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Abstract

Strategies for locating multiple relative optima in a multimodal optimization
problem using multiple-point simulated annealing are proposed. Two strategies
incorporated with multiple-point simulated annealing are developed to increase
the capabilities of locating more relative optima in a nonconvex design space.
Balance strategy involves the use of a balance function that evaluates the degree
of design spreading over the entire design space and create a corresponding
direction bias in the subsequent design-change process. Bounce strategy
evaluates the degree of design crowding and aims to push designs away from
the crowd center by creating a direction bias in the next design-change process.
Both strategies are evaluated on a number of illustrative multimodal problems.

Introduction

The basic idea of simulated annealing (SA) was originated by Metropolis et al
[1] in 1953 who proposed a Monte Carlo method in which a sequence of states
of solid was generated according to Metropolis Procedure so as to simulate the
evolution to thermal equilibrium of a solid for a fixed temperature. Kirkpatrick
et al [2,3] and Cerny [4] successfully applied simulated annealing to
combinatorial optimization problems and since then simulated annealing has
been applied to diverse engineering problems, more extensively to VLSI design
problems [5] and circuit placement problems [6]. Simulated annealing based on
statistical mechanics is categorized as a stochastic search method and is
analogous to the natural energy minimization process as found in melt metal
during a controlled temperature dropping schedule. A design change with an
increased internal energy (objective function value) is probabilistically
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acceptable in a simulated annealing. This unique character provides the search
with the ability to escape from a valley with a local optimum and accordingly
SA is a global optimization method in nature. More detailed description on
simulated annealing can be found in the work by van Laarhoven and Aarts [7].

As the number of relative optima in the design space increases, the chances
of locating a true global optimum by using a regular simulated annealing
algorithm is reduced. In order to improve the opportunity of finding global
optimum in a complex multimodal design problem, sequential or parallel
simulated annealing algorithms can be used [8,9]. These works mostly relate to
the use of multiple processors with parallel computing techniques. For a regular
multipoint simulated annealing, the information of multiple designs during the
simulated annealing process has not been well utilized to further increase the
search efficiency and effectiveness. Two strategies which use the information of
design distributions in a given temperature to create adjusted biases on the
determination of subsequent design-change process are described in the next
section.

New strategies in multipoint simulated annealing

During a simulated annealing process, a new design of n-dimension will be
determined by n random numbers. For a given temperature 7, the maximum
move step toward the positive-axis and negative-axis directions is Ax(7), Ay(7),
etc. Equal probabilities are assigned to positive- and negative-axis directions. A
random number ranged between 0.0 and 1.0 for each dimension will match to a
move step between -Ax(7) and Ax(7). For example, a random number of 0.7
will simultaneously determine the move direction, positive x-direction, and the
move step, (0.7-0.5)/(1.0-0.5)Ax(T) or 0.4Ax(7T). Two strategies introduced here
work to create a direction bias for each dimension according to design
distribution patterns. A normal probability for a design to move toward each
positive-axis direction, saying x-axis direction, is 0.5. Biases can add this
probability to 1.0 or reduce it to as less as 0.0. The probability of moving
toward (positive) x-direction as 0.0 means the move will be toward negative x-
direction and the move step is Ax(7) multiplied by the random number.

Balance strategy
The purpose of the balance strategy is to create a pressure which will make
multiple design points to search more evenly in the design space. Balance

strategy can be applied according the following steps:

Step 1: calculate the center of each axis and the centroid of designs in each axis
as referenced in Figure 1.
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where X, is the center of defined range in x-axis,
X is the lower bound of x-axis,
x,, 1s the upper bound of x-axis,
X; is x-coordinate of i-th design,

x4 1s the centroid of designs in x-axis.

Step 2: determine the balance-adjusted probability, P,, for designs to move
toward positive x-direction in a given temperature.
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where D is the distance between lower and upper bounds, D = x,-x,,
d is the distance between is the center of defined range in x-axis and

the centroid of designs in x-axis, d = x; -x,.

Step 3: calculate the actual probability for designs to move toward
the positive x-direction.

C,=05+P, (4)

For an m-point simulated annealing is being executed, the actual probability for
all m designs to move toward the positive x-direction has to be calculated n
times if the design space consists of n design variables. From Equations (3) and
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(4), it is noted that if the centroid of designs is closer to either bounds than to
the center of an axis (d 2D/4 or d<-D/4), all designs will be forced to move
toward either negative x-direction (d=D/4) or positive x-direction (d<-D/4).

Although balance strategy helps maintain the centroid of designs to close to the
center of the design space, symmetric design clusters as represented by triangles
or squares shown in Figure 2 can not be prevented. Multiple designs still form a

crowd

and ability to discover extremes located apart is therefore reduced.

Bounce strategy will serve to prevent designs from clustering together.

Bounce strategy

The basic idea of bounce strategy is to assume that an imaginary elastic spring
of length R exists for each design. As the distance between any two designs is
less than the spring length R, the spring will be deflected and an extending force
will be applied on each design so as to push two designs away. The procedure
to use bounce strategy consists of the following three steps:

Step 1:

where

Calculate the deflection of the imaginary spring as one foreign design
falls into the territory of an interrupted design as shown in Figure 3,

d=R-r %)
d represents the deflection of the imaginary spring,

R represents the length of the imaginary spring,
r is the distance between two contacted designs.

Step 2: Calculate the bounce-adjusted probability for the foreign design

where

to move toward positive direction of each axis.

p =Tk g (-05< P, <05) (6)
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E
P.: the bounce-adjusted probability for the foreign design to move

toward positive x-direction,
P ’y: the bounce-adjusted probability for the foreign design to move

toward positive y-direction,
X Vp Xjo and y, are x, y coordinates for the foreign design and the

design being interrupted,
E represents the internal energy created by deflection d, E = kd* /2,
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k represents the spring constant, k =1/ R?.

Step 3: Calculate the actual probability for designs to move toward each
positive-axis direction.

C,=05+P(x) (8)

C,=05+P(y) 9

If the balance strategy and the bounce strategy are both adopted, the actual
probability for designs to move toward each positive-axis direction is as follows:

C.=05+P +P, (10)
C,=05+P,+Py a1

Although actual values of C; and Cy" can be greater than 1.0 or less than

0.0 according to Equations (10) and (11), actual probabilities for a design to
move toward each positive-axis direction is restricted between 0.0 and 1.0.

Hlustrative Examples

For all experiments in Example 1 and 2, the maximum move steps in each
dimension according to different temperature ranges are defined in Table 1.
Starting temperature is 50 and the ending temperature is 8x10”. A temperature
dropping rate is 0.99 applied after each design change is accepted.

Table 1. Maximum move step in each dimension for all simulated annealing
algorithms.

Temperature T>20 | T>10 | T>1 |T>0.01 |T>0.001]|lower T
Maximum move step | 0.8 0.5 0.2 0.1 0.08 0.05

Example 1:  Two strategies are tested in an unconstrained Himmeblau's
function which comprises four local/global minima of an equal value 0.0. The
function contour and the three-dimensional diagram of Himmeblau's function is
shown in Figure 2 and 4. Four randomly generated initial designs are used in all
multi-point simulated annealing processes. A regular simulated annealing is
used to serve as the performance reference against the simulated annealing with
the balance and bounce strategies. Each simulated annealing algorithm will be
executed fifteen times in order to reduce the sampling errors introduced by
random numbers in the stochastic optimization. In the first experiment, regular
SA(SA), SA with balance strategy(SA+Ba), SA with bounce strategy(SA+Bo),
SA with both balance and bounce strategy(SA+Ba+Bo) are performed with the
same temperature reducing schedule. Performances of 15 runs of four different
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SA algorithms are shown in Table. 2. With two new strategies, SA located more
extremes and less optima are located repeatedly.

Table 2. Performance of four SA algorithms.

SA SA+Ba | SA+Bo |SA+Ba+Bo
total number of optima located 36 49 41 49

average number of optima located | 2.40 3.27 2.73 3.27

Example 2: In the second experiment, the same four SA algorithms are
tested with five types of initial design formation. Four initial design formations
consist of all four randomly generated designs restricted in the first quadrant,
the second quadrant, the third quadrant, the fourth quadrant of the design space.
The fifth formation requires that one design is randomly generated in each of
four guadrants. The purpose of this experiment aims to evaluate new strategies
in the circumstances where initial designs are not evenly distributed. Average
performances of 15 runs of four different SA algorithms in each initial design
formation are shown in Table. 3. Although it can be seen that the performance
trend of SA algorithms is quite consistent with the first experiment, most cases
show that SA with both balance strategies is less sensitive to the distribution of
initial designs than the regular SA.

Table 3. Total number of extremes located by four algorithms with various
patterns of initial designs.

SA SA+Ba SA+Bo SA+Ba+Bo
Ist quadrant 32 50 39 46
2nd quadrant 31 45 36 48
3rd quadrant 38 42 45 52
4th quadrant 36 46 45 50
one in each
quadrant 42 46 42 53
random* 36* 49+ 41* 49+

+cited from the first example
Example 3:  The third problem involves the design of a lap joint between two
steel plates in which the rivet size and the number and arrangement of the rivet
pattern are considered as design variables. The configuration of the plates and
the rivets is shown in Figure 5. The number of rows parallel to side AB is
represented by an integer variable x; with permissible values between 1 and 32.

The number of the rivets in each row x, is an integer variable and was allowed
to assume values between 1 and 128. The diameter x; of all rivets was assumed

to be the same, and is chosen from a commercially available set. The objective
of this optimization was to maximize the efficiency of the joint, defined as the
ratio of the strength of joint to the strength of the plate. Stress concentrations
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due to the close placement of any two rivets were avoided by the imposition of
two linear constraints. Detailed description of this problem can be found in a
previous publication [10]. This problem consists of 12 relative maxima with
two of them are next to each other. A regular SA with 11 randomly generated
initial designs is performed 15 times so was the simulated annealing with both
balance and bounce strategies. Maximum move steps in each dimension
according to different temperature ranges are defined in Table 4. Starting
temperature is 50 and the ending temperature is 8x107 with a temperature
dropping rate of 0.985. Performances of 15 runs of two SA algorithms are
shown in Table. 5. Two strategies increased the number of relative optima
located.

Table 4. Maximum move step in each dimension for all simulated annealing
algorithms.

Temperature T>1.0 T>0.1 T>0.001 lower T
Max. move step in X, 2 2 1
Max. move step in x, 3 2 2 1
Max. move step in X, 2 1 1

Table 5. Comparison of performance of two SA algorithms.

SA SA+Ba+Bo
total number of optima located 65 98
average number of optima located 4.33 6.53

Concluding Remarks

Balance strategy and bounce strategy are useful tools for a multipoint simulated
annealing for increasing the chances of locating the global optimum and
elevating the ability of locating more local optima. Both strategies are simple
and can be easily implemented to a regular SA with improved effectiveness.
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Figure 3: Two designs connected by ~ Figure 4: 3-D diagram of Himmeblau's
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Figure 5: Geometric configuration of rivted plates.



