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Optimum Frame  Synchronization 
JAMES L. MASSEY, FELLOW, IEEE 

Abstract-This paper considers the optimum method for locating 
a  sync word periodically imbedded  in binary data  and received over 
the additive white Gaussian noise  channel. It  is shown that  the 
optimum rule is to select the location that maximizes the  sum of the 
correlation and a correction term.  Simulations are reported that 
show approximately a 3-dB improvement at  interesting signal-to- 
noise  ratios compared to a  pure  correlation  rule.  Extensions are 
given to  the “phase-shift  keyed (PSK) sync” case where the 
detector  output has a  binary  ambiguity and  to  the  case of Gaussian 
data. 

I. INTRODUCTION 
HE MOST  widely used method for providing 
frame  synchronization  in  a  binary  signaling  scheme 
is to  insert  a fixed binary  pattern or “sync  word” 

periodically  into the  data  stream. On the  assumption 
that  symbol  synchronization  has  already been obtained, 
the receiver  obtains  frame  synchronization  by  locating 
the position of the  sync  word  in  the received data 
stream. 

I n  his  pioneering  work [l] on  frame  synchronization, 
Barker assumed that  the  sync word  would  be located 
by  passing  the received digits  through  a  “pattern recog- 
nizer,”  which  was  simply  a  device to  correlate successive 
L-digit  segments of the received  sequence with  the L- 
digit  sync  word.  The  segment  giving  the  nlaximum 
correlation would  be taken  as  the location of the  sync 
word.  Virtually  all  subsequent  work  on  frame  synchroni- 
zation  has  assumed  this  same  correlation decision rule, 
perhaps  for  simplicity  and  perhaps  in  the belief that  this 
decision rule  was  optimal. I n  his  encyclopedic  coverage 
of synchronization,  Stiffer 12, pp. 499-5021 recognizes 
that  the  data surrounding  the  sync  word  should be 
taken  into  account  by  an  optimal decision rule,  but  in- 
dicates that   the analysis becomes intractable  and  that 
the  resulting  true  optimal decision rule would  be im- 
practical  to  implement. 

In  this  paper, we derive  the  optimal decision rule 
for  locating  the  sync  word on the  additive  white  Gaus- 
sian  noise  channel and show that  the effect of the  data 
is  merely  to  add  a  “correction”  term  to  the  correlator 
output so that  the optimum  rule  is  nearly  as  simple  to 
implement  as  the  ordinary  correlation  rule.  This  deriva- 
tion  is given in  Section I1 for  the  standard  case  where 
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the  receiver  can  make  tentative  bit decisions.  Section 
I11 gives the necessary  modification  for the  “phase- 
shift  keyed  (PSK)  sync”  case where the  bit values  are 
ambiguous  until  after  frame  synchronization  is ob- 
tained.  Section I V  contains  the  results of simulations 
comparing  the  performance of the  optimum  rule  and 
the correlation  rule.  Section  V  gives  a  derivation  of the 
optimum  sync  word  locating  rule when the  data,  rather 
than being  random  binary  digits,  are  Gaussian  random 
variables  as  might be the case  in  some  pulse-amplitude 
modulation  schemes. 

It should  be  emphasized tha t  our  analysis  applies 
only  to  the  case of a  sync  word  periodically  imbedded 
into  a  data  stream, which is the  usual  case  in  space 
telemetry.  Specifically,  it  does  not  apply to the “one- 
shot”  synchronization  problem  where  the  sync  word 
is  prefixed to  the  data  stream  and is  itself  preceded 
either  by no  signal  or  by  a  periodic 1-0 pattern. It re- 
mains  as  an  interesting  open  problem  to find the  opti- 
mum  synchronization  rule  for  this  one-shot  case. 

IZ. DERIVATION OF THE OPTIMAL  SYNC-WORD 
LOCATING RULE 

Let N denote  the  frame  length, i.e., each  L-digit  sync 
word  is  followed by N-L random  binary-data  bits.  We 
assume that  the receiver  is to process an N digit  span 
of the received  sequence  in order  to  locate  the  sync  word 
contained  therein. If n such  spans  are  actually  to  be 
used,  the  problem  reduces  to  the  above  for  a  frame 
length of nN digits  and  a  sync word of length nL. 

Let T = (yo, . . . , r N - l )  denote  the  received  span  to 
be processed  where each rr is the  detector  output  over 
one of the assumed-known bit  intervals.  The  sync  word is 
a priori equally  likely to  begin in  any of the N positions 
of T .  We will consider  digit ro to  follow digit r N - 1  so as to  
account  for  the  case  when  the  sync  word  begins  somewhere 
in  the  last L-1 digits of T and ali  subscripts  on  received 
digits will hereafter  be  taken  modulo N .  For example, 
r N + Z  is the  digit rz. 

Let s = (so, sl, . . . , s[,-,), where  each si is either +1 
or -1, be  the  sync word and  let d = ( d L ,  a,,, ,  . . * , 
denote N-L random  data  bits where the di are  statistically 
independent  random  variables  satisfying P r  [di = +1] = 
Pr [di = - 11 = 3. Consider  next  the  concatenation 
sd = (so, s l ,  . . . , sL- , ,  d L ,  . . . , Let T be  the cyclic 
shift  operator defined by T(sd)  = ( d N - 1 ,  so, . . 1 S L - 1 ,  

d,, . . . , dN-,J. If the  sync  word  actually  begins  in  digit 
rm of T ,  we can  express  the  received  segment  as 

T = 43 T“(sd) + n (1) 

where  each  received  digit  would  have  value  either + z/E 
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or - fi in  the  absence of noise, and where n = 
(no, nl, . . .  , nN-J is the  contribution of the  additive 
white  Gaussian  noise to  the  detector  outputs.  The com- 
ponents ni are  statistically  independent  Gaussian  random 
variables  with 0 mean  and  variance N 0 / 2  where N o  is 
the one-sided  noise spectral  density.  Let e = ( p o ,   p l ,  . . , 
p N - J  denote  the  actual  value  assumed  by  the  random 
vector r .  Then  the  optimum [in the sense,-of maximizing 
the  probability of correctly  locating  the  sync  word] 
decision  rule  is to  choose the  estimate of m as  the,value p, 
0 5 p < N ,  which  maximizes X, = Pr [m = p I r = e], 
which by  the mixed Bayed  rule [3, p. 751 for  events  and 
random  variables becomes SI = pr(p I m = p )  Pr  [m = 
p ] / p r ( p ) .  Here  and  hereafter, lower  case p denotes  the 
density  function of the  subscripted  random  variable. 
Since Pr [m = p] = 1/N for  all p, we may  equivalently 
maximize S,  = p r ( e  I m = p ) .  Letting 6 = ( 8 L ,  6 , + , ,  . . . , 

where  each 6; is  either + 1 or - 1, denote a possible 
value of the  random  data  vector d,  we have 
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is a sum  over  all  components of e and hence  is  independent 
of p, we may  subtract  this  sum  from S ,  without  affecting 
the  maximization t o  give 

S,  = p r ( p  I d = 6, m = p )  Pr (d = 6). (2) 
a l l  6 

Since Pr (d = 6) = 2-‘N-L’  for  all 6, we may  equivalently 
maximize 

S, = p r ( e  I d = 6, m = PI,  
a l l  6 

which upon  making  use of (1) becomes 

By  the  Gaussian  assumption  on n, we have 

Substituting  this  expression  into (3) and  removing  all 
factors  independent of p, we may  equivalently  maximize 

Carrying  out  the  summation  in (4) noting  that each ai 
takes  on  only  the  values +1 and -1, we obtain 

x, [E e 2 f i ~ i + p s ~ / N o  ] E 2 cosh (2  v‘% p i+ , /Nf l ) .  
, = O  i = L  

Taking  logarithms, we can  equivalently  maximize 

i = O  

Noting  that 

L-1 

X, = 2 d z  p i + , ~ / N o  - log, cash ( 2 d E  ~ i + , , / N o )  
L-I 

i=O i = O  

as  the  quantity  to be maximized  by  choice of p in the 
optimum decision rule.  Slightly  rewriting, we summarize 
as follows. 

Optimuan  Rule  for  Locating  the Sync W o d :  Given 
the received segment p, take  the  estimate of the  sync 
word  location m to be the  value of p ,  0 5 p < N ,  which 
maximizes the  statistic 

where 

f(x) = ( N 0 / 2 d E )  log, cosh ( 2 d Z  s / N o ) .  (6) 

It should be noted that  the  first  summation  in (5) is 
the  ordinary  correlation.  The  second  summation  repre- 
sents  a  kind of voltage or energy  correction  required 
to account  for  the  random  data  surrounding  the  sync 
word. It should  also be clear that  the  optimum  sta- 
tistic S is nearly  as  easy  to  calculate  as  the  correlation 
above,  particularly  in  the  practical  case  where  the  de- 
tector  outputs  are  quantized  to 8 or 16 values (3- or 
4-bit  quant,ization.) In  this  case,  only  a  small  number 
of values of the  function f in (6) need be stored  for  use 
in  forming  the  correction  term. 

Additional  insight  into  the  nature of the optimum 
statistic S can  be  gained  by  examining  its  form  in  the 
limiting  cases of very  high  and  very low signal-to-noise 
ratios. 

When E / N o  >> 1, the  argument of the cosh  in (6) is 
much  greater  t.han 1 with  high  probability so that  we 
may  approximate cosh (y)  as (4) elf’[. Using  this  ap- 
proximation  in (6), we obtain 

L-I  L - 1  

s = c i = O  &Pi+,, - c i = O  ( P i + , , l .  

Note  that whenever si and pi+s agree  in  sign,  their con- 
tribution  to  the  first  summation  in (7) is  exactly  can- 
celled by  the  term -Ipi+el in the second  summation. 
Thus,  only  negatively  correlated  terms  contribute  to  the 
statistic S and  the  optimum decision rule  reduces to 
choosing that  location p for  the  sync word that  yields  the 
least  total  negative  correlation. 

When B/No  << 1, the  argument of the cosh  in (6) is 
much  smaller  than 1 with high probability so that  we 
may closely  approximate log, cosh (y)  ley the  first  term 
in  its  Maclaurin  series  expansion,  namely (t) y2.  Using 
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ficient empirical  data  for  a  performance  comparison  for 
channel  signal-to-noise  ratios E / N o  near  unity  which  is 
the  range of practical  interest  in  space  telemetry. 

T o  conform to  usual  communications  practice,  the 
detector  outputs ri in the  simulation  were  quantized  to 
16 levels,  and i t  was verified that 8 levels  gave  essentially 
the  same  results.  The  quantized  values used  were 

MASSEY:  OPTIMUM FRAME SYNCHRONIZATION 

this approximation in (6),  we obtain 

I, - 1 4 E  L - l  

S = sjpi+, - - c P L C P 2  
i = O  No i = o  

as  the  statistic  to  be  maximized  by  the  optimum decision 
rule.  From  the form. of the second  summation in ( 8 ) ,  we 
see that  the correction term is an  energy  correction  in 
this  small  signal-to-noise  ratio  case. 

111. PSK FRAME SYNCHRONIZATION 

As Stiffler has  noted [2, p. 3721, when a binary PSI< 
signal  is  demodulated  using a carrier reference derived 
from  the  modulated  signal,  there  is a binary  ambiguity 
in  the  detector  output.  With  probability +, the  detector 
output will be r i  = t i  + ni where t i  is the  transmitted 
signal (4% si or 4z d i ) ,  and  with  probability 3 the 
detector  output will be ri = -ti - ni. When  this  am- 
biguity  is  included  in  the  analysis, a derivation  very 
similar to  that  in  Section 11, the  details of which will 
be  omitted  here,  leads  to  the following. 

Opt imum Rule for PSK Frame Sync: Given  the 
received  segment e, take  the  estimate of the sync-word 
location m to  be the  value of p, 0 5 p < N ,  which  max- 
imizes the  statistic 

L-1 

X = log, cosh (P)  - log,  cosh ( 2 4  pi+,,/NO) (9) 
i = O  

where 
L-1 

P = ( 2 d z / N O )  sipi,,. (10) 

A simple  approximate  form  for  this  statistic  is  readily 
obtained.  The  correlation  sum P can be expected to be 
quite  large in general so that  the approximation log, 
cosh ( P )  = IPJ - log, 2 will be quite  accurate.  Using  this 
approximation, we obtain  as  the  statistic to  be maximized 

i=O 

L-1 L-1 

X’ = sipi+, - c f ( P i + , )  I i = O  I i=O 

where f ( ) is  given in (6) .  We  note that  the usual  cor- 
relation  rule  for PSK frame  synchronization is just  to 
choose p to  maximize  the  first  summation  in (11).  Again 
we see the  optimal decision rule  adds  a  correction  term 
to  this  usual  statistic. 

IV.  SIMULATION RESULTS 
The basic  question  remaining  is  whether  the  optimum 

decision rule  for  frame  synchronization  provides sig- 
nificantly  better  performance  than  the  ordinarily used 
but  suboptimum  correlation  method. A theoretical com- 
parison of performances is ruled  out  by  the  complicated 
relationship  between  probability of incorrect  synchroni- 
zation  and  channel  signal-to-noise  ratio.  For  this  reason, 
a Monte  Carlo  simulation  was  performed  to  obtain  suf- 

(2j - 1) 1/E/6, -8 < j 5 8, (12) 

and  the  quantization  boundaries were taken  halfway be- 
tween  adjacent  quantization  values.  Simulations were 
performed  using  several  different  sync  words  and  frame 
lengths  as well as  signal-to-noise  ratios.  Table I shows 
the  results of standard  frame  synchronization  by  both  the 
optimum  and  the  correlation  rules  for  two  Barker  se- 
quences  and  one  Neuman-Hofman [4] sequence  as  sync 
words and  for  three  different  signal-to-noise  ratios.  The 
same  noise  and  data  sequences were  used  with all  sync 
sequences.  Inspection of this  table  reveals  a  3-dB  ad- 
vantage  for  the  optimum  decision  rule  for E/No about 
1 as  seen  by  the  fact  that  the  optimum decision rule 
performs  the  same a t  E / N o  = 1 as does the  correlation 
rule a t  E/No  = 2. (This  quite  precise  gain of 3 dB  was 
obtained  in  all  the  simulations  performed  that cover a 
wide  range of sync-word  lengths  and  frame  lengths.) 
The  gain becomes less as  the  channel becomes  more 
noisy. 

It should be noted  from  Table I that  the  Neuman- 
Hofman  sequence  outperforms  the  Barker  sequence of 
the  same  length  as  a  sync  word.  The  Neuman-Hofman 
sequence  was  designed so as  to maximize  performance 
with  a  correlation decision rule.  This  simulation  also 
shows that  it  is a good  choice  for a  sync word to be used 
with  the  optimum decision rule. 

Table I1 shows the  results of PSK frame  synchroniza- 
tion  for  the  same  sequences  and  signal-to-noise  ratios  as 
in Table I. The general nature of the  results  are  the  same 
with the  optimum decision rule a t  E / N o  = 1 showing the 
same  3-dB  improvement  over  the  correlation  rule. It 
should be mentioned that  the  “optimum”  rule used  in 
the  simulations  reported  in  Table I1 was  actually  the 
rule  using the  approximately  optimum  statistic S of 
(12). This decision rule  is  indiscernible  from  the  true 
optimum decision rule. 

V. GAUSSIAN DATA 

For  the  sake of completeness, we now  consider the 
case  when the  data  digits di, rather  than being  limited to  
values of f l  and -1, are  instead  statistically  independ- 
ent zero-mean  Gaussian  random  variables  with  variance 
unity.  Such  a  situation  might  describe  digitized voice 
transmission  with  pulse-amplitude  modulation (PAM). 
To derive  the  optimum  sync-word  location  rule, we note 
that  the  analysis in  Section I1 up  to (2) is  unchanged 
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TABLE I 

(COR) RULES FOR LOCATING THE SYNC WORD 
PERCENT.4GE OF ERRONEOUSLY SYNCHRONIZED FRAMES I N  100 SYNCHRONIZATION TRIALS USING  THE  OPTIMUM (OPT) AND THE  CORRELATION 

Sync Word OPT COR 
E / N o  = f 

OPT COR 
E/No = 1 

OPT COR 
E/No = 2 

L = 13. N = 91  Barker seauence 
s = ( l , l , l , l , l , - 1 , - l , l , l , - l , l , - l , l , )  0.31 0.42 0.09 0.19 0 .oo 0.08 
L = 13, N = 91 Neuman-Hofman sequence 

L = 7, N = 28 Barker sequence 
s = (-1, -1,  -1, -1,  -1, -1, 1,  1, -1, -1,  1, -1 ,  1) 0.28 0.32  0.07  0.18 0 .oo 0.07 

s = (1,  -1, 1, 1, -1, -1, -1,)  0.40  0.45  0.21  0.32 0.09 0.22 

TABLE I1 

RULES FOR LOCATING THE SYNC WORD 
PERCENTAGE OF ERRONEOUSLY SYNCHRONIZED FRAMES I N  100 TRIALS FOR PSK FRAME sYNCHRONIZ.4TION  USING  THE OPT -4ND T H E  COR 

Sync Word 
E/No = 4 

OPT COR OPT COR OPT COR 
E / N Q  1 E/NQ = 2 

L = 13, N = 91 Barker sequence 

L = 13, N = 91  Neuman-Hofman  sequence 

L = 7, N = 28 Barker sequence 

s = ( l , l , l , l , l , - l , - l , l , l , - l , l , - l , l )  0.39  0.47 0.14  0.27 0 .oo 0.12 

s = ,(-1, -1, -1, -1, -1, -1, 1,  1, -1,  -1,  1, -1, 1) 0.39  0.49 0.14  0.24 0 .oo 0.13 

s = 1,  -1,  1,  1,  -1, -1, -1) 0.63  0.63 0.37  0.46 0.21 0.40 

/ 
and (2) becomes replaced  by 

Using the  assumption  that  the  components of n are 
statistically  independent  Gaussian  random  variables  with 
mean 0 and  variance N 0 / 2  and  that  the  components of d 
are  statistically  independent  Gaussian  random  variables 
with  mean 0 and  variance 1, we obtain 

Carrying  out  the  indicated  integrations  and  dropping 
factors  independent of p, we may  equivalently  maximize 

i = O  

L - 1  1 N - l  

NO + 2E % = L  
c &Pi+’ - c 
i = O  

Adding the  quantity 

which  is  independent of p, we may  equivalently  maximize 

the  statistic 

Once again we see that  the  statistic  to be maximized 
by  the  optimum  sync-word  location  rule  consists  of  the 
ordinary  correlation  together  with  a  correction  term. For 
Gaussian  data,  the  correction  term  is  again seen to be a 
true  energy  correction. 

VI. SUMMARY 

This  paper  has  considered  the  problem of obtaining  an 
optimal  estimate of the  location of the  sync word  in a 
data  frame  for  binary  data  in  the  standard  case  and 
in the PSK sync  case  and  also for Gaussian  data  samples. 
I n  all  cases  it  was  shown  that  the  optimum decision rule 
is to  maximize  a  statistic  that  is  the  sum of two  terms, 
the  first  being  the  usual  correlation  and  the  second  being 
an  energy  correction  that  takes  into  account  the  fact 
that  the  sync word is imbedded  in  data. It was  verified 
by  simulation  that  the  optimum  rule  provides  about  a 
3-dB  advantage  over  the  ordinary  correlation  rule  in 
the  interesting  case of signal-to-noise  ratios E / N o  near 
unity. It was  also  noted that  the  optimum decision  rule 
is  only  slightly  more  complicated  to  implement  than  the 
correlation  rule. 
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Performance of a First-Order Transition Sampling Digital 
Phase-Locked Loop Using Random-Walk Models 

Abstract-A new mechanization of a first-order all digital  phase- 
locked loop (ADPLL) is discussed and analyzed.  The purpose of the 
loop is to  provide continuous tracking of the  incoming waveform 
corrupted by  the  presence of white  Gaussian  noise  (WGN).  Based on 
a random-walk model,  solutions are obtained for the  steady-state 
timing-error variance and mean  time to  slip a  cycle. A s  a  result of the 
mean  first-time-to-slip  analysis,  a  difference equation  and its 
solution  are  obtained that generalize  a  result of Feller [l]. Using  a 
procedure  that  appears new,  an upper  bound  on the timing-error 
bias  due to a Doppler shift of the  synchronized waveform is also 
derived. An example, for  which the  results  presented  here  are 
applicable, is considered  in  some  detail. 

I. INTRODUCTION 
NALOG  phase-locked  loops (PLL)  have long 

played  an  important  role  in  modern  communica- 
tion  systems.  Their  theory of operation is well 

documented  in  numerous  papers  throughout  the  past 15 
years.  The increased inhest   in   digi ta l  communication 
systems,  due  primarily  to  the  decreased size and cost 
and increased  reliability,  led  to  the  digital  phase-locked 
loop (DPLL) .  One of the  earliest  reported  DPL,L  was 
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constructed  by  adding  a  samplc  and hold circuit  between 
the  filter  and  the  voltage-controlled  oscillator (VCO) 
[2] in  an  analog loop. With  the  advent of integrated 
circuits,  more refined and more  nearly  all-digital PLL 
emerged [3],  [4] .  These loops utilize  analog  integration 
for the  midphase  in-phase (MI) type  phase  detector, 
with  the  remaining  functions of the loop being  accom- 
plished  digitally. A loop reported  by  Gota [5] was, ex- 
cept, for  the use of a  digital t o  analog  converter,  all digi- 
tal  in  opemtion;  he  did  not consider  noise  in the  analysis 
of his  loop. 

To  date  the  most common  function of the  DPLL 
has been t’o provide  synchronization of a  signal.’  How- 
ever,  this  is  not  the  only  application,  for  example,  an all- 
digital  phase-locked loop (ADPLL)  has been built  for 
FM demodulation [6] .  It was  designed for  potential 
application  in  large  multiple  data set. installations, which 
provide low-speed serial  data  communications,  for  time- 
shared  computers.  Additional  applications of D P L L  
are  summarized  in  a  paper  by  Gupta 171. 

Recently  an  ADPLL,  employing  a new  simple type 
of phase  detector  has been reported [8] for  square-wave 
signal  waveforms. The loop  was  conceived to  provide 
tracking of the  subcarrier  signal  for  a  command  system. 
Basically,  tracking  was  accomplished  by 1) sampling  the 
input  waveform a t   the  points  in  time  where  the  signal 
transitions or axis  crossing  occur, 2) accumulating m of 
these  samples,  and 3) incrementing  the  phase of the local 
reference  (clock)  in  such  a  direction as  to  bring  the  value 


