the in-plane resultant set ( N x , N, N ) in

each face sheet of each module segment judged by
PANDA2 to be of sandwich wall construction.
SUBROUTINE CURIMP, which predicts curvature
changes and twist, W a, w ,w , in loaded imperfect

panels, was modified to calculate also the deformations,
w.*a. *U" w

,yy*< VVWX, required for later

computation of transverse shear forces, Qa and Q 2, in
SUBROUTINE STRCON of the STRAIN library. In
SUBROUTINE SKIN the axisymmetric prebuckling
transverse shear deformation, w xac, is computed

corresponding to the "hungry horse" [19] inter-ring
deformations.

The sandwich plate is unstiffened. The IQUICK = 0
(discretized) analysis [14,15] is used to obtain the
results. In all of the examples the panel is subjected to
uniform axial compression, A^ = -5000 Ib/in. First a
perfect sandwich panel is optimized; then a sandwich
panel with only initial face sheet waviness is optimized;
then a sandwich panel with both initial face sheet
waviness and a buckling modal initial imperfection is
optimized; finally an imperfect (face sheet waviness
plus initial buckling modal imperfection) sandwich
panel with a uniform through-thickness temperature
gradient in addition to the uniform axial compression is
optimized.

Input Data

Table 271.3 of ITEM 271 in [29] lists the input data
file, vinson.BEG, for the PANDA2 "BEGIN"
processor. This input corresponds to an unstiffened,
simply-supported, sandwich plate 100 inches long and
20 inches wide, with titanium face sheets and aluminum
honeycomb core. The following material properties
were used:

titanium face sheets:

i; V=0.3; « =9.

p= 0.16 Ib/in3, 0%
owabIe

=12Qtei

aluminum honeycomb core material:

£=10.0*10* psi; V=0.3; « =0;

_ r» i/\ i,./. 3 .-.allowable AS\I
p =0.10 Ib/in , (7 ~ = 40 ksi

Facesheet pull-off allowable= 40 Ib/in.

The decision variables in the optimization are as
follows:

EXAMPLE: UNIFORMLY AXIALLY
COMPRESSED, SIMPLY-SUPPORTED SANDWICH

PLATE WITH TITANIUM FACESHEETS AND
ALUMINUM HONEYCOMB CORE

Summary

T(l) = thickness of top face sheet

T(2) = thickness of honeycomb core

T(3) = thickness of bottom face sheet (Can be different
fromT(l)

s(2) = length of one side of regular hexagonal
honeycomb core cell

Tables 3-18 and Figs. 2-12 pertain to this section. The
case is named "vinson" in honor of Professor Jack
Vinson of the Department of Mechanical and
Aerospace Engineering at the University of Delaware.
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The decision variables "s" and "tc" have subscript "2"
rather than "1" because these variables are associated
with a material type and the the sandwich core is
designated as "material type 2" in Table 271.3 of ITEM
271 of [29].

The lower bound of decision variable no. 4:

s(2): Length of one side of the hexagon

is set equal to 0.03608 in. because this corresponds to
the smallest diameter honeycomb cell (1.732*s = 1/16th
in.) fabricated in aluminum by the Hexcel Corporation,
according to Table 13 in [13]. The lower bound of
decision variable no. 5:

tc(2 ): Thickness of honeycomb cell wall

is likewise set equal to 0.0007 in.

In the starting design, the thickness of each face sheet is
0.03 inch and the thickness of the core is 0.5 inch. The
initial values for the dimensions of a honeycomb cell
are s = 0.5 inch and tc = 0.002 inch. Material No. 1
represents the material of the face sheets and Material
No. 2 represents the material of the sandwich core.
Table 271.3 of ITEM 271 of [29] contains a table of
core crushing and L-direction and W-direction
transverse shear stress allowables as functions of core
density from [13], as well as other "look-up" tables for
sandwich-related phenomena. These tables are not
repeated here in order to save space.

The "INPUT DATA" section of ITEM 271 of [29]
provides detail about how the PANDA2 user should
provide initial values corresponding to the material type
for the sandwich core, how PANDA2 uses these data to
elicit further responses from the user concerning other
properties of the sandwich core, and how PANDA2
converts the "sandwich-related" input data to data
presented to the user in the output files. This
information is deleted here to save space.

Results For Perfect Panel

Note that initially the honeycomb core configuration
constraint, Eq.(13), is turned OFF and the initial face
sheet waviness ratio W0 / L is set equal to zero. This is

NOT recommended procedure for designing sandwich
panels, but is done here for demonstration purposes.
These factors have a major influence on the size of the
cells of the optimized honeycomb core and therefore on
the values of the "dimpling" and "wrinkling" margins.

In order to obtain an optimum design with PANDA2,
the PANDA2 mainprocessor, invoked via the command
"PANDAOPT", is first executed five times in
succession in this particular case. This series of five
executions generates a file called vinson.OPP, the end
portion of which appears as Parts 1 and 2 of Table 3.

Part 3 of Table 3 lists the design margins that
correspond to the optimum design listed in PART 2.
Margins for buckling, wrinkling, dimpling, and core
shear crimping are computed from equations of the
type:

Buckling margin = (buckling load factor)/(f.s.) - 1.0
(39)

in which "f.s." denotes "factor of safety". Margins for
stress are computed from equations of the type:

Stress margin = (allowablestress)/(stress*f.s.) - 1.0 (40)

Critical margins, that is, margins near zero, affect the
evolution of the design in the neighborhood of the
optimum. Note that at the optimum design the margin
associated with sandwich core shear crimping (margin
no. 9 in this case) is not critical.

Because the panel is perfect and there is no prebuckling
bending, the top and bottom face sheets behave
identically; therefore the wrinkling and dimpling
margins for face sheet 1 are essentially the same as
those for face sheet 2.

Margins 7 and 11 are obtained from the theory of [21]
with the core represented as an elastic foundation as
described in the discussion associated with Eq.(37), and
with the effect of local transverse shear deformation in
each facesheet included as described in Section 8.2 of
[14]. Margins 8 and 12 are obtained from the Hoff-
Mautner theory [8] as presented by Plantema [Eq.(5-
7)]. No margins are listed in this case corresponding to
the Vinson theory for face wrinkling because PANDA2
only chooses the most critical of the margins from
EITHER the Hoff-Mautner [8] or the Vinson [5]
theories.

Margins 10 and 13 are obtained from the theory of [21]
for a simply supported square facesheet (no elastic
foundation) with sides of length 2*s and with the local
facesheet transverse shear deformation effect included
as described in Section 8.2 of [14].

The design is deemed FEASIBLE even if there are
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some negative margins, provided that the absolute
values of each negative margin is less than 0.01. If all
negative margins are between -0.01 and -0.05, then the
design is deemed ALMOST FEASIBLE. Designs with
one or more negative margins less than -0.05 are
deemed NOT FEASIBLE.

Note that margins 1, 2, 5, 6, and 14 in this case
represent five predictions for the same phenomenon:
overall buckling of the unstiffened panel. These
margins are listed in Table 4. The three margins, 1, 2,
and 6, are termed "local buckling" in PANDA2 because
only the panel skin buckles. Phrases such as "overall
buckling" or "general buckling" are reserved for
buckling in which the lines of intersection of stiffener
webs with the panel skin deflect in the buckling mode.
Since there are no stiffeners in this example "local"
buckling and "general" buckling point to the same
phenomenon. The two margins, 1 and 2, are computed
from the theories presented in [14] and [15]. The two
margins, 5 and 14, are termed "general buckling"
because the entire panel buckles. These two margins are
computed with use of the theories presented in [21] and
[20] (Donnell theory and Sanders theory, respectively),
modified to account for transverse shear deformation as
described in Section 8.2 of [14].

Ideally the five margins listed in Table 4 should all
have the same value because they represent the same
phenomenon. There is a significant discrepancy
between the three margins, 1, 2, and 6, because the
effect of transverse shear deformations (t.s.d.) is
significant in this case and because the t.s.d. effect is
handled differently in each of the three theories
included in PANDA2 that lead to Margins 1, 2 and 6.
Margin No. 1 is computed from a theory in which the
transverse shear deformation effect is accounted for in
the computation of the "Local buckling from discrete
model" margin via a "knockdown" factor based on
Timoshenko beam theory adjusted for a multiaxial
stress field, as described in Sections 8.2 and 19.4 of
[14], which most likely leads to conservative designs
(see Fig. 25 in [14]). Margin No. 2 is computed from a
theory implemented in the KOITER branch of
PANDA2 in which the transverse shear deformation
effect is accounted for by knocking down the bending
stiffnesses by the Timoshenko factor. This is generally
an unconservative method when the "knockdown"
factor to compensate for transverse shear deformation
effects is signficantly less than unity. However, note
that the local deformations of imperfect panels with
local buckling modal imperfections are computed
including a strategy described in panda2.news ITEM

298 [29] which is intended to compensate for the lack
of a rigorous transverse shear deformation theory in the
KOITER branch of PANDA2. Margin No. 6 is
computed from Vinson's theory as set forth in Eqs(2-6)
of [5].

As will be seen from results to be presented later, the
discrepancy between the buckling load factors from the
various t.s.d. approximations diminishes for the more
realistic cases in which the honeycomb core cell
configuration constraint, Eq.(13), is active and there is
initial face sheet waviness.

The two stress margins, Margin No. 3 and Margin No.
4, are calculated in two different subroutines of
PANDA2, the first in SUBROUTINE STRTHK, which
computes stresses corresponding to deformations
obtained from the KOITER branch [15] of PANDA2,
and the second in SUBROUTINE STRCON, which
computes stresses from a much simplified theory in
which it is assumed that initial buckling modal
imperfections grow hyperbolically, as described in [19].

The results displayed in Figs. 2-12 for Design Iterations
0-20 show how the panel weight (the Objective) (Fig.
2), the Design Margins (Figs. 3-8), and the Design
Parameters (Figs. 9-12) evolve during design iterations
performed while the cell size constraint, Eq.(13), is
turned OFF, there is no initial face sheet waviness
(W01L = 0), and there is no initial buckling modal

imperfection (W(- = 0). The results plotted at Iteration

No. 20 correspond to those listed in Table 3.

The writer has found through exercise of PANDA2 for
sandwich panels that very often the optimum design is
not unique. Even in this very simple case of a perfect,
unstiffened, uniformly axially compressed sandwich
panel the optimum design is not unique. Different
combinations of honeycomb cell size and cell wall
thicknesses, "s" and "tc", affect the panel weight only
slightly but have a major effect on the "dimpling"
margins. Parts 4 - 7 in Table 3 demonstrate.

Following the initial optimization, the PANDA2
processor "CHANGE" was used to generate a new
starting design with smaller values for hexagonal cell
side width "s" and cell wall thickness "tc". The new
starting values for "s" and "tc" are listed in Part 4 of
Table 3. All other dimensions remain as listed in Part 2
of Table 3.

Part 5 of Table 271.9 in ITEM 271 of [29] lists the
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optimization cycles resulting from four successive
executions of PANDAOPT. Part 6 of Table 3 lists the
new optimum design and panel weight. Note that
although the panel weights from the two optimizations,
1.437E+01 in Part 2 and 1.440E+01 in Part 6, are the
same to three significant figures, the two corresponding
sets of "s" and "tc" are quite different:

After the first optimization (Part 2):

s(2)=2.361E-01, tc(2)=9.508E-04

After the second optimization (Part 6):

s(2)=1.757E-01, tc(2)=7.000E-04

All margins remain essentially the same after the
second optimization (Parts 3 and 7) except the two face
dimpling margins,

After the first optimization (Part 3):

10 -6.34E-04 dimpling of face 1

13 -6.34E-04 dimpling of face 2

After the second optimization (Part 7):

10 7.84E-01 dimpling efface 1

13 7.84E-01 dimpling efface 2

It is emphasized that for a design to be optimum all the
margins need not be critical.

Vinson computes "optimum" design dimensions, "he"
(core thickness), "d" (inscribed diameter of hexagonal
honeycomb cell), "tc" (thickness of cell wall), and "tf'
(thickness of face sheet) from Eqs.(34 - 37) in [5]. For
the panel with dimensions "a" x "b" - 100 x 20 in. and
with titanium face sheets and aluminum core the
"optimum" design from Vinson's Eqs.(34-37) is listed
in Part 1 of Table 5. Corresponding to Vinson's
"optimum" design PANDA2 obtains panel weight and
design margins as listed in Parts 2 and 3 of Table 5. The
word, optimum, is enclosed in quotation marks in this
section because Vinson's "optimum" weight is
considerably heavier than PANDA2's optimum:
PANDA2 optimum = 14.37 Ib; Vinson "optimum" =
20.75 Ib. At the Vinson "optimum" the core crimping
constraint is critical and the effective stress constraint is
not (PART 3 of Table 5). In contrast, at the PANDA2

optimum the opposite holds (Part 3 of Table 3).

Note that the following three margins computed from
Vinson's theory (Vinson's "optimum" design):

6 -4.08E-02 localbuck (VINSON)....

8a-5.06E-04 wrinkling (VINSON)....

9 -2.94E-03 corecrimp (VINSON)....

are critical and that the margin

10 2.07E-01 dimpling of face 1

is somewhat higher than that computed by Vinson's
Eq.(17). Vinson's Eq. (17) is not used in PANDA2
because it yields predictions for face sheet dimpling
that are inconsistant with the classical Timoshenko
equation for buckling of a square simply-supported
plate of width and length b:

Nf = 4;r2Er3/[l2(l-V2)fc2] (Timoshenko)(41)

For an isotropic material, Vinson's Eq.(17) is:

Ndimpung _ 2Et3 ̂  _ V2 ̂ 2 J (Vinson) (42)

For b = d, the Timoshenko formula predicts a
dimpling load more than 50 per cent higher than that
obtained from Vinson's formula. If we set b in the
Timoshenko formula equal to 2*s, where s is the length
of one side of the regular hexagonal honeycomb cell,
then we are assuming that the dimpling load factor is
governed by buckling of a simply-supported flat, square
plate in which the hexagonal cell boundary is
INSCRIBED. Since this 2*s x 2*s simply supported
square plate is larger than the actual hexagonal plate
that dimples, it seems that such a procedure should
yield a conservative estimate for dimpling, provided
that transverse shear deformation effects are accounted
for in a conservative manner.

Insertion of Vinson's "optimum" dimensions, 2*s =
2*0.40144 = b and face sheet thickness t = 0.031617
(PART 1 of Table 5) and elastic modulus E= 17.4 x
10**6 psi and Poisson ratio V = 0.3 into the

Timoshenko formula leads to N
c
"' = 3084 Ib/in. Since

the total applied axial compression, Nx = 5000 Ib/in, is
shared equally in this particular example by the two
equal face sheets, a dimpling margin of 3084/2500 - 1 =
0.233 is indicated for each face sheet if the effect of
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transverse shear deformation is neglected. Since the
width/thickness ratio of the titanium face sheet over the
dimple diameter in the Vinson "optimum" is about 25,
transverse shear deformation effects are not significant
for dimpling in this example.

The actual dimpling margin computed by PANDA2 is
0.207, as listed above and in Part 3 of Table 5.
Therefore, PANDA2's dimpling computations are
consistent with the Timoshenko formula for uniform
axial compression, with a slightly lower margin than
that just computed from the Timonshenko formula
because there is a very small but finite effect of
transverse shear deformation in the dimpling face sheet.

PANDA2's dimpling margins are valid for any
combination, Nx, N , N , of in-plane loading in

composite, anisotropic face sheets because Eq.(57) on
p. 553 of [21] is used for the computation.

If the same dimensions and properties are plugged into
Vinson's Eq.(17), a dimpling margin very close to zero
is obtained. This is to be expected, of course, because
the "optimum" dimensions listed in PART 1 of Table 5
were derived from Vinson's equations, (34-37 of [5]),
that require all four margins, localbuck (VINSON),
wrinkling (VINSON), corecrimp (VINSON), and
dimpling (VINSON), to be zero. Note that what Vinson
calls "Overall Instability" on p. 1691 of [5] is called by
PANDA2 "localbuck (VINSON)...".

Note that according to PANDA2, Vinson's "optimum"
design is not feasible, since several margins are
significantly negative, as follows:

5 -3.15E-01 buck.(DONL)....

8b-2.82E-01 wrinkling ( HOFF )....

12b-2.82E-01 wrinkling ( HOFF )....

18 -3.15E-01 buck.(SAND)....

Table 6 was generated after optimization with the
"switch" for enforcement of the honeycomb core
configuration constraint, Eq.(13), changed from "OFF*
to "ON". As is to be expected, the effect of this
constraint is to make the cell diameter, 1.732*s, and the
depth of the sandwich core, T(2), significantly smaller.
The optimum panel weight increases from 14.37 Ibs to
15.33 Ibs, about 6.7 per cent. In the case of a perfect
panel without any initial face sheet waviness this

increase in weight is unnecessary. However, once we
allow for initial face sheet waviness, then the
"(facewrinkle halfwavelength)/celldiam > 2" constraint
should always be turned on in order to ensure that the
Plantema and Hetenyi theories described above are
valid. That is, it is valid to represent the honeycomb
core as an elastic continuum when computing the
maximum facesheet-core interface normal and shear
stresses generated by amplification of the initial face
sheet waviness as load is applied to the panel.

Note that with the"(facewrinkle
halfwavelength)/celldiam > 2" constraint turned on, the
five margins that all represent overall buckling of this
unstiffened panel are in reasonably close agreement, as
demonstrated in Table 7. This is because the effect of
transverse shear deformation is much smaller: the
honeycomb core of the optimized panel is much stiffer
under transverse shearing loads because the
"(facewrinkle halfwavelength)/celldiam > 2" constraint
was turned on before optimization, thereby forcing the
cell size, 1.732*s, and the core depth, T(2), to become
significantly smaller in this example.

The results displayed in Figs. 2-12 for Design Iterations
21-44 show the evolution of the design and margins of
the perfect panel (W0 / L = 0, ,̂.̂ =0) with Eq.(13)

turned ON. One can see from Fig. 3 that forcing the
honeycomb cells to become smaller (see Fig. 11) results
in a decrease in the discrepancy among the five models
of overall panel buckling. The honeycomb core
becomes thinner and has a higher transverse shear
stiffness. Hence, transverse shear deformation effects
are less dramatic than for the design at Iteration No. 20.
Figures 7 and 8 show the large effect on wrinkling and
dimpling margins: at the new optimum design at
Iteration No. 44 the wrinkling, dimpling, and core shear
crimping margins are not at all critical (Margins
7,9,10,11,12, 14, and 15 listed in Part 3 of Table 6).

Initial Face Sheet Waviness, WQIL = 0.001; Panel
Otherwise Perfect

Table 8 presents a list of margins for the design at
Interation No. 44 (Part 2 of Table 6):

T(l)=0.02087; T(2)=0.6137; T(3)=0.02087;
s(2)=0.06766; fc(2)=0.0007

but with the initial face sheet waviness, WQI L,

increased from zero to 0.001, a value that Plantema [9]
writes is typical for "smooth wings". Most of the
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margins remain essentially the same. Those that are
significantly affected by the introduction of finite initial
face sheet waviness, W0 / L = 0.001, are the core

crushing margin, the x-z ("L-direction") core transverse
shear stress margin, and the core tensile stress margin.
(Compare Margins 16 and 17 in Table 6 with Margins
16 and 17 in Table 8 and note the new margin, Margin
No. 19, in Table 8). With VV0 / L = 0.0 there are

essentially zero core crushing and tensile stresses and
x-z transverse shear stresses in the perfect panel. With
VV0 / L = 0.001 there is significant core crushing stress

and core tension stress as predicted from the Plantema
equation, Eq.(14), and significant x-z ("L-direction")
sandwich core transverse shear stress as predicted from
the Plantema equation, Eq.(15).

With the print index, NPRTNT = 2, in the vinson.OPT
file (see Table 271.6 in ITEM 271 of [29]), PANDA2
lists the facesheet-core interface z-normal and x-z and
y-z transverse shear stresses in the panel with initially
wavy facesheets:

Action of web tending to crush the core or pull off the

facesheet of Seg. 1: SIGWEB = <Tz2 = O.OOOOE+00 (no
stringer in this case)

Stress from web and initial waviness, matl= 2:

SIGTOT=SIGWEB+<7zl=247.12 psi; T^, = 108.53 psi;

T ,= 0.0294 psi

SIGWEB is generated from bending at the root of an
initially imperfect stringer web (the imperfection has
the shape of the local buckling mode, such as shown in
Fig. 4b of [15]), as identified in the discussion
associated with the Hetenyi equations, Eqs.(18 or 21).
SIGWEB is zero in this case, of course, because there

are no stringers. SIGTOT is equal to SIGWEB + (Tzl,

in which (7,] is obtained from the Plantema equation,

Eq.(14). TKl and Tvzl are obtained from the Plantema

Eqs.(15,16). CTZ|, T^, and Tyz, arise from

amplification of the initial facesheet waviness as the
panel is compressed.

Table 9 lists the optimization cycles (Part 1), the
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optimum design (Part 2), and the corresponding
margins (Part 3) for the panel with initial face sheet
waviness, W01L - 0.001, and with the constraint,

(face sheet wrinkling halfwavelength)/(1.732*s) > 2.0
turned ON. From Table 10 it is seen that with this more
realistic case, at the optimum design the five margins,
all of which represent the same phenomenon (overall
buckling of this unstiffened sandwich panel), are now
within a few per cent of eachother.

Also note that Margin No. 19 from Table 8,

19 1.71E+00 sandwichcore tension...

has been replaced by a differently worded margin in
Table 9:

19 2.55E+00 face sheet pull-off...

This happened because PANDA2 tests for both tensile
failure in the adhesive as well as tensile failure in the
sandwich core material, using whichever yields the
smaller margin. (In this case neither is critical).

Note that the face sheet wrinkling, face sheet dimpling,
and core shear crimping margins are far from being
critical at the optimum design.

The results displayed in Figs. 2-12 for Design Iterations
45-52 show the evolution of the design and margins of
the panel with initial face sheet waviness, W01L =

0.001, with Eq. (13) turned ON, and with no buckling
modal initial imperfection (W,- =0). Inclusion of a

finite (small) value for W0 / L results in a slight

increase in panel weight (Fig. 2), a further decrease in
the discrepancy among the five "overall panel
buckling" margins (Fig. 3), a new critical margin: core
crushing (Fig. 5), a somewhat thinner honeycomb core
(Fig. 10), and a somewhat thicker honeycomb cell wall
(Fig. 12).

In order to see what happens when initial face sheet
waviness is present, but the constraint condition, (face
sheet wrinkling halfwavelength)/(1.732*s) > 2.0 is
turned OFF, the PANDA2 "CHANGE" processor was
first used to set the sandwich hexagonal honeycomb
core dimensions "s" and "tc" to about four times their

optimum values given in Part 2 of Table 9 and then the
panel was re-optimized. The motivation behind this
exploration was primarily to see how much influence
on panel weight the presence of the
"wrinkling/celldiameter" constraint has for a case in
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which a reasonable level of initial facesheet waviness is
present.

The results for the final optimum design are listed in
Table 11. Note that the panel weight is essentially
unaffected. The difference between 16.12 Ibs (Part 2,
Table 9) and 16.16 Ibs (Part 1, Table 11) is in the
optimization "noise" level. At the two optimum
designs, the second with much bigger honeycomb cells,
the ratio s/tc is about the same. Hence, margins
governing overall stress and buckling of the unstiffened
panel, core crushing, core shear crimping, face sheet
wrinkling, and sandwich core transverse shear stress are
essentially unaffected by the more than threefold
increase in the size of the honeycomb cells. The
margins for face sheet dimpling and face sheet pull-off
are dramatically affected by the change, the face
dimpling margin because of the much larger diameter
of the honeycomb cells and the face sheet pull-off
margin because there is much less core surface area for
the facesheet-core interface adhesive to bond to. Table
12 highlights the quantities that are dramatically
different at the two different optima listed in Tables 9
and 11.

Note from Part 2 of Table 11 that P AND A2 prints out a
warning message in the *.OPM file if the half
wavelength of the face wrinkling instability mode is
smaller than the diameter of the hexagonal honeycomb
cell.

Imperfect Panel (Face Sheet Waviness + Initial
Buckling Modal Imperfection)

In the simple example above, the sandwich panel is not
loaded into its postbuckled state. Since the panel is
"perfect" in the overall sense ("perfect" in quotes
means there is initial face sheet waviness, W01L, but

that there is no initial overall buckling modal initial
imperfection) and since the axial loading is uniform
axial compression at the neutral plane, there is no
overall bending of the panel under the axial
compression and therefore the resultants in the two face
sheets are equal to eachother and uniform. In a more
elaborate case it may happen that, for one reason or
another, a panel skin that is of sandwich construction
will experience, in addition to initial face sheet
waviness, considerable bending between stiffeners. In

such a case the face sheet resultants, N^e, N{a",
* /

N-y
Ce (called simply "Nx, Ny, Nxy" for lack of enough

width in Table 14) may vary considerably over the
width of the panel skin between stringers and may be

very different on the bottom face sheet ("facesheet 2")
than they are on the top facesheet ("facesheet 1").

PART 2 of Table 9 lists thicknesses and honeycomb
core dimensions "s" and "/c" for the optimized panel

with face sheet waviness, W0 / L = 0.001, but

otherwise perfect (zero overall buckling modal initial
imperfection). Suppose the same optimized "perfect"
panel with the same applied axial compression, NX =
-5000 Ib/in, now has a buckling modal initial
imperfection with amplitude W, = 0.1 in. Reference

[19] describes how the effects of initial buckling modal
imperfections are handled in PANDA2.

Table 13 lists the margins for the imperfect panel
(initial face sheet waviness + overall initial buckling
modal imperfection) with the same dimensions as the
"perfect" panel (see Part 2 of Table 9, no further
optimization yet). Several margins are now
significantly negative because there is now considerable
overall bending in the imperfect panel, with a result that
the face sheets are no longer optimally loaded, each by

a uniform axial compression, N°" = -2500 Ib/in.

Because of the overall bending of the panel as the initial
buckling modal imperfection is amplified by the
applied axial compression, the face sheets experience

considerably more local axial compression than Nf"

= -2500 Ib/in. Also present now in the face sheets are

significant local hoop compression N^"" and in-plane

shear N^". Hence, the face sheets now experience

combined in-plane loads, N{ace, Nfce, A^ce,with

the maximum local compressive N^" now

considerably exceeding -2500 Ib/in. These "extra" local
membrane loads in the face sheets of the imperfect
sandwich panel cause several of the margins to become
significantly negative. The design listed in Table 9 is no
longer feasible because of the added overall initial
buckling modal imperfection.

Table 14 shows a schematic of the unstiffened
sandwich panel with segment and nodal point
numbering (PART 1) and the actual distributions across
the width of the panel and "worst" values of facesheet
resultants, sandwich core transverse shear stress
components, and deformation-induced core crushing
pressures for the "PERFECT1 (PARTs 2 and 3) and the
IMPERFECT (PARTs 4 and 5) panel. The face sheet

resultants, Nf°", Nf",and N%" are called here

"Nx, Ny, Nxy" for lack of sufficient width. In this
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table,"x" is the axial coordinate and "y" is the "hoop"
coordinate or (for stringer segments, if any) the "s"
coordinate called out in Fig. 9 on p. 492 of [14].

In PANDA2 an unstiffened panel is modelled as shown
in Fig. 6, p. 48 of [15]. The unstiffened panel is
modelled in a manner analogous to that for a single
discretized module of a blade-stiffened panel:
symmetry conditions are imposed along the two
longitudinal (unloaded) edges which are located
midway between adjacent stringers, and constraint
conditions are introduced to force the local buckling
pattern to be approximately antisymmetric about the
line of intersection of the stringer root with the panel
skin. The buckling modal displacements of the
unstiffened panel are artificially constrained to be
antisymmetric at the midwidth (except for the axial
displacement u), as shown in Fig. 6 of [15]. To repeat:
the pattern of normal displacements w in an axially
compressed panel with a buckling modal initial
imperfection resembles that shown in Fig. 6 of [15]:
symmetry conditions are applied along the two
longitudinal (unloaded) edges of the panel and
antisymmetry (classical simple support) conditions are
applied at the panel midwidth. Admittedly, this is an
unusual way to model a simply supported unstiffened
flat plate. It is done this way in PANDA2 so that the
same program code can be applied to both unstiffened
and stringer-stiffened panels.

PART 2a of Table 14 lists face sheet resultants across
the width of the "PERFECT' panel, and PART 2b lists
the "worst" resultants from the point of view of
stability. The "worst" resultants in a given panel
module segment are assumed by PANDA2 to be
uniform over that entire module segment for the
purpose of calculation of face wrinkling, face dimpling,
and core shear crimping load factors. In the case of the
"PERFECT" panel the actual and assumed values are
practically the same because the actual distributions are
essentially uniform. (PANDA2 introduces a tiny
imperfection amplitude when the user specifies no
imperfection; that is why there is a small nonuniformity

of N*", Nf
ce

, and N
f
™ across the width of the

panel as listed in PART 2a).

Parts 3a and 3b give the width-wise distributions of x-z
and y-z sandwich core transverse shear stresses and the
"worst" values for the "PERFECT' panel. (The values
are nonzero because of the tiny imperfection amplitude
automatically supplied by PANDA2 in this case).

PART 4a of Table 14 lists face sheet resultants across

the width of the IMPERFECT panel, and PART 4b lists
the "worst" resultants. Note that in this case the "worst"
axial resultant NX and hoop resultant Ny occur at the
same points, but that the "worst" in-plane shear
resultant Nxy occurs at different locations. Even so,
PANDA2 assumes that all "worst" resultants in each
module segment occur over that entire module segment.
This is a conservative approximation. In this case the
relatively small initial imperfection (amplitude = 0.1
in., which is about 16 per cent of the total panel
thickness) has a huge effect because the panel
dimensions correspond to the optimized "PERFECT'
panel, for which buckling is almost critical as can be
seen from the first margin listed in Part 3 of Table 9.
Therefore, the initial buckling modal imperfection is
greatly amplified by the applied load, with the result
that very large additional face sheet resultants are
generated in this particular case.

PARTs 5a and 5b of Table 14 list the actual
distributions of sandwich core transverse shear stresses
in the x-z and y-z planes for the imperfect panel. Again,
the "worst" values are very large because of the
extreme amplification of the buckling modal initial
imperfection.

Because of the almost perfect antisymmetry of the
buckling modal imperfection in this case, the top and
bottom face sheets experience essentially the same
"worst" face sheet resultants. That is why in the
optimum design (Table 15) the top and bottom face
sheets have the same thickness even though these two
thicknesses are allowed to be independent decision
variables.

Table 15 lists the final optimum design of the panel
with initial face sheet waviness, W01L = 0.001, and

with initial buckling modal imperfection amplitude,
wimp =0.1 in. Of course the re-optimized panel is

somewhat heavier than that optimized without any
initial buckling modal imperfection (Part 2 of Table 9).
Note that the two face sheet thicknesses of the
optimized imperfect panel are still equal. This is
because both bottom and top face sheets "see" the same
"worst" ("worst" = most destablizing) local membrane

load combination, N*"*, N***, N%".

PANDA2 uses the "worst" face sheet prestress state in
the computation of face wrinkling, face dimpling, and
core crimping because these are all very local
phenomena. It turns out that at the optimum design,
face wrinkling, face dimpling, and core shear crimping
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are no longer critical in this case, as can be seen from
the margins listed in PART 4 of Table 15. The
optimized imperfect panel is about 19 per cent heavier
than the optimized "perfect" panel (panel with initial
face sheet waviness, W0 / L = 0.001, but with zero

overall initial buckling modal initial imperfection.

The results displayed in Figs. 2-12 for Design Iterations
53-69 show the evolution of the design and margins of
the panel with initial face sheet waviness, W01L =

0.001, with Eq. (13) turned ON, and with a buckling
modal initial imperfection, Wimp =0.1 in. Inclusion of

the buckling modal initial imperfection causes the panel
to become significantly heavier (Fig. 2), the five
"overall panel buckling" constraints to become
non-critical (Fig. 3), both estimates of effective stress
(Margins 3 and 4) to become critical (Fig. 4), the added
presence of "L-direction" and "W-direction" sandwich
core transverse shear stress margins that are not too far
above critical values (Fig. 5), a significant increase in
face sheet thickness (Fig. 9), a significant increase in
honeycomb core thickness (Fig. 10), and an increase in
thickness of the honeycomb cell wall (Fig. 12). Also,
note that the evolution of several of the margins is
much more "jumpy" than was the case for earlier
design iterations performed with w,. = 0 (Figs. 3,

5,10). This "jumpiness" is caused primarily by the high
sensitivity of imperfect panel tangent stiffness

components, Cj™, C^", C^, with a result that with

each design iteration the buckling modal initial
imperfection w, is amplified by a different amount,

giving rise to different stresses tending to crush the core
or cause the core to fail in transverse shear.

Imperfect Panel With Through-thickness Temperature
Gradient

Tables 16-18 list results for which there exist an initial
face sheet waviness, W0 / L = 0/001, an initial

buckling modal imperfection with amplitude \Vf =

0.1 in., and a temperature gradient through the
thickness of the sandwich that is uniform over the entire
simply supported panel. The overall dimensions and
properties of the panel are the same as listed in the
previous tables.

These results represent a case in which the optimum
design has different thicknesses in the top and bottom
facesheets of the sandwich panel. This case is the same
as that for the imperfect panel (the panel with both

initial face sheet waviness, W0 / L = 0.001, and initial

overall buckling modal imperfection, Wimp = 0.1 in.),
except that now a uniform through-thickness thermal
gradient has been added to the axial loading. The
material properties are assumed to be independent of
the temperature. The simply supported panel has
nonzero thermal stresses in the facesheets because it is
much longer than it is wide. If the bottom face sheet
("surface opposite stringer" in PANDA2 jargon even
though there is no stringer in this case) is heated more
than the top face sheet, which is the case corresponding
to Tables 16 and 17, then before any axial load is
applied to the sandwich plate, the bottom face sheet will
be in axial compression and the top face sheet will be in
axial tension due to the through-thickness thermal
gradient. There are also smaller Poisson-ratio-induced
hoop thermal stresses in the face sheets. This "thermal
prestress" will cause the bottom face sheet to become
thicker than the top face sheet during optimization
cycles.

Note that in this example the thermal loading is
considered to be part of "Load Set A", that is, the
thermal loading is treated in the same way as the axial
compression: thermal stresses, like the stresses from
axial compression, are multiplied by the buckling
eigenvalue (load factor) in the formulation of the
bifurcation buckling problem.

Table 16 corresponds to the previously optimized
imperfect panel, that is, the panel without any through-
thickness thermal gradient (dimensions listed in the
heading: the same panel as that identified in PART 4 of
Table 15). Listed in Table 16 are the face sheet
resultants of the imperfect panel with the applied axial
load of -5000 Ib/in and WITHOUT the thermal gradient
(PART 1), the face sheet resultants of the imperfect
panel with both the applied axial load of -5000 Ib/in
plus the thermal gradient (PART 2), and the margins
when both the applied axial load and thru-thickness
thermal gradient are present (PART 3). Note that the
presence of the thru-thickness thermal gradient causes
the effective stress margin of the bottom face sheet
(layer 3) and the core crushing margin to become
significantly negative: the optimum design obtained
previously for the imperfect panel without the thru-
thickness thermal gradient is no longer feasible if a
through-thickness temperature gradient is present.

Table 17 lists results after optimization with the
through-thickness thermal gradient present and with the
bottom face sheet hotter than the top face sheet. As is to
be expected from the results listed in Part 2 of Table 16
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(bottom facesheet has higher destabilizing resultants
than top facesheet), the bottom facesheet in the
optimized design is much thicker than the top facesheet.

Global optima can be sought via the PANDA2
processor SUPEROPT [20]. This was done for this case
with two thermal gradient options:

1. bottom face sheet hotter than top face sheet and

2. top face sheet hotter than bottom face sheet.

The results are listed in Table 18. It is seen that the
optimum weights for the two cases are about the same
as that listed in Table 17 and are practically the same
for each of the two loading cases, as they should be.
Presumably these are both very near the global
optimum design.

Note that the optimum designs in PARTs 1 and 2 of
Table 18 are not perfectly "symmetrical" with respect
to which of the face sheets is the hotter. That is, all
dimensions of the optimized designs should be the same
except that the upper and lower face sheets should be
exchanged. However, the lack of "symmetry" of the
globally optimized designs with respect to which of the
two face sheets is hotter is small, essentially in the
"noise level" within which different designs display
essentially the same weight and feasibility.

CONCLUSIONS

Several new "sandwich-related" constraints have been
added to the PANDA2 program. PANDA2 has been
exercised for an axially compressed unstiffened
sandwich panel which has initial face sheet waviness as
well as a buckling modal initial imperfection. The face
sheets of the sandwich panel need not be the same. A
case involving optimization of an imperfect axially
compressed panel with a uniform through-thickness
temperature gradient, for which the optimum design has
face sheets of unequal thickness, displays appropriate
behavior.

If a buckling modal imperfection is present, overall
buckling of the unstiffened panel is no longer critical
(Fig. 3, Iterations 53-69). Rather, core crushing
becomes critical and L-direction and W-direction core
transverse shear stresses become nearly critical (Fig. 5,
Iterations 53-69).

Face sheet dimpling and face sheet wrinkling become
critical at optimized designs only if the honeycomb cell

size constraint, Eq. (13), is turned OFF (Figs. 6 and 7,
Iterations 21-44).

If initial face sheet waviness, Wg/L, is nonzero, the
weight of optimum designs is hardly affected by the
presence or absence of the honeycomb cell size
constraint, Eq. (13). Therefore, it is best always to
obtain optimum designs with Eq. (13) turned ON and
with a non-zero value for W(/L (Tables 9 and 11).

Optimization of sandwich panels with realistic
assumptions, that is, with the honeycomb cell size
constraint, Eq. (13) turned ON and with use of nonzero
initial face sheet waviness, \V(/L, leads to minimum-
weight designs for which the various approximations
used in PANDA2 for including the effect of transverse
shear deformations (t.s.d.) are in reasonably good
agreement (Fig. 3, Iterations 40-50).

ADDITIONAL WORK NEEDED

PANDA2 should be exercised for a wide variety of
stiffened composite panels in which the various
segments have sandwich wall construction.

Optimum designs obtained via PANDA2 should be
checked by using STAGS to find collapse loads. The
STAGS models should include, if possible, segments in
which face sheet wrinkling, core crushing, core
crimping, and core transverse stress failure as well as
the effects of initial face sheet waviness, are
predictable. As of this writing it is not possible to use
STAGS to check "sandwich" designs generated via
PANDA2.

More work needs to be done in PANDA2 on the effect
of transverse shear deformation., especially in the
routines that deal with the discretized panel module
model and the routines that deal with stiffener rolling.
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Seg. 3 (Iseg numbering)

Seg. 1 (Iseg numbering)

b2

Seg. 2

•Module width = stiffener spacing, fa-

Segment numbering for single module model, "Iseg" numbering

(a)

(Segment, Node)

Layer 1

Layer 1

Layer 1

Layer 1

\
(2,11) (6,1) 4 (6,11)

Layer m

(1,1) * 0-11) (2,1)

Layer m Layer n

Segment numbering for single module model, "Dseg" numbering

(b)
Fig. 1 Single module model of panel: (a) Numbering of module

segments for input data and PANDA type [21] models,
(b) Segment numbering for discretized single module
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D 3 .1.1 eff.stress:matl=1; MID.
O 4.1.1 eff.stress:matl=1,allnode;-MID.

vinson: LOADSET=1, SUBSET=1

D 7 .1.1 corecrimp (VINSON);strng Isegl core crimping
O 17.1.1 Core crushing margin;STR;lseg=1 ;Matl2
A 18.1.1 L-dir. sandwich core shear;STR;lseg=1 ;Matl 2
+ 19.1.1 W-dir. sandwich core shear;STR;lseg=1 ;Matl 2

vinson: LOADSET=1, SUBSET=1

N)

co
co

10 20 30 40 50

Design Iterations

Fig. 4 Effective stress margins

30 40 50

Design Iterations

Fig. 5 Margins for sandwich core crimping, crushing,
and L- and W-direction transverse shear stress
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x10'

tc(2 )(SKN):thickness of honeycomb cell wall, tc(2 ): SIR seg=1

vinson. SEE FILES vinson.OPM AND vinson.OPP

10 20 30 40 50

Design Iterations
60 70 so

Fig. 12 Evolution of thickness of honeycomb
cell wall
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