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Abstract

In this paper, we revisit the classical problem of functional de-
composition [1, 2] that arises so often in logic synthesis. One
basic problem that has remained largely unaddressed to the best
of our knowledge is that of decomposing a function such that
the resulting sub-functions are simple, i.e., have small number of
cubes or literals. In this paper, we show how to solve this prob-
lem optimally. We show that the problem is intimately related
to the encoding problem, which is also of fundamental impor-
tance in sequential synthesis, especially state-machine synthesis.

We formulate the optimum decomposition problem using encod-
ing. In general, an input-output encoding formulation has to

be employed. However, for �eld-programmable gate array archi-
tectures that use look-up tables, the input encoding formulation

su�ces, provided we use minimum-length codes. The last con-
dition is really not a constraint, since each extra code bit means
that an extra table has to be used (and that could be expen-

sive). The unused codes are used as don't cares for simplifying
the sub-functions. We compare the original implementation of

functional decomposition, which ignores the encoding problem,
with the new version that uses encoding while doing decomposi-

tion. We obtain an average improvement of over 20% on a set of
standard benchmarks for look-up table architectures.

1 Introduction

Decomposition is a fundamental problem in logic synthesis. Its

goal is to break a function into simpler functions. The �rst sys-
tematic study on decomposition was done by Ashenhurst [1]. He

characterized the existence of a simple disjoint decomposition of
a function. While being seminal, this work could not be used for

functions with more than 10-15 inputs, since it required the con-
struction of a decomposition chart, a modi�ed form of the truth
table for a function. Few years later, Roth and Karp proposed

a technique [2] that does not require building a decomposition
chart; instead, it uses a sum of products representation, which is,
in general, more compact than a truth table. They, in fact, ex-
tended Ashenhurst's work by characterizing non-simple (or gen-

eral) decompositions and used this characterization to determine
the minimum-cost Boolean network using a library of primitive
gates, each with some cost. Both of these studies did not address
the problem of decomposing the function such that the resulting
sub-functions are simple, i.e., have small number of cubes or lit-

erals. It is important that they be simple, otherwise we may lose
the e�ect of optimizations performed thus far.

In [6], Roth and Karp decomposition was used to generate
from an arbitrary network a network with fanin-constraint. The
fanin-constraint restricted each function of the network to have
a maximum of m inputs, where m is a constant. Such a func-
tion with at most m inputs is called an m-feasible function.

�This work is supported in part by DARPA under contract
number J-FBI-90-073.

This has direct application to look-up table (LUT) based �eld-
programmable gate arrays where each basic block is an m-input
LUT, which can implement any function of up to m inputs. This
work ignored the issue of simplicity of the sub-functions. Re-
cently, Lai et al. [7] used BDDs to implement functional decom-
position, but they also ignored the simplicity issue.

In this work, we introduce a straightforward method of doing
decomposition such that the resulting sub-functions are simple.
It was previously known that an encoding step is needed to solve
the problem of functional decomposition. The most popular ap-
proach was to encode equivalence classes (for a completely spec-

i�ed function)1 generated during the decomposition [6, 7]. We
show that this is not the most general formulation. Our solution

is based on performing an encoding step on a certain set of in-
put minterms. We show that the encoding formulation needed

to obtain simple sub-functions is that of input-output encoding.
However, for LUT architectures, the problem reduces to that of
input encoding, which is easier to solve.

The paper is organized as follows. Section 2 briey explains
the encoding problem, and Section 3 describes the classical func-
tional decomposition technique. The relationship between the

two is drawn in Section 4. How the problem simpli�es for LUT
architectures is part of Section 5. Results on a set of benchmark

examples are presented in Section 6.

2 The Encoding Problem

Many descriptions of the logic systems include variables that,
instead of being 0 or 1, take values from a �nite set. For ex-
ample, states of a controller are initially denoted symbolically as

S = fS1; S2; : : : ; Skg. Assume that the controller is in a state
S1 when it fetches the instruction \ADD R1 R2" from the mem-

ory, and then moves to a state S2. To execute the instruction,
it has to fetch the two operands from the registers R1 and R2,
send a control signal to the adder to compute the sum, and en-
able the load signal of R1 to store the result in R1. In other
words, the controller takes the present state (S1) and external
inputs (the instruction ADD and the names of the registers R1
and R2), and generates control signals (READ signal to R1 and

R2, transferring their contents on the bus(ses), ADD signal to
the adder, and �nally LOAD signal to R1) and computes the
next state (S2). To obtain an implementation of the controller,
the states need to be assigned binary codes, since a signal in a

digital circuit can only take values 0 and 1. The size of the con-
troller depends strongly on the codes assigned to the states. This
gives rise to the problem of assigning binary codes to the states
of the controller such that the �nal gate implementation after
encoding and a subsequent optimization is small. It is called the

state-encoding (or state-assignment) problem. Note that it
entails encoding of both symbolic inputs (present state variables)
and symbolic outputs (next state variables). In other words, it

1more generally, compatibility classes for an incompletely
speci�ed function



is an input-output encoding problem. The optimization after
encoding may be two-level if we are interested in a two-level im-
plementation, or multi-level, otherwise. Correspondingly, there
are state-assignment techniques for two-level [10, 8, 14, 15] and
for multi-level implementations [16].

Before proceeding any further, we de�ne the concept of a
multi-valued function.

De�nition 2.1 A multi-valued function with n inputs is a
mapping F : P1�P2�� � ��Pn ! B, where Pi = f0;1; : : : ; pi�1g,
pi being the number of values that ith (multi-valued) variable
may take on.

An example of a multi-valued variable is S, the set of states of
a controller. Analogous to the Boolean case, we can de�ne the
notion of a multi-valued product term and cover. Then, as in
the Boolean two-level case, we have the problem of determining
a minimum-cost cover of a multi-valued function. This problem
is referred to as multi-valued minimization problem.

A problem that is simpler than state-encoding is the one where
just the inputs are symbolic. For example, assigning op-codes to
the instructions of a processor so that the decoding logic is small,
falls in this domain. This is known as the input encoding prob-

lem. If the objective is to minimize the number of product terms
in a two-level implementation, the algorithm �rst given by De

Micheli et al. [8] can be used. It views encoding as a two phase
process. In the �rst phase, a multi-valuedminimized representa-

tion is obtained, along with a set of constraints on the codes of
the values of the symbolic variables. In the second, an encoding

that satis�es the constraints is determined. If satis�ed, the con-
straints are guaranteed to produce an encoded binary represen-
tation of the same cardinality as the multiple-valued minimized

representation. Details of the two phases are:

1. Constraint generation : The symbolic description is trans-
lated into a multi-valued description using positional cube

notation. For example, let S be a symbolic input variable
that takes values in the set fS1; S2; : : : ; Skg. Let x be a
binary input, and y the only (binary) output. In positional

cube notation (also called 1-hot notation), a column is in-
troduced for each Si. A possible behavior of the system is:

if S takes value S1 or S2, and x is 1, then y is 1. This
behavior can be written as:

x S1 S2 S3 : : : Sk�1 Sk y

1 1 0 0 : : : 0 0 1
1 0 1 0 : : : 0 0 1

A multi-valued logic minimization is applied on the result-
ing multi-valued description so that the number of product

terms is minimized. The e�ect of multi-valued logic min-
imization is to group together symbols that are mapped
by some input to the same output. The number of product
terms is the same as the minimumnumber of product terms
in any �nal implementation, provided that the symbols in
each product term in this minimized cover are assigned to
one face (or subcube) of a binary cube, and no other sym-
bol is on that face. These constraints are called the face
or input constraints. For example, for the behavior just

described,

x S1 S2 S3 : : : Sk�1 Sk y

1 1 1 0 : : : 0 0 1

is a product term in the minimum cover. This cor-

responds to a face constraint that says there should
be a face with only S1 and S2. This face constraint

can also be written as a set of dichotomies [14]:
(S1S2;S3); : : : ; (S1S2;Si); : : : ; (S1S2;Sk), which says that
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Figure 1: A simple disjoint decomposition

an encoding bit bi must distinguish S1 and S2 from Si for
3 � i � k.

Also, each symbol should be assigned a di�erent code.

These are known as the uniqueness constraints, and are
handled by adding extra dichotomies. For example, to en-

sure that the code of S1 is distinct from other symbols,
dichotomies (S1;S2); (S1;S3); : : : ; (S1;Sk) are added.

2. Constraint satisfaction: An encoding is determined that

satis�es all the face and uniqueness constraints. De Micheli
et al. proposed a satisfaction method based on the con-
straint matrix (which relates the face constraints to the

symbolic values). Yang and Ciesielski [14] proposed an al-
ternate scheme based on dichotomies and graph coloring for

solving the constraints. It was later improved by Saldanha
et al. [11].

3 Classical Decomposition

We present briey the classical decomposition theory due to
Ashenhurst [1] and Roth & Karp [2]. Ashenhurst [1] gave neces-

sary and su�cient condition for the existence of a simple disjoint
decomposition of a completely speci�ed function f of n vari-

ables. Given a partition of inputs of f , X = fx1; x2; : : : ; xsg,
Y = fy1; : : : ; yn�sg, X \ Y = �, a simple disjoint decompo-

sition of f is of the form:

f(x1; x2; : : : ; xs; y1; : : : ; yn�s) = g(�(x1; x2; : : : ; xs); y1; : : : ; yn�s)
(1)

where � is a single function. In general, � could be a vector of
functions, in which case the decomposition is non-simple (or
general).

(1) can also be written as

f(X;Y ) = g(�(X);Y ) (2)

The representation (2) is called a decomposition of f ; g

is called the image of the decomposition. The set X =
fx1; x2; : : : ; xsg is called the bound set and Y = fy1; : : : ; yn�sg
the free set (Figure 1). The necessary and su�cient condition

for the existence of such a decomposition was given in terms
of the decomposition chart D(XjY ) for f for the partition

XjY (also written X
Y

or (X;Y )). A decomposition chart is a
truth-table of f where vertices of Bn = f0;1gn are arranged in

a matrix. The columns of the matrix correspond to the vertices
of BjXj = Bs, and its rows to the vertices of BjY j = Bn�s. The



entries in D(XjY ) are the values that f takes for all possible in-
put combinations. For example, if f(a;b; c) = abc0 + a0c + b0c,
the decomposition chart for f for the partition abjc is

ab
c

00 01 10 11

0 0 0 0 1
1 1 1 1 0

Ashenhurst proved the following fundamental result, which
relates the existence of a decomposition to the number of distinct
columns in the decomposition chart D(XjY ):

Theorem 3.1 (Ashenhurst) The simple disjoint decomposi-
tion (2) exists if and only if the corresponding decomposition
chart has at most two distinct column patterns.

Stated di�erently, the decomposition (2) exists if and only if the
column multiplicity of D(XjY ) is at most 2. Note that the
chart just shown has 2 distinct columns, 01 and 10.

We say that two vertices x1 and x2 inB
s (i.e.,BjXj) are com-

patible (written x1 � x2) if they have the same column patterns
in D(XjY ), i.e., f(x1; y) = f(x2; y) for all y 2 BjY j. For an in-
completely speci�ed function, a don't care entry `-' cannot cause

two columns to be incompatible. In other words, two columns
ci and cj are compatible if for each row k, either ci(k) = �, or

cj(k) = �, or ci(k) = cj(k). For a completely speci�ed function
f , compatibility is an equivalence relation (i.e., x1 � x1; x1 �

x2 ) x2 � x1 , and x1 � x2 & x2 � x3 ) x1 � x3 for all
x1; x2; x3), and the set of vertices that are mutually compatible
(or equivalent) form an equivalence class. Hence the column

multiplicity of the decomposition chart is the number of equiv-
alence classes. In this paper, we will consider only completely

speci�ed functions, and so use compatibility and equivalence in-
terchangeably.

Roth & Karp [2] extended the decomposition theory of Ashen-
hurst by characterizing a general (non-simple) disjoint decompo-
sition, which is of the following form:

f(X;Y ) = g(�1(X); �2(X); : : : ; �t(X);Y ) = g(~�(X); Y ); (3)

where ~� = (�1; �2; : : : ; �t). They proved that if k is the least
integer such that BjXj may be partitioned into k equivalence
classes (in other words, the column multiplicity of the decompo-

sition chart D(XjY ) is k), then there exist �1; �2; : : : ; �t and g

such that (3) holds if and only if k � 2t. Hence the least t that

satis�es (3) is dlog2ke.
Suppose we have determined that there are k equivalence

classes corresponding to the partition (X;Y ) for the function
f . The next question is how to determine sub-functions ~� =
(�1; : : : �t) and g. We briey review how Ashenhurst and Roth
& Karp address this problem.

� Ashenhurst [1]: Given that the column multiplicity of
D(XjY ) is at most 2, how do we determine � and g? Since
there are at most 2 equivalence classes, and a single � func-
tion for a simple decomposition, the vertices of one class
are placed in the o�-set of �, and of the other class in

the on-set. g can then be determined by looking at each
minterm in the on-set of f and replacing its bound-part

(i.e., the literals corresponding to the variables in the bound
set X) by either � or �0, depending on whether the bound-
part is in the class that was mapped to the on-set of � or
the o�-set. We illustrate the decomposition technique for
the previous example - f = abc0 + a0c + b0c, and partition
(XjY ) = abjc. D(abjc) has two distinct columnpatterns, re-
sulting in the equivalence classesC1(a; b) = f00;01;10g and

C2(a; b) = f11g. Let us assign C1 to the o�-set of � and C2

to its on-set. Then �(a; b) = ab. Since f = abc0 + a0c+ b0c,

g(�; c) = �c0 + �0c + �0c = � � c.2 The bound part of
the �rst minterm abc0 of f is ab, which yields � = 1. So
this minterm abc0 generates �c0 in g. Note that if C1 was
assigned to the on-set of � and C2 to the o�-set, the newe� would be simply �0, and the new eg(�; c), g(�0; c), which
has same number of product terms as g. So irrespective of
how we encode C1 and C2, the functions g have the same
complexity. However, the situation is di�erent if the de-
composition is not simple.

� Roth & Karp [2] give conditions for the existence of ~� func-
tions, but do not give a method for computing them.3 This
is because they assume that a library of primitive elements
is available from which ~� functions are chosen. Given a
choice of ~� functions, they state the necessary and su�-
cient condition under which g exists as in (3).

Proposition 3.2 (Roth & Karp) Given f and ~�, there
exists g such that (3) holds if and only if, for all x1; x2 2
BjXj; ~�(x1) = ~�(x2) ) x1 � x2, or equivalently, x1 6�
x2 ) ~�(x1) 6= ~�(x2).

In other words, whenever x1 and x2 are in di�erent compat-
ibility (or equivalence) classes, ~� should evaluate di�erently

on them. If this condition is not satis�ed, then this partic-
ular choice ~� of primitive elements is discarded, and the

next one is tried. Otherwise, a valid decomposition exists,
and then g is determined as follows. Each minterm in the

on-set of f , written (x; y), where x is the bound-part and y

the free-part, maps onto a minterm ( b�1 b�2 : : : b�t; y) in the
on-set of g. Here

b�j = n
�j if �j(x) = 1

�j
0 if �j(x) = 0

(4)

The entire procedure is repeated on g until it becomes equal

to some primitive element.

In general, ~� functions are not known a priori. For instance,

this is the case when decomposition is performed during the
technology-independent optimization phase, because the tech-
nology library of primitive elements is not considered. There

are many possible choices for ~� functions that correspond to a
valid decomposition. For instance, given that BjXj may be par-

titioned into k classes of mutually compatible elements, and that
t � dlog

2
(k)e, each of the k compatibility classes may be assigned

a unique binary code of length t, and there are many ways of do-
ing this. Each such assignment leads to di�erent ~� functions.
We will like to obtain that set of ~� functions which is simple

and which makes the resulting function g simple as well. The
measure of simplicity is the size of the functions using an ap-

propriate cost function. For instance, in the two-level synthesis
paradigm, a good cost function is the number of product terms,
whereas in the multi-level paradigm, it is the number of literals
in the factored form. The general problem can then be stated as

follows:

Problem 3.1 Given a function f(X;Y ), determine sub-

functions ~�(X) and g(~�; Y ) satisfying (3) such that an objective
function on the sizes of ~� and g is minimized.

To the best of our knowledge, this problem has not been ad-
dressed in the past. We present an encoding-based formulation
to solve it, and also show how the formulation becomes simpler

for LUT architectures.

2� denotes XOR.
3We believe they knew how to �nd these functions, but not

how to �nd simple ~� functions.



4 Determining ~� and g: an En-

coding Problem

It seems intuitive to extend Ashenhurst's method for obtaining
the ~� functions. Ashenhurst placed the minterms of one equiva-
lence class in the on-set of � and of the other in the o�-set. In
other words, one equivalence class gets the code � = 1 and the
other, � = 0. For more than two equivalence classes, we can do
likewise, i.e., assign unique ~�-codes to equivalence classes. This
leads to the following algorithm:

1. Obtain aminimumcardinalitypartitionP of the spaceBjXj

into k compatible classes. This means that no two classes
Ci and Cj of P can be combined into a single class Ci [Cj

such that all minterms of Ci [Cj are mutually compatible.
This means that given any two classesCi and Cj in P, there
exist vi 2 Ci and vj 2 Cj such that vi 6� vj.

2. Then assign codes to the compatibility classes of P. Since
there is at least one pair of incompatible minterms for each
pair of classes, it follows from Proposition 3.2 that each
compatibility class must be assigned a unique code. This

implies that all the minterms in a compatibility class are
assigned the same code. We will discuss shortly how to

assign codes to obtain simple ~� and g functions.

This is the approach taken in every work (we are aware of) that
uses functional decomposition, e.g., [6, 7]. However, this is not

the most general formulation of the problem. To see why, let
us re-examine Proposition 3.2, which gives necessary and su�-

cient conditions for the existence of the decomposition. It only
constrains two minterms (in BjXj space) that are in di�erent
equivalence classes to have di�erent values of ~� functions. It

says nothing about the minterms in the same equivalence class.
In fact, there is no restriction on the ~� values that these minterms

may take: ~� may evaluate same or di�erently on these minterms.

To obtain the general formulation, let us examine the problem
from a slightly di�erent angle. In Figure 2 is shown a function

f(X;Y ) that is to be decomposed with the bound set X and the
free set Y . After decomposition, the vertices in BjXj are mapped

into vertices in Bt - the space corresponding to the ~� functions.
This is shown in Figure 3. This mapping can be thought of as
an encoding. Assume a symbolic variable X . Imagine that each

vertex x in BjXj corresponds to a symbolic value of X , and is to
be assigned an ~�-code in Bt. This assignment must satisfy the

following constraint: if x1; x2 2 BjXj and x1 6� x2, they must
be assigned di�erent ~�-codes - this follows from Proposition 3.2.

Otherwise, we have freedom in assigning them di�erent or same
codes. Hence, instead of assigning codes to classes, the most
general formulation assigns codes to the minterms in the BjXj

space.

The problemof determining simple ~� and g can be represented
as an input-output encoding (or state-encoding) problem. Intu-
itively, this is because the ~� functions created after encoding are
both inputs and outputs: they are inputs to g and outputs of
the square block of Figure 3. Minimizing the objective for ~�

functions imposes output constraints, whereas minimizing it for
g imposes input constraints.

There is, however, one main di�erence between the stan-
dard input-output encoding problem and the encoding problem
that we have. Typically input-output encoding requires that
each symbolic value be assigned a distinct code (e.g., in state-
encoding), whereas in our encoding problem some symbols of
X may be assigned the same code. This can be handled by a
simple modi�cation to the encoding algorithm. Let us �rst see

how an encoding algorithm ensures that the codes are unique.
A dichotomy-based algorithm [14] explicitly adds a dichotomy

f

Y

X

Figure 2: Function f to be decomposed with the bound set X
and free set Y
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Figure 3: A general decomposition of f

(Si;Sj) for each symbol-pair fSi; Sjg. This guarantees that the
code of Si is di�erent from that of Sj in at least one bit. In our

problem, let xi and xj be two symbolic values of X . If xi 6� xj,
we add a dichotomy (xi;xj). Otherwise, no such dichotomy is
added. This provides additional exibility to the encoding algo-

rithm: it may assign the same code to two or more compatible
symbols if the resulting ~� and g functions are simpler.

The encoding algorithm has to encode all the 2jXj symbolic

values of X . If jXj is large, the problembecomes computationally
di�cult. We can then use the approximate method of assigning
codes to equivalence classes, as described at the beginning of this

section.

Note that t is determined by the encoding algorithm. It is
the number of bits used by the algorithm to encode the vertices
in BjXj, or the equivalence classes if the approximate method is

being used. Once the codes are known, the ~� functions can be
easily computed. Then g can be determined using the procedure
described in the last section. The unused codes can be used as
don't cares to simplify g.

5 Application to LUT Architec-

tures

We have shown that for a given input partition (X;Y ), the gen-
eral decomposition problem can be solved using an algorithm for
input-output encoding. The input part is responsible for mini-



/* � is a network */

/* m is the number of inputs to the LUT */

functional decomposition for LUT(�, m)

f
while (nodes with support > m exist in �) do f

n = get an m-infeasible node(�);

(X;Y ) = get input partition(n);

codes = encode(n, X);

~� = determine ~�(codes);

g = compute g(n, codes);

g = simplify g using DC(g, ~�, codes);

add ~� nodes to �;

replace n by g

g
g

Figure 4: Functional decomposition for LUT architectures

mizing the size of g, and the output part for minimizing the sizes

of ~�. However, for LUT architectures, we are interested in a par-
ticular kind of decomposition: namely, where the bound set X
is restricted to have at most m variables. Then, all the ~� func-

tions are m-feasible and can be realized with one m-LUT each.
If t + jY j > m, g needs to be decomposed further. Since an m-

LUT can implement any function of up to m inputs, we do not
care how large the representation of the ~� functions is. The only

concern from the output encoding part is the number of bits in
the encoding. Since each extra bit means using an extra LUT, we
will like to minimize the number of bits. So we use t = dlog2ke.

With this, the contribution by the ~� functions to the objective
function disappears. This removes the output encoding part of

the formulation, thereby reducing it simply to an input encoding
problem.

Note that if t � jXj, g will have at least as many inputs as f ,
and the algorithm may never terminate. So we always check for
t < jXj.

Since LUTs impose input constraints, it is tempting to consider
minimizing the support of the function g as the objective func-

tion in the encoding formulation. However, if the code-length is
always chosen to be the minimum possible, the support of g is

already determined (it is t+jY j), and the encoding of ~� functions
do not make any di�erence. Hence, this objective function is not
meaningful.

We show the complete algorithm in Figure 4. The approxi-
mate method, where equivalence classes are encoded, is shown in

Figure 5 and is illustrated with the following example. Let

f(a;b; c; d; e) = ab0 + ac0 + ad+ ae+ a0e0

Let m = 4. Let us �x the bound set X to fa; b; c; dg. Then
Y = feg. Although we do not show the decomposition chart

(since it is big), it has three equivalence classes C0; C1, and C2.
Let the corresponding symbolic representation for the on-set of

g be:

e class g

1 C0 1
1 C1 1
0 C2 1
0 C0 1

Let us assume that we are minimizing the number of product
terms in g. Then after a multi-valued minimization [4], we get
the following cover:

/* � is a network */

/* m is the number of inputs to the LUT */

approximate functional decomposition for LUT(�, m)

f
while (nodes with support > m exist in �) do f

n = get an m-infeasible node(�);

(X;Y ) = get input partition(n);

classes = form compatibility classes(n, X, Y );

codes = encode(n, classes);

~� = determine ~�(classes, codes, X);

g = compute g(n, classes, codes, X);

g = simplify g using DC(g, classes, codes);

add ~� nodes to �;

replace n by g

g
g

Figure 5: Approximate method for decomposition for LUT archi-
tectures

e C0 C1 C2 g

1 1 1 0 1
0 1 0 1 1

This corresponds to the following face constraints:

C0 C1 C2

1 1 0
1 0 1

To these, uniqueness constraints are added. These constraints

are handed over to the constraint satis�er [11]. The following
codes are generated:

class �1�2
C0 00
C1 10

C2 01

Note that C0 and C1 are on a face, namely �2 = 0. Similarly,
C0 and C2 are on the face �1 = 0. Let �1 and �2 be the encoding

variables used. Then it can be seen from the minimized multi-
valued cover that

g = e0(C0 + C2) + e(C0 + C1)

) g = e0�1
0 + e�2

0

Also, it turns out that C0;C1, and C2 are such that

�1 = abcd0

�2 = a0

This simpli�es to

g = e0�1
0 + ea

�1 = abcd0

Had we done a dumb encoding of the equivalence classes, as is
the case in [6], we would have obtained the following decomposi-

tion,

g = �1�2
0e+ �1

0�2 + �1
0e0

�1 = abcd0

�2 = ab0 + ac0 + ad;

which uses one more function and many more literals than the

previous one. This shows that the choice of encoding does make
a di�erence in the resultant implementation.



6 Experiments

The experimental set-up is as follows. We take MCNC and IS-
CAS multi-level networks and optimize them by standard meth-
ods [5, 12]. We use misII for these experiments. There is an
implementation of Roth-Karp decomposition algorithm in misII
[6]. This implementation encodes the equivalence classes serially,
that is, it assigns to an equivalence class Cj the code correspond-
ing to the binary representation of j. To measure the encoding
quality, we target LUT architectures, and our �nal goal is to min-
imize the number of Con�gurable Logic Blocks (CLBs) needed for
a benchmark. A CLB is a basic block of the Xilinx 3090 archi-
tecture [3], which can implement either one 5-feasible function,
or two 4-feasible functions with a total of at most 5 inputs. For
encoding, we use the algorithm of [11], which targets two level
minimizationwith two cost functions: number of cubes and num-
ber of literals. We go for minimum number of literals, since it is
more relevant for a multi-level implementation.

The following experiments are performed:

� RK mis-pga: Use the original Roth-Karp decomposition
implementation of misII [5, 6]. This is followed by a mis-

pga mapping script. The complete sequence of commands
is:

xl k decomp -n 5

xl partition -tm -n 5

xl merge

The command xl k decomp invokes Roth-Karp decomposi-

tion on any node function that has greater than 5 fanins. It
chooses the �rst input partition (X;Y ) such that jXj � 5.

If a disjoint decomposition is not found, the implementation
switches to another decompositionmethod that guarantees
feasibility [6].

xl partition reduces the number of nodes by collapsing

them into their fanouts, without generating any nodes that
have more than 5 inputs.

xl merge exploits the feature of Xilinx 3090 architecture
that allows two functions to be placed on one CLB [3].

� RK enc: Use the input encoding formulation while do-

ing Roth-Karp decomposition. We use the approxi-
mate method, wherein the equivalence classes are en-

coded. The input encoding algorithm from [11] is used.
xl k decomp input encoding is the corresponding new com-
mand. The following script is used:

xl k decomp input encoding -n 5

xl partition -tm -n 5

xl merge

We experiment with two options in
xl k decomp input encoding:

{ without DC: no don't cares are used.

{ with DC: the unused codes are used as don't cares to
simplify g.

Table 1 shows the results on the benchmarks. On a per exam-
ple basis, RK enc (with DC) is 16.5% better than RK mis-pga.
It helps to use unused codes as don't cares. RK enc (with DC)

is 6.6% better than RK enc (without DC). Looking at the row
subtotal, RK enc (with DC) gives 21% better CLB count than
RK mis-pga. Also note that on apex2 and C5315 , RK mis-pga
could not complete, whereas RK enc could.

We make another observation: most of the improvement is
in the large benchmarks. This is because in small benchmarks,
most of the functions are simple and do not have too many in-

puts. Therefore the sub-function g after applying the algorithm
is m-feasible most of the time, and doing a good encoding does

example RK mis-pga RK enc

without DC with DC

z4ml 7 7 7

misex1 10 10 10
vg2 27 23 28

5xp1 36 40 39

count 26 26 26
9symml 46 45 45

9sym 62 53 53

apex7 56 52 53
rd84 115 67 46

e64 54 54 54

C880 209 191 136
apex2 - 133 85

alu2 177 163 153

duke2 312 269 174
C499 73 68 67

rot 257 240 223

apex6 210 207 194
alu4 91 85 85

sao2 104 78 76

rd73 35 25 22

misex2 29 27 28

f51m 67 41 38

clip 114 73 54

bw 45 46 47

des 1373 1265 1151

C5315 - 442 455

b9 103 77 63

subtotal 3638 3232 2872
total - 3807 3412

Table 1: Number of Xilinx 3090 CLBs

RK mis-pga Roth-Karp decomp. of mis-pga,

followed by mapping script

RK enc without DC Roth-Karp decomp. with input

encoding (and not using DCs),

followed by mapping script
RK enc with DC Roth-Karp decomp. with input

encoding and using unused codes

as DC, followed by mapping script
- could not �nish

subtotal sum of CLB counts for all

examples except apex2 and
C5315

total sum of CLB counts for all

examples



not make much di�erence. But typically in larger benchmarks,
functions have many inputs, so g is infeasible and doing a good
encoding does make a di�erence when g is decomposed.

Although not reported here, the number of literals is also min-
imized in roughly the same proportion as the number of CLBs
using the encoding formulation.

Note that for some benchmarks, such as 5xp1 and bw , the
number of CLBs increases as a result of using input encoding
techniques. Though counter-intuitive, it is not surprising. It
just shows that the number of literals may not always be a good
cost function for LUT architectures. A simple example is the
following. Fix m to 5. Consider two functions f1 and f2:

f1 = abcdeg

f2 = abc+ b0de+ a0e0 + c0d0:

The representation of f1 has 6 literals, and that of f2 10 literals.
However, f1 requires two 5-LUTs, whereas f2 only one. There-
fore we need to come up with better cost functions for these
architectures.

7 Conclusions

In this paper, we revisited the classical problem of functional de-

composition. We showed how to solve the problem of decompos-
ing a function such that the resulting sub-functions are simple,

i.e., have small number of cubes or literals. We demonstrated
that this problem is intimately related to the encoding problem.

In general, an input-output encoding formulation has to be em-
ployed to solve the problem. However, for programmable gate
array architectures that use look-up tables, the input encoding

formulation su�ces, provided we use minimum-length codes. We
also use the unused codes as don't cares for simplifying the sub-

functions.
Our approach gives promising results as compared to the orig-

inal implementation of functional decomposition (which ignores
the encoding problem) in misII .

The analysis presented in this paper assumes that the partition

(X;Y ) is known. The problem that remains unsolved is that of
choosing a good input partition (X;Y ).

For LUT architectures, minimizing the number of literals may
not always be a good objective. We plan to come up with better

objective functions in future.
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