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ABSTRACT:  
 
High-refractive index dielectric nanoparticles may exhibit strong directional forward light scattering at 

visible and near-infrared wavelengths due to interference of simultaneously excited electric and 

magnetic dipole resonances. For a spherical high-index dielectric, the so-called first Kerker's condition 

can be realized, at which the backward scattering practically vanishes for some combination of 

refractive index and particle size. However, Kerker's condition for spherical particles is only possible 

at the tail of the scattering resonances, when the particle scatters light weakly. Here we demonstrate 

that significantly higher forward scattering can be realized if spheroidal particles are considered 

instead. For each value of refractive index n  exists an optimum shape of the particle, which produces 

minimum backscattering efficiency together with maximum forward scattering. This effect is achieved 

due to the overlapping of magnetic and electric dipole resonances of the spheroidal particle at the 

resonance frequency. It permits the design of very efficient, low-loss optical nanoantennas.  
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Resonant nanoparticles and nanoantennas1 become crucially important for advanced photonic 

technologies including on-chip interconnects, bioimaging, solar-cells, heat-assisted magnetic 

recording etc. They can play the role of nanooptical elements, which may substitute conventional 

optics at subwavelength scale. During the last few years a significant attention has been paid to 

nanoparticles made of low-loss high-refractive index dielectric and semiconductor materials, in which 

one can observe both electric and magnetic dipole resonances with comparable strengths at optical 

frequencies2-8. Interference of these two modes allows to fulfill a condition for almost zero backward 

light scattering, as proposed by Kerker et al. for spherical particles more than three decades ago9,10. 

Thus, these materials open a fascinating opportunity to control directionality of scattering and design 

efficient low-loss nanoantennas11-13. The Kerker's-type directional scattering was experimentally 

demonstrated first for millimeter-scale ceramic spheres in the microwave regime14, and shortly after 

for nanometer-scales silicon nanospheres15 and gallium arsenide nanodisks16 in the visible spectral 

range. 

In all the above cases, the zero-backward scattering condition has been fulfilled on the long-

wavelength tail of the magnetic dipole resonance out of the maximum of the scattering amplitude. 

However, it was shown recently that for nanostructures with non-spherical shape, namely, flat silicon 

disks with an aspect ratio around 1:2, electric and magnetic dipole resonances can be overlapped17, 

providing a strong forward scattering and almost zero backward scattering at the scattering resonance 

maximum. 

 In this paper, we demonstrate that for spheroidal nanoparticles one can always find an optimum 

aspect ratio, at which the overlapped electric and magnetic dipole resonances provide simultaneously 

minimal backscattering and optimized forward scattering. This optimum shape depends on the specific 

value of material refractive index. We work in the frame of exact light scattering methods and 

consider spheres and spheroids with different aspect ratios. 

 

 First, scattering properties of spherical nanoparticles have been analyzed using Mie theory18 (see 

Methods for details). Figure 1 presents different scattering characteristics of spherical nanoparticles 

with radius R versus their refractive index n and size parameter λπRq 2=  (here λ is the wavelength 

of incident light). In particular, the partial scattering efficiencies corresponding to ( )eQ1  - electric dipole 

(ed), ( )mQ1 - magnetic dipole (md), ( )eQ2 - electric quadrupole (eq) and ( )mQ2 - magnetic quadrupole (mq) 

are shown in Fig.1a for a sphere with n = 2.4. The total scattering efficiency can be accurately 

described in this range of q values as a sum of these four partial resonant efficiencies. The two 

observed dominant peaks can be identified with the resonant excitation of the magnetic dipolar and 

magnetic quadrupolar modes. We can also see pronounced minima in the backscattering cross-sections 
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depicted in Fig. 1b. These minima correspond to the so called "first Kerker's condition" 11 ba = , for 

which the amplitudes and phases of electric and magnetic dipole resonances are equal. This condition 

is marked by filled circles in Fig. 1c. Satisfying the condition 11 ba =  for both real and imaginary part 

leads to the solution constnq == α ,  where 7437.2≈α  is the root of the equation: 

 

                                                    ( ) ( ) ( ) ( ) 02sin22cos121 22 =−+−+ ααααα .    

 

 

 
Figure 1. (a) Total scattering efficiency, scaQ , versus size parameter λπRq 2= for three different 

values of refractive index =n 2.0, 2.2 and 2.4. Four partial scattering efficiencies (curves with open 

circles) are shown for =n 2.4 corresponding to the electric dipole (ed), magnetic dipole (md), electric 

quadrupole (eq) and magnetic quadrupole (mq) contributions. (b) Backscattering efficiency BSQ  (in 

logarithmic scale) versus size parameter q for three different values of refractive index =n 2.0, 2.2 and 

2.4, exhibiting a pronounced minima at particular values of size parameter.  (c) Values of electric 

dipole coefficient 1a  (solid lines) and magnetic dipole coefficient b1 (dashed lines). Positions in which 

11 ReRe ba =  and 11 ImIm ba = , corresponding to the first Kerker condition9,10, are plotted as filled 

circles. The associated values of q  correspond with high accuracy to the minimum values of BSQ . For 

open circles one have 11 ReRe ba =  but 11 ImIm ba −= . (d) Trajectory of minimum back scattering on 

the plane of parameters { }qn, . Solid line presents solution to the equation 11 ba =  while circles are 

numerical solutions to the equation min→BSQ . Inset in plot (d) shows polar scattering diagram19 

along the trajectory min→BSQ  with pronounced forward scattering. 
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 In Fig. 1d we present the trajectory of minimum backscattering on a nq,  parameters’ plane. From 

this figure one can conclude that minimum backscattering is well described by solution of α=nq  not 

only for 1<<q  (i.e. conventional condition for applicability of the dipole approximation) but even for 

values of size parameter q  of the order of unity. The reason for this effect can be seen in Fig. 1a for 

4.2=n  and for a general case in Supplementary Figure 1S. Along the trajectory nq α=  and for a 

refractive index above 1.5 higher order modes (quadrupoles, etc.) are strongly suppressed compared to 

the dominant dipole modes.  

 In Fig. 2, we show a contour plot of the backscattering cross-section where one can see the 

trajectory of the pronounced minimum of ( )qnQBS ,  (dashed curve 3). Trajectory of the maximum 

value of BSFS QQ  (circles) practically coincides with curve 3.  Additionally, trajectories of the 

maximum value of total scattering ( )qnQsca ,  (curve 1) and maximum forward scattering ( )qnQFS ,  

(curve 2) are also shown in the figure. All these curves follow approximately hyperbolic dependence 

on the refractive index and, consequently, do not cross each other. This means that for a spherical 

particle, whatever the particle parameters are, it is not possible to obtain resonant values of the total 

( )qnQsca ,  or forward ( )qnQFS ,  scattering efficiencies along the trajectory fulfilling the first Kerker’s 

condition for the minimum backward scattering a1 = b1. From formula (2), see Methods, the latter 

condition leads to 2
1

222
1 anqaQFS ∝∝  and therefore the maximum value of FSQ  corresponds to the 

maximum value of  2
1

2 an  (see inset in Fig. 2). However, the values of scattering amplitudes 11 ba =  

at maximum FSQ  are quite small, below 0.5 (see Fig. 1c).  It is clear that if we would be able to 

overlap electric and magnetic resonances at the point 111 ≈= ba  we could enhance both total and 

forward scattering values. 
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Figure 2. Contour plot of the backscattering efficiency ( )nqQBS ,  on the nq,  parameters’ plane. 

Dashed lines show trajectories of maximum total scaQ  (curve 1) and forward FSQ  (curve 2) scattering 

efficiencies. Curve 3 shows the trajectory of the minimum back scattering efficiency. Inset shows the 

variation of scaQ  and FSQ  along the trajectory ( )nqq = , where BSQ  reaches minimum (i.e., along 

curve 3). The upper right part of the inset presents the function ( ) 22
1 nna  along the trajectory of the 

first Kerker’s condition. 

 

One of the possibilities to satisfy condition 111 ≈= ba  is to use metallic-dielectric core-shell 

nanoparticles20. It can also be reached by changing the particle’s shape, e.g. using oblate spheroidal 

nanoparticles instead of spheres. As it was shown in our previous work (see Fig. 4 in Ref. 15), 

squeezing a silicon sphere into a spheroid with aspect ratio around 1:2 it is possible to obtain 

overlapping between the electric and magnetic dipole resonances and minimized backward scattering 

close to the wavelength of scattering resonances. This is also consistent with results published later for 

silicon nanodisks17. Going one step further, we will now demonstrate that for any given value of the 

particle refractive index there is a particular particle shape at which a resonant forward scattering with 

minimized backward scattering can be realized.  

 Solution of the wave equation in spheroidal coordinates can be made using the separation of 

variables method21 (see also Methods). In the following we will focus our study on oblate spheroids, 

since for this shape electric and magnetic dipole resonances can be overlapped. An oblate spheroid 

(ellipsoid of revolution) is obtained by the rotation of an ellipse with focal distance d  around its minor 
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axis. The ratio of the major semiaxis a  to the minor semiaxis b (i.e. the aspect ratio ba ) 

characterizes the particle shape which may vary from a nearly spherical ( 1≈ba ) to a disk one 

( 1>>ba ). The particle size can be specified by parameter 
2

2 dg
λ
π

=  related to the length of the focal 

distance or by parameter 
λ
π v

v
rq 2

= ¸ related to the radius of the sphere vr  whose volume is equal to 

that of the spheroid. For oblate spheroids, barv
23 = . The connection between g  and vq  is given by 

 

                                                 ( )
( )[ ] ( ) 31

212

32 2
1

−=
−

= baa
ba

bagqv λ
π ,                                                             

where the size parameter 
λ
π aq 2

=  plays the same role as parameter 
λ
π R2  in the Mie theory. 

 In general, the angle β  between the propagation direction and the rotation axis of the spheroid  

can be arbitrary ( oo 900 ≤≤ β ). Here, we study the case 0=β  when radiation propagates along the 

minor axis. 

 In Fig. 3 we show the total scaQ~  and forward FSQ~  scattering efficiencies (see Methods for details) 

of oblate spheroidal particles with different refractive index n  versus aspect ratio ba  along the 

trajectories of minimum backward scattering. It can be seen from the figure that for each value of the 

particle refractive index there is an aspect ratio of the spheroid a/b for which the scattering efficiencies 

are optimized. As a general rule, higher values of scattering efficiencies can be achieved with higher 

refractive indices. This is not the case of spherical particles whose directional scattering is optimized 

at refractive index of ~2.45 (see inset in Fig.2). For each particular material one can find an optimum 

spheroidal shape which will produce a maximum forward scattering at a minimum back scattering. 

 One can compare the efficiency of forward scattering by spherical and spheroidal particles at the 

minimized backscattering condition. For example, spherical particle with 4.2≈n  has maximum 

forward scattering 3.12~ ≈= FSFS QQ  (see insert in Fig. 2). An optimized spheroidal particle with the 

same refractive index and 7.1≈ba  has about 1.4 times higher forward scattering efficiency. With 

higher refractive index this difference becomes much more pronounced.  For spherical particle with 

4≈n one can reach maximum 4~ ≈FSQ . An oblate particle with 4≈n  and 25.2≈ba  permits to 

reach FSQ~  value above 30 with the back scattering close to zero. This presents a huge interest for 

optical antennas. Naturally, deformation of the particle shape leads also to some shift in the position 

of the resonant frequency. 
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Figure 3. Variation of total scaQ~  (a) and forward FSQ~  (b) scattering efficiencies along the trajectories 

of minimum backward scattering for oblate spheroidal particles with different refractive index n  

versus aspect ratio ba . 

 

  Final result of optimization is presented in Fig. 4.  It shows the dependence of the optimum shape 

of the spheroids on the particle refractive index: ( )nfba = , which corresponds to maximum of scaQ~  

or FSQ~  (solid lines) with minimized BSQ~ . Resonant frequencies follow from the resonant values of the 

size parameter ( )nqq =  related to these shapes (shown by corresponding dashed curves). For example, 

for 5.3=n  one can find from Fig. 4 values 09.2≈ba  and 28.1≈q  for optimum forward scattering. 

 

 

 

 

 

 

 

 

 

Figure 4. Optimum shape ba  (solid lines) and size parameter q  (dashed lines) for spheroidal 

particles versus value of refractive index n . 



 8

 As we mentioned above, the physical reason for scattering maximization is related to overlapping 

of magnetic and electric dipole resonances of the particles. Dynamics of this overlapping for particles 

with refractive index 5.3=n  is shown in Fig. 5. For spherical particle 1=ba  magnetic (md) and 

electric (ed) dipole resonances are well separated. It can be easily seen from the corresponding partial 

scattering efficiencies calculated from the Mie theory. Similar multipole decomposition for partial 

efficiencies can be done for spheroidal particles as well (see Methods for details). According to Fig. 4 

optimum condition for forward scattering is reached for 086.2=ba . In Fig. 5 one can see that with 

increase of the aspect ratio the electric and magnetic dipole resonances approach each other and fully 

merged at 086.2=ba , which allows obtaining minimum backward scattering condition at the 

resonance of total scattering. 

 
Figure 5. Overlapping of electric and magnetic dipole resonances for different particle shapes. Total 

scattering efficiency (black line), together with the corresponding electric 1a  (red line) and magnetic 

1b  (blue line)  scattering dipolar contributions are plotted versus size parameter  q  for different values 

of the aspect ratio ba , ranging from 1 (sphere) to the optimized value 2.086. Green curve plots the 

scattering contribution of the magnetic quadrupole mode. 



 9

 In conclusion, we have investigated the problem of the shape optimization for oblate spheroidal 

dielectric particles aimed to obtain minimum backscattering together with maximized total and 

forward scattering. We have shown that this optimization is possible for any given value of refractive 

index. Such optimized particles are extremely efficient directional optical nanoantennas, which can act 

as Huygens sources11. Efficiency of spheroidal scatterers depends on the refractive index of the 

material and can be significantly higher than those which can be reached with spherical particles.  
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Methods 

Scattering by spheres 

Scattering efficiencies for total, scaQ , forward, FSQ , and backward, BSQ , scattering of a spherical 

particle can be derived within the framework of Mie theory18 and written as: 

 

                                                      ( ) ( )22

1
2 122

ll
l

l ba
q

Qsca +∑ +=
∞

=
,                                                    (1) 

                                                         ( )( )
2

1
2 121
∑ ++=
∞

=l
lll ba

q
QFS ,                                                      (2) 

                                                      ( )( ) ( )
2

1
2 1121
∑ −−+=
∞

=l
ll

ll ba
q

QBS .                                        (3) 

 The electric, la , and magnetic, lb , scattering amplitudes for nonmagnetic materials with relative 

magnetic susceptibility 1=μ , and dielectric permittivity 2n=ε  (n being the refractive index of the 

particle material) are given by: 

 

                                                     
( )

( ) ( )aa

a

i
a

ll

l
l

ℑ+ℜ

ℜ
= ,     

( )

( ) ( )bb

b

i
b

ll

l
l ℑ+ℜ

ℜ
= ,                                             (4) 

where lℜ  and lℑ  functions are defined as follows: 

 

             ( ) ( ) ( ) ( ) ( )nqqnqqna
lllll ψψψψ ′−′=ℜ , ( ) ( ) ( ) ( ) ( )nqqnqqna

lllll ψχψχ ′−′=ℑ ,                     (5) 

             ( ) ( ) ( ) ( ) ( )qnqqnqnb
lllll ψψψψ ′−′=ℜ ,  ( ) ( ) ( ) ( ) ( )qnqnqqnb

lllll χψψχ ′−′=ℑ .                     (6) 
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Here, ( ) ( )zJzz
2
12 +

=
l

l

πψ , ( ) ( )zNzz
2
12 +

=
l

l

πχ , where ( )zJ
2
1

+l
 and ( )zN

2
1

+l
 are the Bessel and 

Neumann functions. The radius of the particle R  enters in this theory through the dimensionless size 

parameter λπω RcRq 2== , where ω  is the angular frequency, c  the speed of light, and λ  the 

radiation wavelength in vacuum. The prime in formulas (5), (6) indicates differentiation with respect 

to the argument of the function, i.e. ( ) ( ) dzzdz ll ψψ ≡′ , etc. The efficiencies (1)-(3) represent the 

corresponding cross sections normalized to the geometrical cross section of the sphere. The total 

scattering efficiency is then given by sum of partial scattering efficiencies: 

 

                                                            ( ) ( )( )∑
∞

=

+=
1l

ll
me

sca QQQ ,                                                            (7) 

 

where each partial efficiency corresponds to the radiation of the l -th order multipole. Terms ( )eQl  and 

( )mQl  describe the radiation related to the electric and magnetic polarizabilities, respectively. In the 

following, we will discuss transparent dielectrics with 0Im =ε , so scaext QQ = . 

 

Scattering by spheroids 

The optical properties of spheroidal particles can be determined by various methods of light scattering 

theory. Most frequently, the separation of variables method and the T-matrix method are used. The 

survey of methods can be found in Ref. 22 (see also Database of Optical Properties of cosmic dust 

analogues, DOP, http://www.astro.spbu.ru/DOP/3-REVS/index.html). 

 Asano & Yamamoto23 obtained the first solution to the light scattering problem for spheroids with 

a complex refractive index. The method is based on the solution to the Helmholtz equation in the 

spheroidal coordinate system. Asano & Yamamoto applied the Debye potentials to describe the 

electromagnetic fields, which is similar to the Mie solution for spheres. The scattering coefficients 

then are found in the infinite systems of the linear algebraic equations and can be found by solving 

truncated systems. 

 Another solution was published by Farafonov24 (see Ref. 25 for first numerical results). Its 

principal distinction from the previous one is the special basis for the representation of the 

electromagnetic fields - a combination of the Debye and Hertz potentials (i.e. the potentials introduced 

to solve the light scattering problem for spheres and infinitely long cylinders, respectively). The 

approach has an incontestable advantage for strongly elongated or flattened particles. 
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 In this paper, we use the most recent version of the numerical code based on the Farafonov's 

solution (see http://www.astro.spbu.ru/DOP/6-SOFT/SPHEROID/1-SPH_new/). The comparison of 

methods and benchmark results can be found in Ref. 26. 

For spheroids, one usually calculates the scattering efficiency factors SQ σ=  which are the ratios 

of the corresponding cross-sections σ  to the geometrical cross-section S  of the spheroid (the area of 

the particle's shadow). For oblate spheroids and 0=β , 2aS π= . The efficiencies for forward, FSQ , 

and backward, BSQ , scattering are27 (pay attention that Eq. (5.80) for backscattering efficiency in Ref. 

27, p.137 must be corrected): 

 

 

                                         
( )

( ) ( )( )( )
2

1 1,0

11
322 211 '∑ ∑

∞

=

∞

=

− ++−=
l

l
l

l

r
r

v
FS rrigdbi

baq
Q ,                                (8) 
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2

1 1,0

11
322 211 '∑ ∑

∞

=

∞

=

++−=
l

l
l

l

r
r

v
BS rrigdbi

baq
Q .                                (9) 

 

 

 Here, ( )1
lb  are the coefficients for scattered radiation which are determined from the solution to the 

light scattering problem and ( )igdr −l1  are the expansion coefficients of oblate angular spheroidal 

functions in terms of associated Legendre polynomials. The prime over the summation symbols 

indicates the even (odd) terms only are summarized when the index ( )1−l  is even (odd). 

 A convenient way to compare the optical properties of particles with different shapes is 

normalizing the cross-sections by the geometrical cross-sections of the equal volume spheres, 2
vrπσ . 

For oblate spheroids and o0=β , we have 

 

                                                                  ( ) Qba
r

Q
v

32
2

~ ==
π
σ .                                                      (10) 

 
Multipole decomposition 

Multipole decomposition allows one to identify the multipolar character of the different resonances 

being excited in a system28-30. In our case, it was performed by projecting the electromagnetic field 

scattered by the spheroids into the Vector Spherical Harmonics basis on a spherical surface with radius 

0R  enclosing the structure. The center of the sphere was chosen to coincide with the center of the 
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spheroid. In this way, one can compute the electric lma  and magnetic lmb  scattering coefficients 

associated to a certain multipolar contribution as: 

 

Ω⋅
++

−
= ∫∫

+

dY
ElllkRh

kRia scalm
l

l

lm Er̂),(
)]1()12()[(

)( *

0
21

0
)1(

0
1

φθ
π

,     (11) 

Ω⋅
++

−
= ∫∫ dY

ElllkRh
kRib scalm

l

l

lm Hr̂),(
)]1()12()[(

)( *

0
21

0
)1(

0 φθ
π
η ,     (12) 

 

where )( 0
)1( kRhl  is the spherical Hankel function of first kind and order l and: 

 

φθ
π

φθ imm
llm eP

ml
mllY )(cos

)!(
)!(

4
12),(

+
−+

= ,        (13) 

 

with )(cosθm
lP  being the associated Legendre polynomials. The partial scattering efficiency due to 

the l-th electric or magnetic multipole can then be computed as: 

 

∑
−=

+
=

l

lm
lm

E
l a

q
lQ 2

2

12 ,          (14) 

∑
−=

+
=

l

lm
lm

M
l b

q
lQ 2

2

12 .          (15) 

 

Q  or Q~  is obtained depending on whether one uses q  or vq . The total scattering efficiency can be 

retrieved by summing up the contributions of the different electric and magnetic multipoles. While the 

choice of the radius of the sphere is arbitrary, the only requirement to achieve accurate results is a 

sufficiently accurate angular resolution in the integral. 
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